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Abstract— The increase in the spectral and spatial information
of hyperspectral imagery poses challenges in classification due
to the fact that spectral bands are highly correlated, training
samples may be limited, and high resolution may increase intra-
class difference and interclass similarity. In this paper, in order
to better handle these problems, a Caps-TripleGAN framework
is proposed by exploring the 1-D structure triple generative
adversarial network (TripleGAN) for sample generation and inte-
grating CapsNet for hyperspectral image classification. Moreover,
spatial information is utilized to verify the learning capacity and
discriminative ability of the Caps-TripleGAN framework. The
experimental results obtained with three real hyperspectral data
sets confirm that the proposed method outperforms most of the
state-of-the-art methods.

Index Terms— CapsNet, hyperspectral image classification,
triple generative adversarial network (TripleGAN).

I. INTRODUCTION

UE to advances in hyperspectral remote sensing tech-

nology, the use of hyperspectral imagery has resulted
in great breakthroughs in the field of earth observations.
A hyperspectral image acquired by an imaging spectrometer
is a 3-D data cube, where each pixel represents contiguous
spectral information. However, the increase in spectral and
spatial information poses some challenges in classification.

1) Hyperspectral images are comprised of hundreds of
bands with high spectral resolutions, and the resulting
spectral vector is highly correlated.

2) Because of the wide spatial coverage and the costly field
surveying [1] and labeling, classification is confronted
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with imbalance between the small number of labeled
samples and the high feature dimensions, leading to the
Hughes phenomenon which describes that the perfor-
mance of a classifier is degraded by high-dimensional
features under limited samples; although class separabil-
ity may be enhanced by increasing data dimensionality,
accurate estimation of class-conditional probability den-
sity function needs more samples due to the additional
dimension.

3) The high resolution may increase intraclass variation and
decrease interclass difference, which gives rise to poor
class separability.

For the first challenge, efficient approaches should be explored
to decrease the spectral redundancy, and the specific features
suited to a given classification task should be used, instead
of using all the features. To address the second problem,
unlabeled samples may be considered to improve the perfor-
mance of classification because labeled and unlabeled samples
belong to the same source domain, ignoring the transfer
between algorithms and data. In transfer learning, the training
data set and test data set usually belong to different data
sources, which is out of the scope of our discussion. With
regard to the phenomenon of intraclass difference, spatial
information should be efficiently utilized to produce higher
accuracies. Above all, removing the redundancy effectively,
combining the small number of samples for classification,
and mining the spatial information to improve the accuracy
have become hot topics in the classification of hyperspectral
imagery.

In the early development of hyperspectral image clas-
sification, the algorithms were mainly based on the pat-
tern recognition approaches. To address the issue of the
Hughes phenomenon, hyperspectral classification has primar-
ily focused on dimensionality reduction, using either feature
selection or feature extraction as a way to feed the above
classifiers [2]-[4]. In addition, hand-crafted feature extrac-
tion methods, such as Haralick feature extraction [5], scale-
invariant feature transform [6], and local binary patterns [7],
have been introduced into remote sensing classification. Most
recently, deep learning has led to significant advances in
various fields, such as imaging technology [8] and natural
language processing [9], and has brought new opportunities
for hyperspectral techniques. The deep learning approaches
have demonstrated great potential in the field of remote
sensing for extracting features which are invariant to most
local changes. Some researchers have adopted deep learning
networks to simultaneously optimize the feature extraction
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and classification stages for hyperspectral imagery, which
resulted in better performance than traditional algorithms in
machine learning [10], [11]. The deep networks can be divided
into discriminative models, such as convolutional neural net-
works (CNNs) [8], recurrent neural networks (RNNSs) [9], and
the stacked denoising autoencoder (SDA) [12], and generative
models, such as deep belief networks (DBNs) [13], deep
restricted Boltzmann machines (DRBMs) [14], and generative
adversarial networks (GANs) [15]. He et al [16] used a
3-D CNN for hyperspectral image classification at multiple
scales; Song et al. [17] proposed a deep feature fusion network
to optimize a general CNN in hyperspectral classification;
Zhang and Li [18] adopted 1-D kernels to fit the hyperspectral
context; and Mou ef al. [19] used an RNN model to analyze
hyperspectral pixels as sequential data for the classification
task. While CNN is one of the most popular and effective
deep learning models, the output of CNN just represents the
specific feature variants, ignoring detecting the variations of
features. Moreover, the CNN adopts max-pooling to improve
the discriminative ability, but loses many local features. When
the spatial-spectral convolution is operated, convolution in the
spatial dimension results in the local pixels introducing clas-
sification error and the massive similar results are produced.

