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Abstract Heavy metals in the agricultural soils of
reclaimed mining areas can contaminate food and en-
danger human health. The objective of this study is to
effectively estimate the concentrations of heavy metals,
such as zinc, chromium, arsenic, and lead, using
hyperspectral sensor data and the random forest (RF)
algorithm in the study area of Xuzhou, China. The RF’s
built-in feature selection ability and modeling expres-
sive ability in heavy metal estimation of soil were ex-
plored. After the preprocessing of the spectrum obtained
by an ASD (analytical spectral device) field spectrome-
ter, the random forest algorithm was carried out to

establish the estimation model based on the correlation-
selected features and the full-spectrum features respec-
tively. Results of all the different processes were com-
pared with classical approaches, such as partial least
squares (PLS) regression and support vector machine
(SVM). In all the experimental results, from the per-
spective of models, the best estimation model for Zn (R2

= 0.9061; RMSE = 6.5008) is based on the full-
spectrum data of continuum removal (CR) pretreatment,
and the best models for Cr (R2 = 0.9110; RMSE =
4.5683), As (R2 = 0.9912; RMSE = 0.5327), and Pb
(R2 = 0.9756; RMSE = 1.1694) are all derived from the
correlation-selected features. And these best models of
these heavy metals are all established by the RFmethod.
The experiments in this paper show that random forests
can make full use of the input spectral data in the
estimation of four kinds of heavy metals, and the ob-
tained models are superior to those established by tradi-
tional methods.

Keywords Soil heavymetal concentration . Random
forest . Hyperspectral estimation

Introduction

With rapid urbanization in China, less land is available for
agricultural use, resulting in some reclaimed land being
used for crop production. However, for the areas that use
coal gangue and fly ash as reclamation material, the effects
of climate change, land cultivation, soil water evaporation,
and microbial action have led to the release of toxic heavy
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metals and erosion of agricultural soil. These heavy metals
can also enter human food chain through consuming agri-
cultural products, which threatens human health and safety
(Dong, Yu, Bian, Zhao, & Cheng, 2011; Wei & Yang,
2010; Wei, Jiang, Li, & Mu, 2009; Li, Ma, van der Kuijp,
Yuan, & Huang, 2014). Therefore, estimation of heavy
metal content in soils of reclaimed areas is an important
task (Song et al., 2012). In recent years, the application of
hyperspectral remote sensing technology for this purpose
has become a popular research topic (J. Wang et al., 2014;
Rathod, Rossiter, Noomen, & Fd, 2013; Soriano-Disla,
Janik, Rossel, Macdonald, & Mclaughlin, 2014; Shi,
Chen, Liu, & Wu, 2014; Summers, Lewis, Ostendorf, &
Chittleborough, 2009). Compared with the traditional field
sampling and laboratory tests, hyperspectral (350 to 2500
nm) data offers superiorities in both time and cost savings.

Since 1997, researchers have adopted remote sensing
spectroscopy to estimate the content of heavy metals in
soils (Malley & Williams, 1997). The heavy metal con-
tent in soils is usually low, so it does not have obvious
spectral characteristic (Wang et al., 2014; Wu et al.,
2005). It is therefore necessary to preprocess the spectra,
so that the weak information can be reflected. A number
of preprocessing methods—the Savitzky-Golay (SG)
(Madden, 1978; Gorry, 1990) smoothing, first deriva-
tive (FD) (Han & Rundquist, 1997; Aguerssif,
Benamor, Kachbi, & Draa, 2008), second derivative
(SD) (Balestrieri, Colonna, Giovane, Irace, & Servillo,
1978; Kosmas, Curi, Bryant, & Franzmeier, 1984),
standard normal variate (SNV) (Fearn, Riccioli,
Garrido-Varo, & Guerrero-Ginel, 2009; Summers
et al., 2009; Kinoshita, Moebiusclune, Es, Hively, &
Bilgilis, 2012), and continuum removal (CR) (Meer,
2000; Gomez, Lagacherie, & Coulouma, 2008; Ding,
Wang, & Ge, 2010)—are widely used, and they can
smooth the spectra, eliminate the signal error caused
by the instrument itself, and suppress the noise in data
acquisition, thereby enhancing weak spectral informa-
tion related to heavy metals. The aforementioned pre-
processing methods have been shown to be effective in
practical applications (Rinnan, Berg, & Engelsen, 2009;
Summers et al., 2009; Xu, Xie, & Fan, 2011; Kinoshita
et al., 2012; Soriano-Disla et al., 2014; Asadzadeh &
Roberto, 2016; Candolfi, Maesschalck, Jouan-Rim-
baud, Hailey, & Massart, 1999; Cen, Bao, Huang, &
He, 2006; Jamshidi, Minaei, Mohajerani, &
Ghassemian, 2012). Most of the current studies are
based on ground spectrum. Quantitative estimation of
heavy metals using imaging spectroscopy has been

