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Abstract: Hyperspectral imagery contains abundant spectral information. Each band contains
some specific characteristics closely related to target objects. Therefore, using these characteristics,
hyperspectral imagery can be used for anomaly detection. Recently, with the development of
compressed sensing, low-rank-representation-based methods have been applied to hyperspectral
anomaly detection. In this study, novel low-rank representation methods were developed for
anomaly detection from hyperspectral images based on the assumption that hyperspectral pixels can
be effectively decomposed into a low-rank component (for background) and a sparse component
(for anomalies). In order to improve detection performance, we imposed a spatial constraint on the
low-rank representation coefficients, and single or multiple local window strategies was applied to
smooth the coefficients. Experiments on both simulated and real hyperspectral datasets demonstrated
that the proposed approaches can effectively improve hyperspectral anomaly detection performance.
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1. Introduction

Due to the high spectral resolution and abundant spectral information in a large number of
spectral bands, hyperspectral image (HSI) data have been widely used to distinguish different targets
on the ground. According to the availability of target information, target detection algorithms can be
divided into two categories: with or without a priori target knowledge [1]. Since target information is
often difficult to obtain in practice [2], anomaly detection does not require any a priori information of
targets and is of great importance in real applications [3,4].

Anomaly detection involves modeling the background and using the difference between the pixels
and the background to detect anomalous pixels. Many different anomaly detection algorithms have
been proposed. The well-known Reed–Xiaoli (RX) algorithm, considered to be a classical detection
algorithm [5], is a second-order matched filtering algorithm, for which the similarity between the test
pixel and the background is calculated by Mahalanobis distance. When the entire image is considered
for background modeling, this is known as the global RX detector (GRXD). If the RX detector estimates
the background using local statistics, it is referred to as the local RX detector (LRXD) [6]. However,
neither of these two algorithms can exclude the influence of anomalous features on covariance. Until
recently, many researchers have made contributions to anomaly detection. Billor et al. proposed the
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blocked adaptive computationally efficient outlier nominator (BACON) [7] algorithm, which tries to
select the growing subset of outlier-free points and obtain robust background statistics to weaken the
contamination by anomalies. Imani proposed the median–mean line RX detector (MML-RXD) [8],
in which the benefits of the median–mean metric are used to provide more reliable background
samples. Yao et al. were inspired by the bilateral filter in digital image processing and proposed
the bilateral-filter-based anomaly detector (BFDA) [9], which substitutes the weighted surrounding
neighbors for centric pixels to remove anomalous points. Some enhanced RX-based algorithms such as
the weighted-RXD (WRXD) [10] and the linear filter-based RXD [10] were also proposed. They aim at
increasing the probability of anomaly detection by improving the estimation of background statistics
to exclude the influence of anomalous features on covariance.

Generally speaking, in real hyperspectral imagery, the background information is very complicated
and cannot be described with just the covariance matrix and mean vector. To avoid obtaining the accurate
covariance matrix of the background, some linear-representation-based methods have been successfully
applied to hyperspectral anomaly detection. These include the unsupervised nearest regularized
subspace (UNRS) [11] detector proposed by Li et al. and the collaborative-representation-based detector
(CRD) [12] for anomaly detection, both of which are based on the assumption that the spectrum of
the central pixel is similar to that of the surrounding pixel and can be linearly represented by the
surrounding pixels. To make full use of the spatial information of neighboring pixels, the two detectors
adopt a dual window strategy, which leads to the detection accuracy being affected by the size of the
internal and external windows.

Unlike UNRS and CRD, with the development of compressed sensing, sparse-representation-based
methods have been extensively researched. By using a small number of similar signals to
represent signals, noise and anomalous signal information can be effectively suppressed. Some
sparse-representation-based methods have been applied to hyperspectral image anomaly detection.
For instance, the sparse representation detector (SRD) was proposed based on the assumption that
hyperspectral pixels can be well represented by only a few pixels [13,14]. Sparse representation theory
has a good application in the processing and representation of one-dimensional information, but for
two-dimensional matrix data, sparsity can only represent the structural information of the dataset.

Due to the redundancy and diversity of the observed data, two-dimensional matrix data are
presented with low-rank characteristics. By performing a low-rank constraint on the matrix, the global
structure information of the two-dimensional matrix can be better described. Low-rank representation
(LRR) can be considered as a special case of sparse representation, extending from one-dimensional
sparsity to two-dimensional low rank.

Some low-rank representation models have also been applied to hyperspectral anomaly detection,
such as the classical robust principal component analysis (RPCA) [15], which decomposes the matrix
into low-rank and sparse matrices. Chen et al. [16] proposed the RPCA-RX anomaly detection method,
with the classic RX detector being applied to the sparse matrix. Unlike RPCA, the LRR [1,17] model
assumes that the data are drawn from multiple subspaces, which is better suited for hyperspectral
images due to the complex background features of real data. Because of the correlation between the
representation coefficients, the low-rank constraint of the matrix can effectively describe the global
structure of the dataset. Therefore, Xu et al. [18] proposed the low-rank representation sum-to-one
(LRRSTO) anomaly detection model. In order to make the representation coefficients robust, a
sum-to-one constraint was added.

In recent years, sparse subspace clustering (SCC) theory has attracted considerable attention
and become a research hotspot due to its superiority. Zhai et al. first introduced the SSC [19] model
to HSIs based on the assumption that pixels belonging to the same land-cover class approximately
lie in the same subspace. The SSC algorithm generally calculates the affinity matrix by solving the
sparse representation coefficients and uses the spectral clustering algorithm to segment the data into
different subspaces.
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However, directly applying the SSC algorithm to HSIs fails to take advantage of the rich spectral
and spatial information of HSIs. In light of this, the SSC incorporating spatial information (SSC-S) [20]
model was proposed. Based on the hypothesis that the background pixels in the neighborhood window
have the same background as the central testing pixel, Zhang et al. hypothesized that the representation
coefficients of the neighborhood pixels in the local window should also be similar to the central testing
pixel. In the SSC-S model, they eliminated the influence of noise and other errors by constraining the
space representation coefficient to enhance the clustering effect.

In this study, in order to make full use of spectral similarity in a local spatial neighborhood of HSI,
we were inspired by the SSC-S algorithm to introduce a spectral constraint term to the LRRSTO model.
We then developed two novel anomaly detection methods based on single or multiple local windows
and the low-rank representation sum-to-one model (SLW_LRRSTO/MLW_LRRSTO).