With this consideration, we have explored CapsNet [20]
and modified the original architecture to fit the hyperspectral
image classification task. The most important difference with
the conventional CNN is that CapsNet has capsules, which
consist of a group of neurons. Moreover, the pooling operation
is disabled. Recently, CapsNet has been used in hyperspectral
image classification [21], [22].

To confront the insufficient training sample issue, semi-
supervised learning (SSL) can be utilized in hyperspectral
image classification. The simplest algorithm is based on a self-
training scheme [23], where the classifier is bootstrapped with
additional labeled data obtained from its own highly confident
predictions. Transductive SVM (TSVM) extends SVM with
the aim of max-margin classification, while ensuring that there
are as few unlabeled observations near the margins as possi-
ble [24]. Moreover, other SSL methods, such as graph-based
methods [25], cotraining [26], and manifold methods [27],
have been introduced in hyperspectral image classification.
Recently, a generative model which recognizes SSL problem
as a specialized missing data imputation task [28] has been
exploited for classification. The existing methods, such as
Gaussian mixture models or hidden Markov models, do not
perform well in remote sensing classification because of
the need for a large number of mixed components. More
recently, variational approximations have also been exploited
for pan-sharpening [29] and classification [30]. GANs, which
were first proposed in 2014 [15], have made significant
breakthroughs in the field of image generation. GANs have
provided a new pathway for sample generation by the use
of an adversarial process to address the issue of insufficient
training samples in remote sensing classification. However, in
general, with GANs, the discriminator only takes the data into
account, ignoring the label information when discriminating
if the data are from the real data or model distribution,
and the latent variable cannot learn the label knowledge in
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the generator during the adversarial training process. Some
GAN-based models considering label information have been
modified, such as conditional GAN [31], InfoGAN [32],
auxiliary classifier GAN (ACGAN) [33], deep convolutional
GAN (DCGAN) [34], and categorical GAN (CatGAN) [35].
In the remote sensing area, GANs have been exploited in
various applications. Conditional GAN models have been
explored in thin cloud removal in multispectral imagery [36],
remote sensing image synthesis [37], heterogeneous image
matching between synthetic aperture radar (SAR) and opti-
cal images [38], height simulation using a digital surface
model (DSM) and optical images [39], and lung histology
with hyperspectral images [40]; DCGANs have been used
with high-resolution remote sensing imagery to boost the scene
classification results [41] and in unsupervised representation
by multiple-layer feature matching [42]. GANs have also
been used in hyperspectral image classification [43]-[46],
change detection [47], and retrieval tasks [48]. Although some
approaches based on GANs have become feasible for semi-
supervised classification, two-player GAN games are weak at
optimizing the discriminative model and categorical model at
the same time [49]. To solve this problem, a triple generative
adversarial network (TripleGAN) is exploited in this paper and
a composite pattern with CapsNet is designed.

In this paper, the Caps-TripleGAN framework is designed
by exploring the 1-D structure TripleGAN for sample gener-
ation and integrating CapsNet for hyperspectral image classi-
fication. Moreover, spatial information is utilized to enhance
the discriminative ability of the Caps-TripleGAN framework.