explored (Choe et al., 2008), but the performance is
limited due to rough spatial resolution.

In this paper, we are more concerned with learning
algorithms deployed to extract related features. Shi
et al. (2014) reviewed the literature on the estimation
of nine heavy metals, in which the most widely used
modeling strategy was partial least squares (PLS)
regression. Meanwhile, the importance of artificial
neural networks (ANNs) (Tan, Ye, Cao, & Du,
2014) and genetic algorithms (GAs) (J. Wang et al.,
2014) has been increasingly emphasized. Jie (2012)
predicted the cadmium content of soils with a support
vector machine (SVM) method and achieved satisfy-
ing results. However, researchers are always looking
for learning algorithms that can offer higher accuracy
and better generalization performance.

The random forest (RF) algorithm (L. Breiman,
2001) is one of representative ensemble learning
methods. In recent years, it has been studied in many
remote sensing fields for various applications, i.e., clas-
sification (Pal, 2005; Ham, Chen, Crawford, & Ghosh,
2005), ship recognition (Huang, 2015), estimation of
wheat biomass (Wang, Zhou, Zhu, Dong, & Guo,
2016), vegetation mapping (Feng, Liu, & Gong,
2015), etc. (Feng, Liu, & Gong, 2010; Belgiu & Drăguţ,
2016). However, there have been very few studies on
the application of RF to spectral analysis of soils (Belgiu
& Drăguţ, 2016). Wang, Xie, and Li (2015) compared
the performance of several ensemble learning methods
to estimate the heavy metal content of agricultural soil,
but the number of variables used to build the model was
very small, and data processing could not reflect the
advantages of the RF algorithm. Rodriguez-Galiano,
Sanchez-Castillo, Chica-Olmo, and Chica-Rivas
(2015) used several machine learning methods, includ-
ing ANN, RF, SVM, and regression tree, to map mineral
prospectivity, and reported that the RF performed better
than other methods. However, this was mainly in clas-
sification and assessment, rather than quantitative re-
gression of heavy metals. By the use of random sam-
pling, the RF algorithm can make full use of key infor-
mation hidden in high-dimensional data (Hastie,
Tibshirani, & Friedman, 2009). Therefore, in this paper,
we explore the learning ability of RF with hyperspectral
data and its application in the estimation of soil heavy
metals. Meanwhile, the built-in feature extraction capa-
bility of RF is also tested. Specifically, models for
estimating the soil content of four heavy metals—zinc
(Zn); chromium (Cr); arsenic (As); and lead (Pb)—are
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built by analyzing the spectral characteristics of a
reclaimed mining area. Two kinds of data—selected
bands and full-spectrum data—are analyzed by the RF,
and the performance is compared with PLS regression
and SVM.

This paper is organized as follows. The data and
inversion algorithm are introduced in the BMaterials
and methods^ section, and then the analysis of results
and discussions are provided in the BResults^ and
BDiscussion^ sections, respectively. Final conclusions
are drawn in the BConclusions^ section.

Materials and methods

The design and implementation of the framework for
heavy metal estimation are described in Fig. 1. The main
body can be divided into two components: model estab-
lishment and model evaluation. The establishment pro-
cess of the model includes data preprocessing, feature
extraction, and algorithm optimization. The evaluation
process begins with applying the same preprocessing
and feature extraction methods used in the model estab-
lishment process to the test data. The performance is then
evaluated by comparison with true concentration values.