Unlike traditional LRRSTO models, we added a spatial constraint to the LRRSTO model in our
SLW_LRRSTO methods. Based on the hypothesis that the background pixels in the neighborhood
window share the same background as the central testing pixel, we used a single local window to
smooth the LRR coefficients matrix. For the MLW_LRRSTO methods, we adopted multiple local
windows to enhance the utilization of spatial information. However, in the LRRSTO model, the
overcomplete dictionary composed of data itself contains a large number of redundant dictionary
atoms, which greatly slows down the speed of the algorithm. In order to accelerate the operation, in
the proposed SLW_LRRSTO/MLW_LRRSTO models, we adopted the random selection method to
construct the initial dictionary.

2. Related Work

2.1. LRRSTO Detection Algorithm

LRR can effectively describe the global correlation of the observed HSI. Based on the LRR, the HSI
can be decomposed into a background part and a sparse part. The anomaly information can then be
detected in the sparse part. Xu et al. [18] applied the sum-to-one constraint to enhance the robustness
of the representation coefficient in the LRRSTO method, which is formulated as

minZ,E‖Z‖∗ + λ‖E‖2,1 s.t. X = DZ + E, ZT1d×1 = 1MN×1 (1)

where X ∈ Rp×MN is the 2D HSI data matrix with p bands and MN pixels, D ∈ Rp×d is the dictionary
matrix, Z ∈ Rd×MN is the LRR coefficient matrix, ZT1d×1 = 1MN×1 is the sum-to-one constraint, and E is
the sparse matrix.

2.2. SSC-S Clustering Algorithm

The SSC model [21] can be expressed as

argminZ,E‖Z‖1 +
λ
2
‖E‖2F s.t. X = XZ + E, diag(C) = 0, ZT1 = 1 (2)

where Z ∈ RMN×MN is the representation coefficient matrix, E ∈ Rp×MN is the representation error term,
and λ is the tradeoff parameter. Here, diag(C) = 0 is used to eliminate trivial solutions.

According to Tobler’s first law, neighborhood pixels within a local window usually belong to
the same class as the central pixel under test. They also have similar sparse coefficients to the central
pixel [22]. If the mean representation coefficient vectors of the neighborhood pixels are different, the
central pixel under test may be noise. Zhang et al. [20] proposed a novel SSC model incorporating
spatial neighborhood information by utilizing a mean constraint for sparse representation coefficients.

In this model, Z̃ is utilized to regularize Z, and α
2 ‖Z− Z̃‖

2
F < ε is the spatial constraint, which limits
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the difference between the test pixel and the mean of its neighborhood pixels. The representation
coefficient matrix can then be obtained by solving the following optimization problem:

minZ,Z̃,E‖Z‖1 +
α
2
‖Z− Z̃‖

2
F +

λ
2
‖E‖2F s.t. X = XZ + E, diag(C) = 0, ZT1 = 1 (3)

where α
2 ‖Z− Z̃‖

2
F < ε is the spatial constraint, and α and λ are the regularization parameters.

2.3. The Local Summation Anomaly Detection (LSAD) Algorithm

A circular window is utilized to calculate the covariance matrix and the mean vector for the pixels
that are between the outer and inner windows in the LRXD [23]. However, if there are anomalous
pixels in the frame, the local background distribution is not the best representation for the testing pixel.
Du et al. [24] proposed a novel local summation anomaly detection (LSAD) method which exploits a
second-order Mahalanobis distance statistical feature and a multiple local window filter to establish a
local summation anomaly detection strategy.

3. Proposed Methods

3.1. Single Local Window

In the LRRSTO model, the spatial similarity between adjacent background pixels is not considered;
that is, the neighborhood pixels of local windows have the same category as the central pixel under
test. In order to make full use of the correlation information between local background pixels, we
constrained the representation coefficients of central pixels by using mean filtering. Based on the

LRRSTO model, the spatial constraint of the low-rank representation coefficient ‖Z− Z̃‖
2
F < ε was used.

The local distributions of the single window are obtained by the single local window filter, but it
does not include the pixel under test in the detection statistics. Therefore, we proposed a novel single
local window anomaly detection method based on the low-rank representation sum-to-one model
(SLW_LRRSTO):

argminZ,E‖Z‖∗ + η‖Z− Z̃‖
2
F + λ‖E‖2,1 s.t. X = DZ + E, ZT1 = 1 (4)

where ZT1 = 1 is the sum-to-one constraint, ‖Z− Z̃‖
2
F is the spatial constraint in the single local

window, Z is the representation coefficient matrix, Z̃ is the smoothing filtering result of Z, and η and λ
are the tradeoff parameters.

3.2. Multiple Local Background Statistics

The abovementioned SLW_LRRSTO algorithm only utilizes a single window filter of a specified
size. Ideally, the local neighborhood pixels of the single local window do not contain anomalous pixels.
However, when the local neighborhood contains anomalous pixels, the detector cannot obtain ideal
detection performance. To solve this problem, we proposed using multiple local windows.

In Figure 1, the purple squares represent anomalous pixels, and the white squares represent the
same category background pixels. Figure 1a is the ideal distribution of neighboring pixels, where
the center pixel is the anomaly and the neighborhood pixels are the background. The mean value
of the neighborhood pixels differs from that of the center test pixel value, which can improve the
detection accuracy. Figure 1b shows that the center pixel is the anomaly, and the neighborhood contains
anomalous pixels. With the mean filter window (red box), the mean value of the neighborhood cannot
detect the center pixel as the anomaly. However, with the bottom-right local window filter (green box),
the neighborhood pixels do not contain the anomalous pixel, and the center pixel can be detected as an
anomaly. Figure 1c shows that the center pixel is a background pixel and the neighborhood pixels
include an anomalous pixel in the single local window. For the single mean filter window (red box),
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the mean value of the neighborhood indicates the center pixel is an anomaly. Using the bottom-right
local window mean filter (green box), the neighborhood pixels do not contain the anomaly, which can
prevent the center pixel from being identified as an abnormal target.Remote Sens. 2019, 11, x FOR PEER REVIEW  5 of 16 

 

   
(a) (b) (c) 

Figure 1. Analysis between the center test pixel and neighboring pixels in a single local window. The 
purple squares represent anomalous pixels, and the white squares represent the same category 
background pixels: (a) ideal distribution of neighboring pixels; (b) the neighborhood contains 
anomalous pixels; (c) the center pixel is a background pixel. 