The rest of this paper is organized as follows. Section II
gives the background to this paper. Section III details the Caps-
TripleGAN framework. Section IV describes the three real
hyperspectral images used in the experiments, the experimen-
tal results, and the comparisons with other methods. Finally,
the conclusions of this paper are drawn in Section V.

II. PREVIOUS WORK

In this paper, the main work is based on CapsNet and
GANSs. Therefore, in this section, we briefly review the CNNss,
CapsNet, and GANSs.

A. CNNs

CNNs have recently made great breakthroughs in remote
sensing analysis [50]. As shown in Fig. 1, a typical CNN is a
multilayer neural network which is composed of a convolution
layer, a pooling layer, and a fully connected layer. In the
convolution layer, each filter f in Fig. 1 is represented
by a fixed-size matrix. The convolution operation involves
multiplying the corresponding position and summing, which
can be regarded as obtaining the correlation between the data
and the filter. Each filter maintains different interests in various
features, such as the color intensity, the border, and the specific
contour. The feature map is generated by transforming the
convolution output with an activation function. Each layer has
various filters to detect the corresponding feature and, as a
result, the features often contain redundancies. The pooling
layer is appended to downsample the features into a small size,
which can be regarded as reducing the feature redundancy.
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Fig. 1. Typical architecture of a CNN.

A CNN can learn various features, but the relationships
between these features are rarely explored. For example, if the
CNN detects the features of nose, eyes, and mouth, it will then
label this image as a human face. However, if the position,
relationship, or size of these features is wrong, the CNN will
still give the “human face” label. In this case, CapsNet could
perform better than the standard CNN.

B. CapsNet

The key concept of CapsNet is that the output of neurons
is not a scalar on behalf of the activation, but a vector to
recognize the presence of feature entities and to encode the
entities’ properties into the vector outputs. That is, CapsNet
is dedicated to detecting the features and also the variations
of features, rather than just the specific feature variants as
in the conventional CNN. Moreover, CapsNet can recognize
the objects which can transform into each other; for instance,
a capsule can detect if an object is rotated in the characteristic
space, instead of realizing a rotated object. On this account,
CapsNet is forced to learn the features and their variance
so that more variants can be inferred effectively with fewer
training data.

In conventional CNN hierarchy, the pooling layer is used
to reduce the computational burden and handle the feature
invariance. Intuitively, the category label can be kept the
same when the features have only slightly changed. This
operation maintains important features and discards others to
ensure robust results in regular image classification; however,
in advanced tasks, such as target detection or hyperspectral
image classification, which should consider more detailed
spectral information to handle the problem of the similar
spectra from different materials and the same material with
different spectra, the intrinsic activation value should be taken
into account to keep the task manageable.

C. GANs

A GAN is essentially a kind of training model, which
is based on a deep generative model, and is not a specific
network [15]. Its structure is composed of more than one
network, and each network plays a different role within its
architecture. A typical GAN consists of two networks named
a generator and a discriminator. The generator learns the real
data distribution and makes the generated data more realistic.
The discriminator learns whether a sample is from the model
distribution or the real data distribution.

During the training processing step, the generator can be
regarded as a “maturing counterfeiter,” trying to produce the
data and fool the discriminator, while the discriminator can
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be seen as analogous to an inspector, intending to detect the
fake data. The generative models can be estimated via an
adversarial game process. As the processing takes place, both
the generator and the discriminator converge to a dynamic
equilibrium, in which the generated data are close to the
real data distribution, so that the discriminator cannot discern
which is fake or real and gives the probability of a real predic-
tion as being close to 0.5 (equivalent to a random guess). The
discriminator is essentially a binary classifier, which can be
undertaken by a conventional CNN, and the generator uses a
deconvolutional neural network to transform the latent variable
into fake data which is consistent with the model distribution.
In the typical adversarial model, these two roles are both deep
neural networks, and a uniform distribution variable p,(z) is
used to learn the generator’s target distribution pg and produce
a sample G(z) in the data space, which is represented by a
deep neural network with parameters 6,, so that the generator
is G(z;0g). Similarly, the discriminator is D(x; 64), where
p(x) is the real data distribution and D(x) represents the
probability of x coming from the real data rather than the
learned distribution pg. The training procedure is now to solve
minimax problem by two-player game