Data set description

Study area

The study area is located in a mining zone located 20 km
north of Xuzhou, Jiangsu province, China. The area fea-
tures a warm temperate semi-humid monsoonal climate,
with annual average rainfall of 800–930 mm, and annual
average temperature of 13.8 °C. The study area consists of
three regions: reclaimed soil filled with coal gangue (site
A), reclaimed in 1995 (34° 25′ 24 N–117° 08′ 26 E);
reclaimed soil filled with fly ash (site B), reclaimed in
1999 (34° 23′ 43 N–117° 07′ 29 E); and a control site (site
C, 34° 23′ 43 N, 117° 06′ 50 E) (Fig. 2).

Field soil sampling

Based on the area and shape, ten sampling points were
selected from each region, following a snake-shaped
pattern. Samples were collected from each sampling
point. According to the principle of sampling of mixed
soil samples and the collection of special soil samples,
the sampling unit, sample number, and sampling section

are determined. In the coal gangue filling site A area, B
area, and fly ash filling site control site C, ten samples
are collected in each district, and each sample is divided
into 0 cm, 20 cm, 40 cm, interface layer (different 35–55
cm), or 60 cm (control site). Then, each of the four sides
of soil sampling is mixed together to form a sample.

All 30 samples were kept in packages and tagged.
After removing the sundries, such as roots, leaves, and
stones, each sample was divided into two parts. One part
was sent to a chemistry lab where soil heavy metal
concentrations were measured, and the other was sent
to the darkroom, where soil spectral signatures were
measured.

Heavy metal measurement

The true values of Zn, Cr, As, and Pb concentrations in
the reclaimed soil were measured in the laboratory. The
basic statistics of the results of heavy metal measure-
ments are shown in Table 1, including minimum (Min),
maximum (Max), mean, and standard deviation (Std.).
From the statistical values, the maximum concentrations
are very close to the risk index values, so this study is
indeed necessary and meaningful. Meanwhile, the stan-
dard deviation of As is relatively low, which may be
caused by the difference in heavy metal concentrations
of the three different sampling sites.

Laboratory optical measurements

The soil samples were scanned in the lab environment
using ASD field spectrometer with a halogen lamp of 50
watts at an angle of 15°. The spectrometer acquired a
continuous spectrum ranging from 350–1000 nm (at
1.4-nm intervals) and 1000–2500 nm (at 2-nm inter-
vals). Each soil sample was scanned ten times, and the
average spectrum was calculated for the follow-up
study. After removing the abnormal spectra, the average
spectrum was taken as the final reflectance spectrum of
the soil sample. The spectra of 30 soil samples used in
the experiments are shown in Fig. 3.

Spectral data preprocessing

The spectral reflectance data also contained other irrel-
evant information and noise. Therefore, it was necessary
to implement some basic preprocessing steps to remove
irrelevant information and noise. The common prepro-
cessing methods in spectral analysis were applied, i.e.,
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Fig. 1 The proposed framework for heavy metal estimation

Fig. 2 Study sites A, B, and C near the city of Xuzhou, Jiangsu province, China. The red dots indicate the position of sampling points
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the Savitzky-Golay (SG) (Savitzky & Golay, 1964)
smoothing, first derivative (FD), second derivative
(SD), standard normal variate (SNV), continuum re-
moval (CR), etc.

All the samples were first smoothed, and then two
different strategies were implemented. On the one hand,
the smoothed data separately obtained by FD, SD, SNV,
and CR were treated as independent variables and input to
the algorithms (i.e., PLS, SVM, and RF etc.) and to
automatically start the feature extraction. The models were
then tuned through cross-validation and other means. On
the other hand, the correlation was analyzed between each
band of the preprocessing results and the corresponding
heavy metal samples. The bands with high correlation
were then selected as the model input variables, which is
a commonly used method in the literature. Table 2 lists the
number of bands selected for various heavy metals after
different preprocessing steps. In the process of selecting
feature bands by correlation analysis, the results may vary
due to the fact that the process may be subjective. This is
one of the reasons that we use the RF for automatic feature
selection in this study.