Based on the SLW_LRRSTO model, the representation coefficient spatial constraint of the single 
window is extended to the spatial constraint of multiple local windows. As shown in Figure 2, the 
size of the red single window is 𝑁 × 𝑁 (where 𝑁 is odd). We used a small green window, the size 
of which is 𝐿 = ሺ𝑁 + 1ሻ 2⁄  to process the data in the red single window from left to right and top to 
bottom. 𝑀 = ሺ𝑁 − 𝐿 + 1ሻ × ሺ𝑁 − 𝐿 + 1ሻ is the number of multiple local windows. 

Figure 2a shows a single window of size 5 × 5 which is expanded to nine local windows. The 
corresponding filter is shown in Figure 2b, where four of nine local windows contain anomalous 
pixels. This differs from the single local window, in which the neighborhood pixels include two 
anomalous pixels. On the one hand, the multiple local window strategy can effectively reduce the 
number of abnormal pixels in the neighborhood. On the other hand, the situation of the local window 
containing abnormal pixels rarely occurs. 

   

…… 

  

   

…… 

  
(a) (b) 

Figure 2. Schematic diagram of a single local window and multiple local windows and the 
corresponding filters (N = 5): (a) single local window; (b) multiple local windows. 

In Formula (4), the spatial constraint of the single local window 𝜂ฮ𝒁 − 𝒁෩ฮிଶ  is extended to 

ฮ𝒁 − 𝒁෩𝟏ฮிଶ + ฮ𝒁 − 𝒁෩𝟐ฮிଶ + ⋯ + ฮ𝒁 − 𝒁෩𝑴ฮிଶ < 𝜀 , because ቯ𝑰⋮𝑰൩ ∗ 𝑍 − 𝒁෩𝟏⋮𝒁෩𝑴ቯி
ଶ < 𝜀 , where 𝑴  is the 

number of multiple local windows and 𝑰 is the identity matrix. We defined 𝑰෨ = ሾ𝐼, 𝐼, ⋯ , 𝐼ሿ் and 𝒁෩ =ൣ𝒁෩𝟏, 𝒁෩𝟐, ⋯ , 𝒁෩𝑴൧். The objective function is then argmin,ா‖𝒁‖∗ + 𝜂ฮ𝑰෨ ∗ 𝒁 − 𝒁෩ฮிଶ + 𝜆‖𝑬‖ଶ,ଵ  𝑠. 𝑡. 𝑿 = 𝑫𝒁 + 𝑬, 𝒁்𝟏 = 𝟏. (5) 

Figure 1. Analysis between the center test pixel and neighboring pixels in a single local window.
The purple squares represent anomalous pixels, and the white squares represent the same category
background pixels: (a) ideal distribution of neighboring pixels; (b) the neighborhood contains anomalous
pixels; (c) the center pixel is a background pixel.

Based on the SLW_LRRSTO model, the representation coefficient spatial constraint of the single
window is extended to the spatial constraint of multiple local windows. As shown in Figure 2, the size
of the red single window is N ×N (where N is odd). We used a small green window, the size of which
is L = (N + 1)/2 to process the data in the red single window from left to right and top to bottom.
M = (N − L + 1) × (N − L + 1) is the number of multiple local windows.
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Figure 2. Schematic diagram of a single local window and multiple local windows and the corresponding
filters (N = 5): (a) single local window; (b) multiple local windows.

Figure 2a shows a single window of size 5 × 5 which is expanded to nine local windows. The
corresponding filter is shown in Figure 2b, where four of nine local windows contain anomalous pixels.
This differs from the single local window, in which the neighborhood pixels include two anomalous
pixels. On the one hand, the multiple local window strategy can effectively reduce the number of
abnormal pixels in the neighborhood. On the other hand, the situation of the local window containing
abnormal pixels rarely occurs.

In Formula (4), the spatial constraint of the single local window η‖Z− Z̃‖
2
F is extended to

‖Z − Z̃1‖
2
F + ‖Z − Z̃2‖

2
F + · · · + ‖Z − Z̃M‖

2
F < ε, because ‖


I
...
I

 ∗ Z −


Z̃1
...

Z̃M

‖
2

F

< ε, where M is the
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number of multiple local windows and I is the identity matrix. We defined Ĩ = [I, I, · · · , I]T and

Z̃ =
[
Z̃1, Z̃2, · · · , Z̃M

]T
. The objective function is then

argminZ,E‖Z‖∗ + η‖̃I ∗Z− Z̃
2
F‖+ ‖E‖2,1 s.t. X = DZ + E, ZT1 = 1. (5)

We used the inexact augmented Lagrange multiplier (IALM) algorithm [1,17,25] to solve the
MLW_LRRSTO model and add auxiliary variable J. The formula can be written as

minZ,E‖J‖∗ + η‖̃I ∗Z− J̃‖
2
F + λ‖E‖2,1 s.t. X = DZ + E, Z = J, 1T

d ∗Z = 1T
n (6)

where J̃ =


J̃1
...

J̃M

 =


Z̃1
...

Z̃M

 is the auxiliary variable. The augmented Lagrange function is

L
(
Z, J, E, Y1, Y2, Y3,µ

)
= ‖J‖∗ + β‖̃I ∗Z− J̃‖

2
F + λ‖E‖2,1 + 〈Y

1, X−AZ− E〉+ 〈Y2, Z− J〉
〈+Y3, 1T

d ∗Z− 1T
n〉+

µ
2

(
‖X−AZ− E‖2F + ‖Z− J‖2F + ‖1

T
d ∗Z− 1T

n‖
2
F

)
= ‖J‖∗ + β‖̃I ∗Z− J̃‖

+λ‖E‖2,1 +
µ
2

(
‖X−AZ− E + Y1

µ ‖
2

F
+ ‖Z− J + Y2

µ ‖
2

F
+ ‖1T

d ∗Z− 1T
n + Y3

µ ‖
2

F

)
−

1
2µ

(
‖Y1
‖

2
F + ‖Y

2
‖

2
F + ‖Y

1
‖

2
F

) (7)

where
(
Y1, Y2, Y3

)
are the Lagrange multipliers and µ > 0 is the penalty parameter.