minmax V(G, D) = Ey~pollog D(x)]
+ Ez~p.(nllog(1 = D(G())] (1)

where V (-) denotes the observed value. The training goals are
maximizing the probability of assigning the label to the real
data and fake data from the generator and minimizing log(1 —
D(G(z))). The optimal model D(x) is p(x)/(p(x) + pg(x)),
and the global equilibrium of this two-player game is obtained
when p(x) = pg(x) [15].

III. PROPOSED METHOD
A. CapsNet for Hyperspectral Image Classification

One of the aims in this paper is to overcome the deficiencies
of the existing CNNs in hyperspectral image classification.
In this regard, we explore CapsNet and modify the original
architecture to fit this task.

Suppose that a hyperspectral data set with b spectral bands
contains N labeled samples for L classes, and each is rep-
resented by {x1,x2,...,xy} € R’ and the corresponding
label vector is ¥ = {y1,¥2,...,v;} € R'L. As shown in
Fig. 2, the spectral features are used as the input of CapsNet,
which is first convoluted by the 1-D filter. Let the number
of channels be denoted as CHj, the size of the kernel be
1 x K, and the stride be equal to one. The first rectified linear
unit (ReLU) Convl layer can be obtained by conventional
channel convolution. A data block of size (N —K +1)) x CH;
is generated. The primary capsules are established in the next
layer, where the number of channels is CH», the size of the
kernel is 1 x K, and the stride is equal to two. The number
of capsules in this layer equals CH, x N, (where each output
is a vector) and each capsule in N> x 1 shares their weights
with the others, where d; is the vector dimension and N>
equals (N/2 — K + 1). Unlike the feed-forward and backward
propagation used in a CNN, dynamic routing is utilized to
concatenate different capsule layers, which groups the capsules
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Fig. 2. Structure of the 1-D CapsNet.
to form a parent capsule and also calculates the capsules’
output.

Intuitively, for one of the capsules, the input in; and the
output cap; are vectors. First, the transformation matrix W; ;
is applied to ensure that the previous capsule vector in; is
aligned with the upper-layer capsule cap;. This process can
be seen as an affine transformation to make the two vectors
have the same dimension, which can be expressed as

in; = W, jin; 2)
where 1/11\1 has the same dimension as cap;. The aligned vector
in; is treated as the vote from capsule i on the output of
capsule j. The total input s; of capsule i is obtained by

summing each in; as
si = E ¢, jin; (3)
i

where ¢; ; denotes the weight between the capsules of two
layers, which is determined by the dynamic routing process,
ief{l,2,...,(CHy x N»)} and j € {1,2,...,L}.

The output of a capsule is a vector, whose length represents
the probability of the current input. A nonlinear “squashing”
function is used to scale the vector between zero and one,
i.e., the small vectors are scaled to almost zero and the
large vectors to a length close to one, which can be expres-
sed as
I?

cap, = —Sill”__si
C T sl sl
cap; ~ ||si|ls; when s; is small
S )
cap; ~ Isi when s; is large 4)
Si

where s; denotes the input of capsule i achieved by the
weighted sum of all the capsules’ output in the previous
layer, and cap; represents the output of capsule i after the
squashing activation function. The first part of (4) is to shrink
the length to between zero and one, and the second part is
to keep the direction of the capsule. Here, cap; and s; have
the same direction. In (3), ¢; ; among the different capsules
in the previous layer are different; namely, the contributions
of the previous capsules to the up-layer capsules are different
and are determined by a “routing softmax,” that is
exp(bij)