Methods

The random forest algorithm

The RF algorithmwas proposed by Breiman (2001) and is
a kind of predictive modeling algorithm based on classifi-
cation and regression tree (CART) (L. I. Breiman,
Friedman, Olshen, & Stone, 1984) and the bagging
(Breiman, 1996) learning strategy. In bagging, a decision
tree is generated from all of the properties each time, while
in RF, it is randomly generated from a fixed-size subset of
all the attributes, resulting in a reduced computational cost.
Specifically, by the bootstrap (Efron & Tibshirani, 1993)
resampling technique, random sampling is repeated K
times to generate a fixed number of subset training samples
(in general, the subset sample size is two-thirds of the
training samples) from all the samples (here, K is the
number of trees in the forest). Meanwhile, for each sample,
only a fixed number of sub-attributes are selected. Each
randomly selected subsample with its corresponding sub-
attributes can then be used to generate a classification tree
or regression tree, and all the trees make up the forest.
Finally, the results are obtained according to the scores of
the class voting from all the trees (certain algorithms can be
implemented to determine the average of each tree, mostly
for regression trees) (Hastie et al., 2009). The trained forest

F̂
K
RF xð Þ with K trees can be expressed as

F̂
K
RF xð Þ ¼ 1

K
∑K

K¼1T xsð Þ ð1Þ

Table 1 Statistics of the measured heavy metal concentrations

Metal Min (mg/kg) Max (mg/kg) Mean (mg/kg) Std.

Zn 30.47 95.2 62.48 19.85

Cr 65.85 117.76 94.99 16.09

As 0.55 9.61 3.19 3.27

Pb 9.64 33.53 23.11 7.81

Fig. 3 Spectra of 30 soil samples
from the three sampling sites
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where T(x) is a single tree, x is all the training sam-
ples, and xs is each tree’s training sample data obtained
with the bootstrap sampling method. Another parameter
that is not noted in Eq. (1) is the number of sub-
attributes selected from all the attributes with bootstrap
sampling.

The most important advantage of RF with respect to
other ensemble learning algorithms lies in the interpreta-
tion of results. RF results indicate the importance of vari-
ables. That is to say, the RF algorithm has a built-in feature
extraction function (Archer & Kimes, 2008). This is an
automatic mechanism for attribute selection. Whether the
voting is correct or not, the out-of-bag (OOB) error also
needs to be counted, in addition to the training of themodel
itself. Furthermore, the OOB error is an unbiased estimator
with bootstrap sampling and a large number of trees, which
is similar to the error obtained by cross-validation (Hastie
et al., 2009).

RF is among the most popular machine learning
methods due to relatively high accuracy, robustness, and
ease of use. Two straightforward methods for feature se-
lection can be adopted, i.e., mean decrease impurity and
mean decrease accuracy (Archer & Kimes, 2008). We
focus on the mean decrease impurity in this research. RF
consists of a number of decision trees. Each node in a
decision trees is a condition on a single feature, designed to
split the dataset into two so that similar response values end
up in the same set. The measure based on which the
(locally) optimal condition is chosen is called impurity.
For classification, it is typically either Gini impurity or
information gain/entropy, and for regression trees, it is
variance. Thus, when training a tree, it can be computed
howmuch each feature decreases the weighted impurity in
a tree. For a forest, the impurity decrease from each feature
can be averaged and the features are ranked according to
this measure. By calculating the importance of variables,
rank is determined by sorting. The average decrease of
classification accuracy and correct classification rate is

computed before disturbance. For each decision tree, pre-
diction error of out-of-pocket data is recorded by using the
data outside the bag, and a new out-of-pocket data is
formed for verification by random change of each predic-
tor variable. For a prediction variable, the importance of
the calculation is the mean of the difference between the
predicted error before and after the transformation. (For
more detailed discussion and experimental validation,
please refer to Genuer, Poggi, and Tuleau-Malot (2010);
Hapfelmeier and Ulm (2014); and Stańczyk (2015)).