The IALM [1,17,25] is a multiple-variable optimization problem, which can be solved by alternately
updating one variable by the minimizing function with the other variables fixed. The problem can be
divided into the following subproblems:

Step 1: Fix (J, Z, E) and update J. The objective function can then be written as follows:

J = argminJ‖J‖∗ +
µ

2
‖J−

(
Z +

Y2

µ

)
‖

2

F
(8)

Step 2: Update J̃i in each local window and use these auxiliary variables to combine J̃:

J̃k+1 =
[̃
J1, J̃2 · · · J̃M

]T
(9)

Step 3: Fix (J, Z, E) and update Z. The objective function can then be written as follows:

Z = argminZ β‖̃I ∗Z− J̃‖
2
F +

µ

2
‖X−AZ− E +

Y1

µ
‖

2

F
+
µ

2
‖Z− J +

Y2

µ
‖

2

F
+
µ

2
‖1T

d ∗Z− 1T
n +

Y3

µ
‖

2

F
(10)

Step 4: Fix (J, Z, E) and update E. The objective function can then be written as follows:

E = argminE λ‖E‖2,1 +
µ

2

‖X−AZ− E +
Y1

µ
‖

2

F

 (11)

The procedure of the proposed method is summarized as follows Algorithm 1, in which Θ, Ω,
and λ2,1 are the singular value thresholding and λ2,1 is the minimization operator.
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Algorithm 1. Inexact ALM algorithm for MLW_LRRSTO

Input: data matrix X, size N of single local window, parameters β > 0 and λ > 0
Initialize: Z0 = J0 = J̃0, E0 = 0, Y1

0 = Y2
0 = Y3

0 = 0, µ0 = 10−2, µmax = 1010, ρ = 1.1,
ε1 = 10−6, ε2 = 10−3

While
‖X−AZk − Ek‖F/‖X‖F ≥ ε1 or
µkmax(‖Zk −Zk−1‖F, ‖Ek − Ek−1‖F, ‖Zk − Jk‖F)/‖X‖F ≥ ε2

Continue
(1) update variable Jk+1

Jk+1 = Θµ−1
k

(
Zk +

Y2
k
µk

)
(2) update J̃i, compose J̃k+1

J̃k+1 =
[̃
J1, J̃2 · · · J̃M

]T

(3) update variable Zk+1

Z =
(
2β̃I

T̃
I + µATA + µI + µ1d1T

d

)−1
(
2β̃I

T̃
J + µAT

(
X− E +

Y1

µ

)
+ µ

(
J−

Y2

µ

)
+ µ1d

(
1T

n −
Y3

µ

))
(4) update variable Ek+1

Ek+1 = Ωλµ−1
k

(
X−AZk+1 +

Y1
k
µk

)
(5) update Lagrange multipliers Y1

k+1, Y2
k+1, Y3

k+1
Y1

k+1 = Y1
k + µk(X−AZk+1 − Ek+1);

Y2
k+1 = Y2

k + µk
(
Zk+1 − Jk+1

)
;

Y3
k+1 = Y3

k + µk
(
1T

d Zk+1 − 1T
n

)
;

(6) update penalty parameter µk+1
µk+1 = min(umax,ρµk) where

ρ =

{
ρ0, i f µkmax(‖Zk+1 −Zk‖, ‖Ek+1 − Ek‖, ‖Zk+1 − Jk‖)/‖X‖F ≤ ε2

1, otherwise
End while
Output: the optimal solution (J, Z, E)

4. Experiments and Analysis

In order to evaluate the effectiveness of the proposed methods, we conducted our experiments on
three hyperspectral images. The first experiment was used to analyze the propriety of the proposed
methods, and the other two experiments were used to demonstrate its effectiveness. It is worth noting
that these three datasets were obtained after preprocessing including atmospheric correction.

4.1. Data Description

4.1.1. Simulated Hyperspectral Image

The hyperspectral data used in the simulated experiment [26,27] were collected by the airborne
visible/infrared imaging spectrometer (AVIRIS) over Salinas Valley, CA, USA, which can be downloaded
from the GIC website [28]. The original image comprising vegetables, bare soil, and vineyard fields
had a spatial size of 512 × 217 pixels and was made up of 224 spectral bands in the wavelength range
of 370–2510 nm. In total, 202 bands were used in the experiment after the noise and water absorption
bands had been removed. The image scene in pseudocolor is shown in Figure 3a. A region with
a size of 120 × 120 was selected to generate the simulated data and is shown in Figure 3b. The 25
specific anomalous pixels were randomly selected from the whole image, with different spectra from
the subimages, and are shown in Figure 3c. Figure 3d is the corresponding anomaly location map. The
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anomalous pixels were simulated by the target implantation method [29]. A simple linear mixture
model was adopted for the implanted pixels as

z = f× t + (1− f) × b (12)

where f is the abundance fraction (ranging from 0.04 to 1), t is the specific anomaly spectrum, and b is
the background spectrum.Remote Sens. 2019, 11, x FOR PEER REVIEW  8 of 16 
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4.1.2. Parameters Analysis

The initial choices of different parameters were important for the proposed methods, which involve
two regularization parameters: η and λ. For this simulated dataset, we adopted the target embedding
method to fully control the generating environment of subpixel anomalous targets. Therefore, in order
to show the superiority and fully excavate the potential of the proposed methods, we found the optimal
parameters by a trial-and-error method. Figure 4 shows how the detection performance changed as
the parameters were changed. The range of parameters η and λ was set to 0–2, and the specific data
results are shown in Table 1. The data results in Figure 4 and Table 1 show that MLW_LRRSTO was
sensitive to λ. For the simulated dataset, it achieved low area under the curve (AUC) values when
λ was larger than 0.5. In this range, the average AUC value for the AVIRIS_Salinas data was 0.9815.
Therefore, we empirically set η = 1 and η = 0.1 for all the datasets in our experiments.
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Table 1. Results with different parameters for the AVIRIS_Salinas data.