= 5
= S exp(bin) )
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Here, the normalization of the coupling coefficients is
computed as the softmax of b;;, where b;; is used to measure
the agreement between the weighted input vector ml and the
output vector cap;. If cap; is close in value to in;, it can be
concluded that both capsules are highly related. This similarity
is measured using the scalar product of in; and cap; as

bij = iﬁ?-capi . (6)

From this equation, the measure of the similarity b;; considers
both the probability and the features’ properties, instead of just
the probability in the neurons, as in the conventional CNN.
bjj is treated as if it was a log likelihood. To make b;; more
accurate, it is updated iteratively as

bij < bij + iﬁ?-capi. @)

As the iteration progresses, the similarity is evaluated
between a specific capsule and all the capsules in the next
layer. If the score is low, the weight ¢ is small, and vice versa.
When the iteration is completed, the capsule only links to the
next-layer capsules which it identified.

For the hyperspectral image classification task, the norm of
the vector is used to indicate the probability of a local spectral
feature existence. With regard to a specific land category,
the capsule of the category layer should have a large output
vector. Therefore, a separate margin loss L¢ for each category
is defined as

Lc = Temax (0,m™ — ||o¢])

+ (1 = Te)ymax (0, [o.] —m™)> (8)
where T¢ is a “one-hot vector,” which is a vector with a single
“1” and all the others “0.” If an object of class C is present,
the corresponding position equals one. m™ and m~, which
are penalty terms, are fixed to 0.9 and 0.1, respectively. The
A downweighting (default 0.5) stops the initial learning from
shrinking the activity vectors of all the classes. The total loss
is simply the sum of the losses of all the category capsules.

B. Caps-TripleGAN Framework Applied to a Small Data Set

As mentioned earlier, GANs have shown good performance
in image generation, but for SSL, the existing two-player
GANSs have two problems.

1) The generator and the categorical discriminator may
not be optimal at the same time; in other words, this
kind of GAN works well for either categorical discrim-
ination or generation, but cannot achieve an effective
generator and classifier simultaneously.

2) The generator cannot learn the latent representation
among the different categories exhaustively.

The SSL is aimed at extracting the classification informa-
tion or other meaningful features from the data itself, with
limited supervision, which is impossible for the two-player
GANSs. The discriminator only takes the data into account
while ignoring the label information when discriminating if
the data are from real data or a model distribution. Hence,
the latent variable cannot learn the label knowledge in the
generator during the adversarial training process.
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In this paper, TripleGAN is explored for training data
generation to improve the performance of CapsNet. Unlike
the general two-player GANs, TripleGAN consists of three
components, which handle the three distributions jointly.

For hyperspectral image classification, it is critical to assign
a high-dimensional spectral pixel with the correct label, which
can be represented by the conditional distribution p.(y|x).
As mentioned above, there remains a costly field surveying and
labeling task in the small number of labeled samples, which
can be solved by learning the class-conditional distribution
Pg(x[y).

“Triple” denotes that it consists of three components, a clas-
sifier C, a class-condition generator G, and a discrimina-
tor D. D is needed to control the class-conditional distribution
pg(x|y) converging to the real data distribution, as in the
two-player GANS. Specifically, C is used to describe the
conditional distribution p.(y|x), G to characterize the class-
conditional distribution p,(x|y), and D that detects a data pair
(x,y) that comes from the real distribution p,(x, y) or the
model distribution p,(x,y) or p.(x, y). Each player is char-
acterized as a neural network. A hyperspectral pixel can be
modeled by bothp(x) and p(y), and the classifier C can assign
a label y given x by the posterior probability of the conditional
distribution. Therefore, the joint distribution can be computed
as pe(x,y) = p(x)pc(ylx). As for pg(x,y), y is sampled
from p(y) and a latent distribution p,(z) is used to generate
xg = G(y, z). In this paper, a Gaussian distribution is chosen
as the latent distribution. After the generation of the fake
data pair, the real data pair (x,, y-) which is positive training
samples and the fake data pairs (xg, y¢) and (x¢, y.) which are
negative training samples are sent to the supervised learning
of discriminator D. The training process is based on an
adversarial process, where the adversarial loss is characterized
by three players