The essence of the RF algorithm is an improvement of
the decision tree algorithm, and it can handle a large
number of input variables. Meanwhile, the tree structure
can dealwithmissing sample attributes, and it canmaintain
accuracy with missing data (Carranza & Laborte, 2015).
These properties of RF make it suitable for the processing
of hyperspectral data. The characterization of high-
dimensional hyperspectral data can be exploited by learn-
ing the attribute subset from a large number of trees. With
more trees, we can not only improve the attribute subset to
cover all of the property space, but also prevent overfitting.

In this study, the RF algorithm was implemented in R
software using the Random Forest package (Liaw &
Wiener, 2001). Two important parameters need to be
specified: the number of input variables randomly cho-
sen at each tree at the root node (mtry) and the number
of trees (ntree) in the forest.

Partial least squares regression and support vector
machine

In the field of hyperspectral inversion study, two of the
algorithms that are commonly used are PLS and SVM.
PLS regression was developed by Herman Wold in 1966
(Tenenhaus, Vinzi, Chatelin, & Lauro, 2005; Wold,
Sjöström, & Eriksson, 2001). It is an improvement over
multiple linear regression (MLR), and its main objective is
to establish a linear regression model about independent
and dependent variablematrices. By incorporatingwith the
principal component analysis (PCA), PLS can process
high-dimensional data and can partially remove the corre-
lation among variables (Wold et al., 2001). SVM is a
learning method based on the statistics of the minimum
structure risk, and it can use the given error separation to
optimize the separation hyperplane of training data
(Balabin & Lomakina, 2011). It can solve either classifi-
cation or regression problems (Drucker, Burges, Kaufman,
Smola, &Vapnik, 1996). The use of kernel functionmakes
it successful in nonlinear analysis. Its main advantage lies

Table 2 The number of bands selected for heavy metals after
different preprocessing steps

Pretreatment Zn Cr As Pb

CR 12 11 13 9

FD 11 5 7 6

SD 5 12 10 11

SNV 5 6 4 7

Total 33 34 34 33
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in its ability to deal with a small number of samples,
nonlinear and high-dimensional problems, and local opti-
ma problem. In view of this, SVM is suitable for process-
ing hyperspectral data. In this study, the PLS algorithm
was implemented in MATLAB, and the SVM algorithm
was run in R software using the package e1071 (Meyer,
Dimitriadou, Hornik, Weingessel, & Leisch, 2015).

Model performance evaluation

With the test dataset, model performance was evaluated
by the coefficient of determination (R2) and the root-
mean-square error (RMSE) expressed as

R2 ¼
∑N

i¼1 yai−ya
� �

∑N
i¼1 ymi−ym

� �h i2

∑N
i¼1 yai−ya

� �2
∑N

i¼1 ymi−ym
� � ð2Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 yai−ymið Þ2
N−1

s
ð3Þ

where yai and ymi are the predicted and measured values,
respectively, ya and ym are the average predicted and
measured values, respectively, and N is the number of

samples. R2 is widely used to measure the goodness of
model fitting, with values between 0 and 1. The closer
the values is to 1, the higher the accuracy of model
fitting. RMSE is the variance of the difference data to
measure the Baverage error.^

Results

All the 30 preprocessed samples of Zn, Cr, As, and Pb
were divided evenly: 20 as training and ten as testing
samples. In order to test the ability of the RF algorithm,
the input data of each heavy metal were estimated from
a comparison of the two strategies. One strategy was
using selected bands from correlation analysis, and the
other was using full-spectrum data without band selec-
tion. The 20 training samples were trained for each type
of heavy metal with different algorithms, i.e., PLS,
SVM, and RF. After parameter optimization, the 10
testing samples were fed into the optimized model, and
the accuracy was evaluated. It should be noted that the
results obtained by the RF algorithm were not the same,
so the results of the RF algorithm for all the experiments
in this paper are the average values obtained from fifteen
runs, by setting a random number of seeds.