η
λ 0.0001 0.001 0.01 0.1 0.5 1 1.5 2

0.0001 0.9693 0.9606 0.9516 0.9623 0.9623 0.9622 0.9620 0.9617
0.001 0.9694 0.9612 0.9517 0.9623 0.9623 0.9622 0.9620 0.9617
0.01 0.9698 0.9666 0.9530 0.9625 0.9623 0.9623 0.9620 0.9618
0.1 0.9476 0.9633 0.9640 0.9685 0.9635 0.9627 0.9623 0.9620
0.5 0.9482 0.9482 0.9804 0.9774 0.9693 0.9661 0.9645 0.9636
1 0.9486 0.9469 0.9783 0.9794 0.9737 0.9694 0.9673 0.9659

1.5 0.9487 0.9463 0.9670 0.9801 0.9760 0.9718 0.9693 0.9677
2 0.9487 0.9460 0.9624 0.9813 0.9777 0.9737 0.9710 0.9692

4.1.3. Real Hyperspectral Images

The first real experimental image [1,4,30] was obtainned by the HYDICE sensor over an urban
area, which can be downloaded from the website [31]. The image had a spectral resolution of 10 nm
and a spatial resolution of 1 m. The whole image had a spatial size of 307 × 307 pixels. It comprised
210 spectral bands, and 162 bands were used in the experiment after the noise and water absorption
bands had been removed. The image scene in pseudocolor is shown in Figure 5a. A region with a size
of 80 × 100 pixels was selected as the test data in the upper-rightmost area of the scene and is shown in
Figure 5b. The ground-truth map is shown in Figure 5c. Twenty-one pixels were anomalies, which
were cars and roofs, because they had spectra that differed from the background.
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The second real dataset [32–34] was acquired by the AVIRIS sensor over San Diego, CA, USA.
This image had a spatial resolution of 3.5 m and the whole image had a spatial size of 400 × 400 pixels.
It comprised 224 spectral channels, and 186 channels were used in the experiment after the noise and
water absorption bands had been removed. The image scene in pseudocolor is shown in Figure 6a. The
top-left 100 ×100 of the scene was chosen as the test image, as shown in Figure 6b. The ground-truth
map is shown in Figure 6c. Fifty-eight pixels were anomalies from the subimage. The airplanes were
considered as anomalies, the main bodies of which were pure pixels and edges were mixed pixels.Remote Sens. 2019, 11, x FOR PEER REVIEW  10 of 16 

 

 

  

(a) (b) (c) 

Figure 6. AVIRIS_SanDiego dataset: (a) false-color image of the whole scene; (b) false-color image of 
the detection area; (c) the ground-truth map. 

The third real dataset was acquired during the “Viareggio 2013 trial” hyperspectral data 
collection campaign [35], which can be downloaded from the website [36]. Datasets in this campaign 
were acquired by a pushbroom hyperspectral “Sistema Iperspettrale Modulare Galileo Avionica” 
sensor mounted on an ultralight aircraft. In this paper, the subset of D1F12H1 was utilized. The image 
had a spatial size of 375 × 450 pixels and comprised 511 spectral bands ranging from 400 to 1000 nm. 
The spatial resolution and spectral resolution were 0.6 m and the 2.3 nm, respectively. The image 
scene in true color is shown in Figure 7a. It covers a parking lot, several sports facility buildings, and 
a football field in a suburban vegetated area in Viareggio, Italy. In the ground-truth map (Figure 7b), 
there are three vehicles, four panels, and two reference calibration tarps with 135 anomalous pixels 
to be detected in the scene. 

  
(a) (b) 

Figure 7. Viareggio dataset: (a) RGB image of the scene (R:219, G:144, B:66); (b) the ground-truth map. 

4.2. Detection Performance 

The proposed methods (MLW_LRRSTO and SLW_LRRSTO) were compared to the GRXD, 
LRXD, WRXD, RPCA-RX, and LRRSTO. In different datasets, the window size parameters were set 
differently for LRXD, and the parameters of other methods remained the same. The regularization 
parameters for LRXD, RPCA-RX, and LRRSTO were empirical parameters in the experiments. In the 
LRXD, the covariance matrix size depends on the number of bands, and in order to have an accurate 
sample covariance matrix, the number of captured pixels should be no less than band number + 1. 
Therefore, in AVIRIS_Salinas, HYDICE_Urban, AVIRIS_SanDiego, and Viareggio datasets, the inner 
and outer window parameters (𝑊௨௧, 𝑊) were set to (17, 9), (19, 5), (19, 9), and (25, 7), respectively, 
after extensive searching. Parameter 𝜆 of RPCA was set to 0.01 and parameter 𝜆 of LRRSTO was set 
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Figure 6. AVIRIS_SanDiego dataset: (a) false-color image of the whole scene; (b) false-color image of
the detection area; (c) the ground-truth map.

The third real dataset was acquired during the “Viareggio 2013 trial” hyperspectral data collection
campaign [35], which can be downloaded from the website [36]. Datasets in this campaign were
acquired by a pushbroom hyperspectral “Sistema Iperspettrale Modulare Galileo Avionica” sensor
mounted on an ultralight aircraft. In this paper, the subset of D1F12H1 was utilized. The image had a
spatial size of 375 × 450 pixels and comprised 511 spectral bands ranging from 400 to 1000 nm. The
spatial resolution and spectral resolution were 0.6 m and the 2.3 nm, respectively. The image scene
in true color is shown in Figure 7a. It covers a parking lot, several sports facility buildings, and a
football field in a suburban vegetated area in Viareggio, Italy. In the ground-truth map (Figure 7b),
there are three vehicles, four panels, and two reference calibration tarps with 135 anomalous pixels to
be detected in the scene.
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4.2. Detection Performance

The proposed methods (MLW_LRRSTO and SLW_LRRSTO) were compared to the GRXD, LRXD,
WRXD, RPCA-RX, and LRRSTO. In different datasets, the window size parameters were set differently
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for LRXD, and the parameters of other methods remained the same. The regularization parameters
for LRXD, RPCA-RX, and LRRSTO were empirical parameters in the experiments. In the LRXD, the
covariance matrix size depends on the number of bands, and in order to have an accurate sample
covariance matrix, the number of captured pixels should be no less than band number + 1. Therefore,
in AVIRIS_Salinas, HYDICE_Urban, AVIRIS_SanDiego, and Viareggio datasets, the inner and outer
window parameters (Wout, Win) were set to (17, 9), (19, 5), (19, 9), and (25, 7), respectively, after extensive
searching. Parameter λ of RPCA was set to 0.01 and parameter λ of LRRSTO was set to 0.1. The
size of the single local window was set to 3 for MLW_LRRSTO and SLW_LRRSTO, and the tradeoff

parameters were set as η = 1 and λ = 0.1 for MLW_LRRSTO and SLW_LRRSTO. It is worth noting that
the detection results of all the methods in this paper are the average value of 10 repeated experiments.
The parameters of each detection method were set as shown in Table 2.