min max V (G, C, D)
G,C D

= E(x,y)~p(x,nllog D(x, y)]
+aE(x,y)~pe(x,y)[log(l — D(x, y))]
+ (1 = ) Ex,y)~p,(x.pllog(l = D(G(y,2), y))]
+ Ex,y)~p(x,y)[—10g pe(y]x)] 9)

where V (-) denotes the observed value. The training objective
is to maximize the probability of assigning the label to the
real data and fake data from the generator and classifier while
minimizing log(1—D(G(y, z), y)) and log(1—D(x, y)) for the
generator and classifier, respectively. a € (0, 1) is a constant
variable that controls the contribution of the generator and
classifier. In this paper, the generator and the classifier should
be balanced in hyperspectral image classification, so o = 0.5
is selected. As in (1), the three players converge if and only
if p(x,y) =apc(x,y)+ (1 —a)pg(x,y). That is, C and D
should converge to the real data distribution at the same time,
which cannot be guaranteed. Hence, an additional objective
function E(x y)~p(x,y)l—10g pc(y|x)] should be minimized to
ensure a unique optimal solution. It should be mentioned that
the validity of (9) is proven in [49]. Training samples in hyper-
spectral image classification are often insufficient. According
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Fig. 3. Structure of the Caps-TripleGAN framework for hyperspectral image
classification.

to the corollary proposed in [49], adding any divergence
between any two of the joint distributions or the conditional
distributions or the marginal distributions to the objective
function as an additional regularization to be minimized will
not change the global equilibrium of the objective function.
The discriminative loss from the generated data pair L, =
Ep,[—1log pc(y|x)] optimizes the C in supervised learning.
Therefore, the last term of (9) should be replaced by

Ep[—log pe(y|x)] + nE, [—log pe(ylx)]. (10)

Specifically, minimizing Lg with respect to C is equivalent
to the minimization of Kullback-Leibler (KL) divergence
between p,(x,y) and p(x,y), which cannot be computed
with the unknown likelihood ratio pg(x,y)/pc(x, y). Here,
w1 is the weight to control the contribution of the fake data
pair in the process of optimization of C.

Finally, the Caps-TripleGAN framework is designed,
in which TripleGAN is utilized to generate data pairs, which
are then added to CapsNet as the supplementary samples. With
the real and supplementary samples, classification results of
CapsNet are obtained. By combining the results of TripleGAN
and CapsNet, the final classification is achieved. The algorithm
flowchart is shown in Fig. 3.

Because of the small size of the training data, the existing
labeled data are used to train the three players named a clas-
sifier, a discriminator, and a generator. During the adversarial
training process, G is maturing to learn the real distribution,
and C can achieve the precise label. When the game is
converged or the training epochs achieve a certain number,
the output from the generator can be regarded as a reliable data
pair. CapsNet is then trained by the hybrid of the generated
data pairs and the real data pairs. When the training process is
finished in CapsNet, its output for an unlabeled sample is used
to compare with the label from C. When the results of the two
methods are consistent, the final output is fixed. Otherwise,
when these two results are different, the largest values of all
the categories are compared. Due to the squashing function
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TABLE I
PSEUDOCODE OF THE PROPOSED ALGORITHM

Algorithm Caps-TripleGAN framework applied to a small dataset

Input: HSI X € RP*ows*<ols = training data pairs T € {(x1,y1), (x2,¥2) .. (X, ¥)} X, € R | test data pairs S €

{(xlryl)’ (leyZ) (xs:ys)}:x‘n € Rle

Initialize: Discriminator D, generator G, classifier C and CapsNet.

for number of C, D and G training iterations do:

Obtain (x,y)~p.(x,y) by C on batch size m, using T and unlabeled samples.
Sample (x,y)~p,(x,¥) by G on batch size m, using given label values and latent variable z