Model analysis of selected bands

By means of correlation analysis, statistical characteris-
tics of heavy metal concentrations can be obtained. The
BSpectral data preprocessing^ section describes a varie-
ty of pretreatments, including FD, SD, SNV, and CR,
used to enhance spectral characteristics of heavy metals
after smoothing. There were 33 or 34 feature bands
selected for each heavy metal. The accuracy of different
models is evaluated in Table 3, through the validation of
the trained model using the test data. The parameter
setting of SVM and RF are shown in Table 4. It can be

Table 4 The parameter setting of SVM and RF

Element SVM RF

Zn type = nu-regression, kernel = sigmoid ntree = 50, mtry = 6

Cr type = nu-regression, kernel = sigmoid ntree = 120, mtry = 3

As type = nu-regression, kernel = radial ntree = 200, mtry = 6

Pb type = nu-regression, kernel = sigmoid ntree = 500, mtry = 6

Table 3 Model performance statistics for selected bands

Metal Evaluation PLS SVM RF

Zn R2 0.8730 0.8851 0.8929

RMSE 6.9413 7.0360 6.7740

Cr R2 0.8681 0.9005 0.9110

RMSE 5.9399 4.9732 4.5683

As R2 0.9431 0.9720 0.9912

RMSE 1.3683 0.8760 0.5327

Pb R2 0.9071 0.9622 0.9756

RMSE 2.6327 1.5919 1.1694
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seen that the accuracy of the RF model is higher than the
other two algorithms in the prediction of each type of
heavy metals, according to both RMSE and R2. Al-
though the accuracy of the SVM model for Cr, As,
and Pb is higher than PLS, it is still less accurate than
the RF model. Furthermore, it can be seen that the RF
model has a better generalization performance, and it
can make full use of the information contained in the
variables.

Model analysis of full-spectrum data

Due to high spectral resolution across 350–1000 nm (at
1.4-nm intervals) and 1000–2500 nm (at 2-nm inter-
vals), there are many bands in full-spectrum data, which
may interfere with the model established by the tradi-
tional linear regression method, and model stability may
be poor. However, RF can overcome the problem of
high spectral correlation due to the use of bootstrap
sampling, and it can treat all the trees comprehensively.
Therefore, the accuracy of the model using the full-
spectrum data or the preprocessed full-spectrum data
depends on the learning and generalization abilities of
the algorithm itself.

The Savitzky-Golay-smoothed full-spectrum data

After smoothing, random noise in the spectrum can be
reduced, and the influence of numerical jumps of adja-
cent bands is eliminated (Savitzky & Golay, 1964).
Using the three algorithms and the SG-smoothed full-
spectrum data, the accuracy of the test data is shown in
Table 4. From the results, only PLS for Pb performs the
best in both statistical indicators. For the prediction of
Cr, R2 (0.7595) from SVM is lower than that of PLS

(0.7884), but the RMSE of SVM (7.7894) is lower than
that of PLS (8.6438). Similar results can be found in the
prediction of Zn. Overall, in the prediction of almost all
the heavy metals, the RF models using the smoothed
spectral data show a poor performance. This indicates
that the ability of RF to find useful information from the
original spectra of the heavy metals is limited.

First derivative–preprocessed full-spectrum data

Using FDs to smooth out measurement noise is regarded
as an effective pretreatment method (Kinoshita et al.,
2012; Asadzadeh & Roberto, 2016). As shown in Ta-
ble 5, the RF performs the best in the prediction of all
four heavy metals. In the prediction of Pb, As (mostly),
and Zn, PLS does not perform as well as RF, but obtains
better results than SVM. Meanwhile, for Cr, the accura-
cy of PLS is lower than that of SVM. It can be inferred
that some weak spectral features can be enhanced after
noise reduction through the FD preprocessing.