Table 2. Parameters of the different detection methods.

Method Parameters

GRXD —
LRXD (Wout, Win)
WRXD —

RPCA_RX λ = 0.01
LRRSTO λ = 0.1

SLW_LRRSTO WLocal = 3, η = 1, λ = 0.1
MLW_LRRSTO WLocal = 3, η = 1, λ = 0.1

4.2.1. AVIRIS_Salinas Experiment

Figure 8 shows the receiver operating characteristic (ROC) curves [37]. An important observation
from Figure 8 is that the performance of RPCA was clearly better than that of GRXD, LRXD, and WRXD.
Compared with LRRSTO, the proposed SLW_LRRSTO and MLW_LRRSTO had a higher probability
of detection in the condition of a low false alarm rate. MLW_LRRSTO was the best method in terms
of the overall detection performance. Furthermore, we also computed the AUC of the ROC [37] to
evaluate the performance of these methods. The results are shown in Table 3, where the proposed
MLW_LRRSTO achieved the highest score, which was higher than the second-highest score from the
SLW_LRRSTO. Table 3 also lists the execution time of the different methods. The GRXD and WRXD
had shorter computational time, but the detection rates were lower than RPCA_RX and LRRSTO. The
RPCA_RX and LRRSTO took less time than MLW_LRRSTO, while compared with it, the SLW_LRRSTO
and MLW_LRRSTO had higher detection rates. The SLW_LRRSTO and MLW_LRRSTO had less
computational time than LRXD, in which the inverse function of local background requires heavy
computational time.
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Table 3. Area under the curve (AUC) values for the different detectors with the AVIRIS_Salinas dataset.

Method GRXD LRXD WRXD RPCA_RX LRRSTO SLW_LRRSTO MLW_LRRSTO

AUC 0.8073 0.8306 0.8332 0.9619 0.9750 0.9840 0.9854
Time/s 0.12 77.81 0.45 10.03 45.38 37.67 72.74

4.2.2. HYDICE_Urban Experiment

The ROC curves and AUC values are shown in Figure 9 and Table 4, respectively. The proposed
MLW_LRRSTO and SLW_LRRSTO generated higher probability of detection when the false alarm
rate was low, and they had similar ROC curves. SLW_LRRSTO achieved the highest AUC score
among all the detectors, and MLW_LRRSTO obtained the second-highest score. Therefore, it can be
concluded that MLW_LRRSTO and SLW_LRRSTO were more effective methods than GRXD, LRXD,
WRXD, RPCA, and LRRSTO for the detection of anomalous pixels in the HYDICE_urban dataset. As
shown in Table 3, according to the computational time of the different methods, we can see that GRXD,
WRXD, and RPCA_RX had relatively fast operation speed and LRXD took longer to calculate. The
MLW_LRRSTO took the longest time to calculate, in which the use of multiple local windows requires
heavy computational time, but the proposed MLW_LRRSTO and SLW_LRRSTO generated higher
detection rates than the others.
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Table 4. AUC values for the different detectors with the HYDICE_urban dataset.

Method GRXD LRXD WRXD RPCA_RX LRRSTO SLW_LRRSTO MLW_LRRSTO

AUC 0.9848 0.9953 0.9851 0.9837 0.9881 0.9964 0.9957
Time/s 0.06 25.48 0.21 2.34 18.43 17.72 36.78

4.2.3. AVIRIS_SanDiego Experiment

The ROC curves of all the methods are shown in Figure 10. Compared with LRXD, the proposed
MLW_LRRSTO exhibited a slightly lower probability of detection for a low false alarm rate. Compared
to SLW_LRRSTO, MLW_LRRSTO exhibited a higher probability of detection in terms of the overall
detection performance, and it achieved the highest probability of detection for all the false alarm
rate values. The AUC values and computational time of the different methods are shown in Table 5,
where the GRXD, WRXD, and RPCA_RX had shorter computational times than the others, and the
MLW_LRRSTO took the longest time to calculate. However, the proposed MLW_LRRSTO yielded
a score that was higher than that of the others. Compared with LRRSTO, the SLW_LRRSTO had a
shorter computational time and higher detection rate, which is a significant improvement.
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Table 5. AUC values for the different detectors with the AVIRIS_SanDiego dataset.

Method GRXD LRXD WRXD RPCA_RX LRRSTO SLW_LRRSTO MLW_LRRSTO

AUC 0.8885 0.9041 0.8901 0.9190 0.9300 0.9621 0.9780
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4.2.4. Viareggio Experiment

The ROC curves of all the methods are shown in Figure 11. Compared with LRRSTO, the proposed
SLW_LRRSTO and MLW_LRRSTO exhibited a slightly lower probability of detection for a low false
alarm rate. From the AUC values in Table 6, we can conclude that the GRXD and RPCA_RX had
lower detection accuracy. Compared with the others, SLW_LRRSTO and MLW_LRRSTO yielded
higher scores, which indicates that the two proposed methods had a significant improvement. From
the computational time in Table 6, we can see that the GRXD and WRXD had shorter computational
time than the others, and the LRXD had the longest time, which may have been caused by the large
window size or the inverse function of local background. The computational time of SLW_LRRSTO and
MLW_LRRSTO was relatively longer, but the detection accuracy was improved significantly compared
with the other methods.
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Table 6. AUC values for the different detectors with the Viareggio dataset.
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4.3. Discussion

To verify the effectiveness of the proposed methods, we conducted our experiments on three
hyperspectral images which are widely used in the field of anomaly detection and compared the results
with five other methods: GRXD, LRXD, WRXD, RPCA-RX, and LRRSTO.