Sample (x,y)~p(x,y) on batchsize my from T

Construct (xq,y4) with (6, y)~p.(x,y), (x,¥)~p,(x,y) and (x,y)~p(x,y) to train D. Assign (x.,y.) and (x,,)

with negative label, (x,y) with positive label.
Update D with gradient:
1

—a

Vpara) [— (Zpi 109D Y)) + 2= (Tt peaay 109 (1 = D, ) + = (Zeyyopy e o9 (1 = DCx, 3’)))]

mg

1
mg

Calculate the cost of C on (x,y)~p,(x,¥) and (x,y)~p(x,y) using equation (Al 0),

Update C with gradient:

a
VParag ;
(ey)~pc(xy)
Update G with gradient:
l1-a

VPara c
9

p.10)log(1 —D(x,y)) | + Ep,[=logp. (|0)] + UE, [=logp: (y1x)]

log(1 - D(x,y))

Cey)~pg(xy)

Generate (x,y)~py(x,y) by G on batch size m, using given label values and latent variable z

Endfor

Concatenate the (x, y)~pg (x,y) and (x,y)~p(x,y) as T,

for number of CapsNet training iterations do:

Extract the primary feature by conventional convolution operation and Construct capsule in;

Dynamic routine operation using equation (2) ~ (7)
Calculate the cost using equation (8) and reconstruct cost
Update all parameter of CapsNet

Endfor

Qutput: the final label is depended on the output whose certainty is higher between C and CapsNet.

being shrunk to 0-1, which is in accordance with the value
of the posterior probability from C, the final result can be
obtained. The pseudocode of the proposed Caps-TripleGAN
classification algorithm is described in Table I.

C. Spatial Feature Utilization

To verify the proposed Caps-TripleGAN framework, the
spectral-spatial information used in the previous step is turned
into a vector, as shown in Fig. 4. The new feature consists
of the original spectral vector and spatial feature. At first,
the hyperspectral image is reduced by the PCA, and then the
first three principal components are retained. For the reduced
image, patches of a fixed size centered on a certain pixel are
extracted as 1-D spatial vector. The spectral-spatial vector is
applied to the Caps-TripleGAN framework by concatenating
the original spectral vector with the 1-D spatial vector.

IV. EXPERIMENTS

In order to demonstrate the performance of the proposed
technique, three real hyperspectral images were utilized. Two
of these images are well-known standard hyperspectral image
data sets, i.e., the Indian Pines and Pavia University data sets,
which were captured by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) (website) and the Reflective Optics
System Imaging Spectrometer (ROSIS) (website), respectively.

Spectral
vector

Spatial
feature
+ L]

Fig. 4. Combination of spatial and spectral features.

These two data sets were evaluated by various approaches
because of the high dimensionality in the spectral domain
and the complex spatial structures. The other data set was
produced by an airborne HYSPEX hyperspectral camera.
A brief description of each data set is given in Section IV-A.
The overall accuracy (OA) and kappa coefficient (kappa) are
used to report the performance of all the methods on these
data sets.

A. Data Set Description

1) Indian Pines AVIRIS Data Set: The Indian Pines data
set was collected by the AVIRIS sensor over the northwest-
ern Indiana agricultural test site in June 1992. This data
set consists of 145 x 145 pixels with a spatial resolution
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Fig. 5. Pseudocolor composite image and the corresponding ground truth
for the Indian Pines AVIRIS data set.
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Fig. 6. Pseudocolor composite image and the corresponding ground truth
for the Pavia University ROSIS data set.

of 17 m/pixel. The number of spectral bands is 224, ranging
from 400 to 2500 nm, and 24 bands which were (near
1400 and 1900 nm) affected by the absorption of water vapor
were removed. The remaining 200 spectral channels were
used in our experiment. The available training samples cover
16 categories of interest. The pseudocolor composite image
and the labeled categories are shown in Fig. 5. On account of
its low spatial resolution and small structural size, the Indian
Pines data set presents mixed pixels, which cause this data set
to be considered a challenging data set for classification.