Second derivative–preprocessed full-spectrum data

SD is a further extension of FD. Table 6 shows the
performance of using SD-preprocessed full-spectrum
data. In the prediction of Zn, Cr, and Pb, the RF
offers the highest accuracy, but SVM obtains a
slightly higher accuracy for As. In comparison with
Table 5, we can see that the accuracy of the models
trained by RF from the SD-preprocessed data set are
lower than those of the FD-preprocessed data. A
further comparison shows that the prediction results
of PLS and SVM for Zn using the SD-preprocessed
data are also lower than those of the FD-
preprocessed data. For Cr and Pb, only one metric

Table 4 Model performance statistics for the SG-smoothed full-
spectrum data

Metal Evaluation PLS SVM RF

Zn R2 0.8030 0.8548 0.3471

RMSE 10.4291 14.1878 15.9842

Cr R2 0.7884 0.7593 0.2853

RMSE 8.6438 7.7894 15.2252

As R2 0.7461 0.5446 0.1126

RMSE 3.3110 2.7695 3.3469

Pb R2 0.9530 0.9129 0.1538

RMSE 2.2303 2.9949 7.8589

Table 5 Model performance statistics for the FD-preprocessed
full-spectrum data

Metal Evaluation PLS SVM RF

Zn R2 0.8591 0.8557 0.8973

RMSE 8.4920 9.2301 7.9850

Cr R2 0.7901 0.9013 0.9086

RMSE 7.9061 7.0240 5.8085

As R2 0.8594 0.8583 0.9435

RMSE 1.6860 2.1191 1.5950

Pb R2 0.8965 0.9074 0.9499

RMSE 2.4269 2.4242 2.0025
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indicates a good validation accuracy, either RMSE or
R2. In contrast, using the data preprocessed by SD,
with the SVM and PLS algorithms, the prediction
accuracy of As is improved significantly. However,
in general, for RF, SD preprocessing is not better
than FD preprocessing, because SD may be more
sensitive to noise than FD.

Standard normal variate–preprocessed full-spectrum
data

SNV is a commonly used and effective method for
spectrum scattering correction (Fearn et al., 2009).
The model validation accuracy for the full-spectrum
data after SNV scattering correction is shown in
Table 7. Similar to the results in Table 5, RF yields
the best results in the prediction of almost all four
heavy metals. In the prediction of Cr and Zn, SVM
performs as well as PLS, but, for Pb, SVM performs
better than PLS. For As, the RMSE of SVM is lower

than PLS’s, and the R2 of SVM is not as good as the
R2 of PLS.

Continuum removal–smoothed full-spectrum data

The CR method can effectively highlight the absorp-
tion, reflection, and emission characteristics of a
spectral curve (Gomez et al., 2008). As shown in
Table 8, for the estimation of Zn and As, PLS obtains
a higher accuracy than SVM, but does not perform as
well as RF. For Cr, SVM overall performs better than
PLS, but does not perform as well as RF. For Pb, the
R2of SVM is lower than for PLS, and the RMSE of
SVM is better than the RMSE of PLS.

Discussion

In order to obtain more stable experimental results, all
the experimental results here are the results of 15 sets of
random seed numbers, while the other parameters are
the same. That is, each experiment is the average of the
results of 15 groups. For illustration purposes, we take
Pb as an example in Fig. 4. The accuracies of the
displayed models are not the average value, but very
close to it.

As can be seen from Fig. 4, the distribution of heavy
metal concentrations is not uniform because the data are
collected in three different regions. Compared with the
accuracy of the scatter plots, except for the smoothed
spectrum, all the other spectra can obtain high-accuracy
results with the RF algorithm. Although the data obtain-
ed by spectral band selection can establish a model with
the highest accuracy, the accuracy of the model using
the whole spectrum is very close to it. In previous study,