In the proposed SLW_LRRSTO method, in order to achieve better spatial constraints, we smoothed
the LRR coefficients of the central testing pixel by using a single local window. However, the spatial
constraints of coefficients using a single local window were greatly affected by the anomalous pixels in
the neighborhood. Therefore, in order to effectively reduce the impact of the anomalous pixels in the
neighborhood, we proposed the MLW_LRRSTO algorithm, which adopts the multiple local window to
constrain the spatial coefficients.

For a numerical comparison, we used the ROC curves and AUC values as the main criteria to
evaluate these detection results. From the ROC curves shown in Figures 8–11, and the specific AUC
values shown in Tables 3–6, it can be seen that the detection accuracy of the proposed two methods was
obviously better than that of the other methods. Based on these experimental results, we can conclude
that the proposed two methods showed superior detection performance compared with the others.

Although the proposed methods yielded outstanding detection performance, there still exist
some shortcomings that can be further improved. The proposed method involves two regularization
parameters—η and λ—which have an important influence on the detection results of images. Although
the optimal parameters can be found by a trial-and-error method in synthetic data experiments, in
practical applications, we can neither obtain the a priori knowledge of anomalous objects in advance
nor can we find the optimal parameters by the trial-and-error method. Therefore, only empirical
parameters can be used. Moreover, the matrix decomposition is very time consuming, and it is
important to speed up the operation of the algorithm.

5. Conclusions

In this paper, two novel anomaly detection methods for HSIs have been proposed. The first
approach is the SLW_LRRSTO anomaly detection method, which is based on LRRSTO with the
combination of spectral and spatial information. SLW_LRRSTO adds a spatial constraint to the
low-rank representation coefficient and smooths the low-rank representation coefficients of the central
testing pixel using a single local window. The second approach is the MLW_LRRSTO method,
which uses the same model as the SLW_LRRSTO method but employs a multiple local window
smoothing filter strategy. To confirm the effectiveness of the proposed methods, experiments were
conducted on both simulated and real hyperspectral data in comparison with other detection methods.
The experimental results confirmed that SLW_LRRSTO and MLW_LRRSTO can effectively separate
anomalous targets from the background, and their detection performance was clearly better than that
of other detection methods. In particular, MLW_LRRSTO outperformed SLW_LRRSTO and offered the
highest detection accuracy.

However, there still exist some aspects which can be further improved. The focus of the next
research should be on how to automatically tune the parameters of the proposed SLW_LRRSTO and
MLW_LRRSTO methods and to further improve the speed of the algorithms.

Author Contributions: K.T. and Z.H. conceived and designed the experiments; Z.H. performed the experiments;
K.T., D.M., Y.C., and Q.D. analyzed the data; K.T., Z.H., D.M., Y.C., and Q.D. wrote the paper.

Funding: This research was supported in part by Natural Science Foundation of China (Nos. 41871337 and
41471356) and Shan’xi Key Research and Development Program (2018ZDXM-GY-023).

Conflicts of Interest: The authors declare no conflict of interests.



Remote Sens. 2019, 11, 1578 15 of 16

References

1. Niu, Y.; Wang, B. Hyperspectral anomaly detection based on low-rank representation and learned dictionary.
Remote Sens. 2016, 8, 289. [CrossRef]

2. Li, W.; Wu, G.; Du, Q. Transferred deep learning for anomaly detection in hyperspectral imagery. IEEE
Geosci. Remote Sens. Lett. 2017, 14, 597–601. [CrossRef]

3. Nasrabadi, N.M. Hyperspectral target detection: An overview of current and future challenges. IEEE Signal
Process. Mag. 2013, 31, 34–44. [CrossRef]

4. Xu, Y.; Wu, Z.; Li, J.; Plaza, A.; Wei, Z. Anomaly detection in hyperspectral images based on low-rank and
sparse representation. IEEE Trans. Geosci. Remote Sens. 2015, 54, 1990–2000. [CrossRef]

5. Reed, I.S.; Yu, X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral
distribution. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1760–1770. [CrossRef]

6. Matteoli, S.; Diani, M.; Corsini, G. Improved estimation of local background covariance matrix for anomaly
detection in hyperspectral images. Opt. Eng. 2010, 49, 046201. [CrossRef]

7. Billor, N.; Hadi, A.S.; Velleman, P.F. BACON: Blocked adaptive computationally efficient outlier nominators.
Comput. Stat. Data Anal. 2000, 34, 279–298. [CrossRef]

8. Imani, M. RX Anomaly detector with rectified background. IEEE Geosci. Remote Sens. Lett. 2017, 14,
1313–1317. [CrossRef]

9. Yao, X.; Zhao, C. Hyperspectral anomaly detection based on the bilateral filter. Infrared Phys. Technol. 2018,
92, 144–153. [CrossRef]

10. Guo, Q.; Zhang, B.; Ran, Q.; Gao, L.; Li, J.; Plaza, A. Weighted-RXD and linear filter-based RXD: Improving
background statistics estimation for anomaly detection in hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2014, 7, 2351–2366. [CrossRef]

11. Li, W.; Du, Q. Unsupervised nearest regularized subspace for anomaly detection in hyperspectral imagery.
In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS,
Melbourne, VIC, Australia, 21–26 July 2013; pp. 1055–1058.

12. Li, W.; Du, Q. Collaborative representation for hyperspectral anomaly detection. IEEE Trans. Geosci. Remote
Sens. 2015, 53, 1463–1474. [CrossRef]

13. Philpott, S.; Hankins, C. Simultaneous joint sparsity model for target detection in hyperspectral imagery.
IEEE Geosci. Remote Sens. Lett. 2011, 8, 676–680.

14. Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification via kernel sparse representation. In
Proceedings of the IEEE International Conference on Image Processing, Brussels, Belgium, 11–14 September
2011; pp. 1233–1236.

15. Wright, J.; Ganesh, A.; Rao, S.; Peng, Y.; Ma, Y. Robust principal component analysis: Exact recovery of
corrupted low-rank matrices via convex optimization. In Proceedings of the Advances in Neural Information
Processing Systems, Vancouver, BC, Canada, 7–10 December 2009; pp. 2080–2088.

16. Chen, S.Y.; Yang, S.; Kalpakis, K.; Chang, C.I. Low-rank decomposition-based anomaly detection. In
Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIX; SPIE Press: Baltimore,
MD, USA, 2013; p. 87430N.

17. Liu, G.; Lin, Z.; Yan, S.; Sun, J.; Yu, Y.; Ma, Y. Robust recovery of subspace structures by low-rank representation.
IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 171–184. [CrossRef] [PubMed]

18. Xu, Y.; Wu, Z.; Wei, Z.; Liu, H.; Xu, X. A novel hyperspectral image anomaly detection method based on
low rank representation. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4444–4447.

19. Zhai, H.; Zhang, H.; Zhang, L.; Li, P.; Plaza, A. A new sparse subspace clustering algorithm for hyperspectral
remote sensing imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 43–47. [CrossRef]

20. Zhang, H.; Zhai, H.; Zhang, L.; Li, P. Spectral–spatial sparse subspace clustering for hyperspectral remote
sensing images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3672–3684. [CrossRef]

21. Elhamifar, E.; Vidal, R. Sparse subspace clustering: Algorithm, theory, and applications. IEEE Trans. Pattern
Anal. Mach. Intell. 2013, 35, 2765–2781. [CrossRef]

22. Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and spatial classification of hyperspectral
data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–3814. [CrossRef]

http://dx.doi.org/10.3390/rs8040289
http://dx.doi.org/10.1109/LGRS.2017.2657818
http://dx.doi.org/10.1109/MSP.2013.2278992
http://dx.doi.org/10.1109/TGRS.2015.2493201
http://dx.doi.org/10.1109/29.60107
http://dx.doi.org/10.1117/1.3386069
http://dx.doi.org/10.1016/S0167-9473(99)00101-2
http://dx.doi.org/10.1109/LGRS.2017.2710618
http://dx.doi.org/10.1016/j.infrared.2018.05.028
http://dx.doi.org/10.1109/JSTARS.2014.2302446
http://dx.doi.org/10.1109/TGRS.2014.2343955
http://dx.doi.org/10.1109/TPAMI.2012.88
http://www.ncbi.nlm.nih.gov/pubmed/22487984
http://dx.doi.org/10.1109/LGRS.2016.2625200
http://dx.doi.org/10.1109/TGRS.2016.2524557
http://dx.doi.org/10.1109/TPAMI.2013.57
http://dx.doi.org/10.1109/TGRS.2008.922034


Remote Sens. 2019, 11, 1578 16 of 16

23. Borghys, D.; Kåsen, I.; Achard, V. Comparative evaluation of hyperspectral anomaly detectors in different
types of background. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery
XVIII; The International Society for Optical Engineering: Baltimore, MD, USA, 2012; p. 83902J.

24. Du, B.; Zhao, R.; Zhang, L.; Zhang, L. A spectral-spatial based local summation anomaly detection method
for hyperspectral images. Signal Process. 2016, 124, 115–131. [CrossRef]

25. Lin, Z.; Chen, M.; Ma, Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank
matrices. arXiv 2010, arXiv:1009.5055.

26. Yuan, Y.; Wang, Q.; Zhu, G. Fast hyperspectral anomaly detection via high-order 2-D crossing filter. IEEE
Trans. Geosci. Remote Sens. 2014, 53, 620–630. [CrossRef]

27. Ma, D.; Yuan, Y.; Wang, Q. A sparse dictionary learning method for hyperspectral anomaly Detection with
capped norm. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 648–651.

28. The Synthetic AVIRIS Salinas Hyperspectral Dataset. Available online: http://www.ehu.eus/ccwintco/index.
php?title=Hyperspectral_Remote_Sensing_Scenes (accessed on 13 June 2019).

29. Stefanou, M.S.; Kerekes, J.P. A method for assessing spectral image utility. IEEE Trans. Geosci. Remote Sens.
2009, 47, 1698–1706. [CrossRef]

30. Li, J.; Zhang, H.; Zhang, L.; Ma, L. Hyperspectral anomaly detection by the use of background joint sparse
representation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2523–2533. [CrossRef]

31. The Real HYDICE Urban Hyperspectral Dataset. Available online: http://lesun.weebly.com/hyperspectral-
data-set.html (accessed on 13 June 2019).

32. Zhu, L.; Wen, G. Hyperspectral anomaly detection via background estimation and adaptive weighted sparse
representation. Remote Sens. 2018, 10, 272.

33. Zhao, R.; Du, B.; Zhang, L. Hyperspectral anomaly detection via a sparsity score estimation framework.
IEEE Trans. Geosci. Remote Sens. 2017, 55, 3208–3222. [CrossRef]

34. Zhang, L.; Zhao, C. Hyperspectral anomaly detection based on spectral–spatial background joint sparse
representation. Eur. J. Remote Sens. 2017, 50, 362–376. [CrossRef]

35. Acito, N.; Matteoli, S.; Rossi, A.; Diani, M.; Corsini, G. Hyperspectral airborne “Viareggio 2013 Trial” data
collection for detection algorithm assessment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9,
2365–2376. [CrossRef]

36. The “Viareggio 2013 trial” Hyperspectral Dataset. Available online: http://rsipg.dii.unipi.it/ (accessed on
13 June 2019).

37. Hanley, J.A.; Mcneil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC)
curve. Radiology 1982, 143, 29. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.sigpro.2015.09.037
http://dx.doi.org/10.1109/TGRS.2014.2326654
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://dx.doi.org/10.1109/TGRS.2008.2006364
http://dx.doi.org/10.1109/JSTARS.2015.2437073
http://lesun.weebly.com/hyperspectral-data-set.html
http://lesun.weebly.com/hyperspectral-data-set.html
http://dx.doi.org/10.1109/TGRS.2017.2664658
http://dx.doi.org/10.1080/22797254.2017.1331697
http://dx.doi.org/10.1109/JSTARS.2016.2531747
http://rsipg.dii.unipi.it/
http://dx.doi.org/10.1148/radiology.143.1.7063747
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	LRRSTO Detection Algorithm 
	SSC-S Clustering Algorithm 
	The Local Summation Anomaly Detection (LSAD) Algorithm 

	Proposed Methods 
	Single Local Window 
	Multiple Local Background Statistics 

	Experiments and Analysis 
	Data Description 
	Simulated Hyperspectral Image 
	Parameters Analysis 
	Real Hyperspectral Images 

	Detection Performance 
	AVIRIS_Salinas Experiment 
	HYDICE_Urban Experiment 
	AVIRIS_SanDiego Experiment 
	Viareggio Experiment 

	Discussion 

	Conclusions 
	References