Table 6 Model performance statistics for the SD-preprocessed
full-spectrum data

Metal Evaluation PLS SVM RF

Zn R2 0.8155 0.8486 0.8788

RMSE 9.4964 9.2478 8.7723

Cr R2 0.8334 0.8722 0.8903

RMSE 7.3611 6.8716 6.8514

As R2 0.9440 0.9146 0.9143

RMSE 1.5780 1.6067 1.7877

Pb R2 0.8979 0.8965 0.9346

RMSE 2.4489 2.4217 2.5233

Table 7 Model performance statistics for the SNV-preprocessed
full-spectrum data

Metal Evaluation PLS SVM RF

Zn R2 0.8655 0.8140 0.8798

RMSE 7.5063 9.5108 8.6126

Cr R2 0.8646 0.7906 0.8301

RMSE 6.3827 7.4220 6.5935

As R2 0.9253 0.8653 0.9795

RMSE 1.4210 1.3929 0.7417

Pb R2 0.9264 0.9499 0.9655

RMSE 2.1203 1.8329 1.4300

Table 8 Model performance statistics for the CR-preprocessed
full-spectrum data

Metal Evaluation PLS SVM RF

Zn R2 0.8816 0.8760 0.9061

RMSE 6.5046 7.8462 6.5008

Cr R2 0.7903 0.8448 0.8870

RMSE 7.5112 7.2607 5.3972

As R2 0.9432 0.8684 0.9772

RMSE 1.1914 1.5383 1.1314

Pb R2 0.9025 0.8730 0.9596

RMSE 2.7137 2.6970 1.4991
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the performance of FD and SD is inconclusive. That is
to say, the performance of FD is more stable and reliable
under the full-spectrum data at a particular spectral
resolution (350–1000 nm at 1.4-nm intervals and
1000–2500 nm at 2-nm intervals).

All the models based on the RF algorithm are sum-
marized in Figs. 5 and 6. It can be seen that the accuracy
for Cr, As, and Pb using the selected bands are the
highest, and that of Zn is slightly lower than using the
CR-processed full-spectrum data. Comparing FD and
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Fig. 4 Scatter plots of all the RF models for Pb. a Scatter plot of
Pb with selected bands; b scatter plot of Pb with SG-preprocessed
full-spectrum data; c scatter plot of Pb with FD-preprocessed full-
spectrum data; d scatter plot of Pb with SD-preprocessed full-

spectrum data; e scatter plot of Pb with SNV-preprocessed full-
spectrum data; f scatter plot of Pb with CR-preprocessed full-
spectrum data
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SD for the full-spectrum results, the results of FD are
better. In all the full-spectrum models, using SNV-
preprocessed data for As and Pb offers the best perfor-
mance, and for Zn, using CR-processed is the best. For
Cr, the R2 value for FD is the highest, and the RMSE is
the lowest for CR. In general, the FD and CR prepro-
cessing can better enhance the spectral characteristics. It
also shows that the feature selection method built in the
RF can achieve the same effect as band selection, and
this method is automatic. In addition, the RF owns
specific bagging mechanism and random attribute selec-
tion mechanism, resulting in sample attribute distur-
bance and base learner diversity, and then ultimate per-
formance can be improved by the final integration.

Taking all the experiments into consideration, we can
see that the RF offers many advantages. By repeating
the selection of feature subset, it forms many different

trees. The deviation of each tree is small and the vari-
ance is large. Finally, the effect of the variance of the
overall model is reduced by summing the trees. That is
to say, the diversity of basic tree learners can achieve
mutual compensation in ensemble learning, construct-
ing a powerful learning algorithm. Meanwhile, due to
repeated sampling, the learning space spanned by train-
ing samples can be extended to a certain level, which
can make up for the problem of small sample set and
avoid overfitting.

Conclusions

Few previous studies have directly used full-spectrum
data to estimate the concentration of heavy metals, but,
in this paper, an effective attempt is made, and the
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results show that RF can cope with full-spectrum data,
providing an outstanding performance. In almost all the
20 experimental cases of heavy metal estimation, RF
performs better than PLS and SVM, except using the
SG-preprocessed full-spectrum data. The original
smoothed spectra cannot provide effective feature infor-
mation, and it is found that in all five preprocessing
methods, FD and CR have a more stable ability for all
four heavy metals.

Although the precision of the models using selected
bands are the highest, the accuracy with full-spectrum
data are very close. Feature selection in RF makes the
following feature extraction more automatic. Consider-
ing the fact that selecting feature bands is often subjec-
tive and data-/application-dependent, RF offers a more
convenient and efficient solution without careful band
selection for hyperspectral applications.
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