2) Pavia University ROSIS Data Set: The Pavia University
data set was acquired by the ROSIS sensor over the Engi-
neering School of the University of Pavia, Italy, in 2013. This
data set consists of 610 x 340 pixels with a spatial resolution
of 1.3 m/pixel. The number of spectral bands is 115, ranging
from 430 to 860 nm, and 12 noisy bands were removed
because of the absorption of water vapor. The remaining
103 spectral bands were used in the experiments. The data
set contains nine categories of interest. The pseudocolor com-
posite image and the labeled categories are shown in Fig. 6.
This data set is of a high spatial resolution, which brings great
difficulty to the classification.

3) Xuzhou HYSPEX Data Set: The Xuzhou data set was
collected by an airborne HYSPEX hyperspectral camera over
the Xuzhou periurban site in November 2014. This data set
consists of 500 x 260 pixels, with a very high spatial resolution
of 0.73 m/pixel. The number of spectral bands used in the
experiment was 436, after removing the noisy bands ranging
from 415 to 2508 nm. The scene is periurban and is character-
ized by nine categories, including crops, vegetation, man-made
structures, and coal fields. The pseudocolor composite image
and the labeled categories are shown in Fig. 7. The very high
spatial resolution and the complex mixed categories make this
data set a challenging data set for classification.
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Fig. 7. Pseudocolor images and the corresponding ground truth of the Xuzhou
HYSPEX data set.

B. Parameters of CapsNet

Due to the computation of all the capsules in the graphics
processing unit, the required storage is larger than for con-
ventional CNN, and the batch size is limited by the graphics
memory. Therefore, the batch size is set as 70 with shuffle
enabled. The Adam optimization algorithm was also chosen
as the optimizer [51]. The number of capsules in the category
layer is consistent with the number of categories, which
is predetermined explicitly by a specific classifier; hence,
the number of category capsules was set as 16, 9, and 9 for
the AVIRIS, ROSIS, and HYSPEX data sets, respectively.

The influence of different filter sizes is also studied, which
is linked to the size of the receptive field. Moreover, differ-
ent combinations of capsule number and vector length were
utilized to explore the optimal network settings. With regard
to the primary capsule number, we chose 24, 32, and 40 as
the value scope, but it should be noted this value is the
number of capsule groups rather than the total number of
primary capsules. The number of category capsules is one of
the crucial factors for the final output, so we chose 8, 16,
and 24 as the value scope, referring to the baseline given by
Sabour et al. [20]. The three different parameter combinations
were used to form 27 networks, and 81 experiments were
performed on the three data sets, as listed in Table II.

The receptive field of CapsNet, which denotes the range of
the original data that the neurons can “feel,” is determined
by the stride and filter size. From Table II, we can see that
the optimal size is different for the three data sets. The best
size is 1 x 5 for the ROSIS data set and 1 x 9 for the
AVIRIS and HYSPEX data sets. As for the AVIRIS data,
its categories have poor separability and the spectral range is
wider. Therefore, a greater receptive field should be considered
to increase the range of the features for HYSPEX. With a
smaller band range, the ROSIS data set would lose detailed
information when a large filter size is chosen, and the results
show that the OA declines sharply when the filter size is
set as 1 x 9 on the ROSIS data set. That is to say, the
optimal filter size is decided by the category separability
and spectral range. The ROSIS data set needs a smaller
receptive field size to extract more detailed features, while the
other two data sets need greater receptive fields to explore
a larger scope of spectral information. As aforementioned,
the number of capsules in the primary capsule layer equals
CH;, x N,, where the implementation of these capsules is to
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TABLE 11
DIFFERENT PARAMETERS FOR THE THREE HYPERSPECTRAL DATA SETS

Filter Primary Category AVIRIS Kappa ROSIS Kappa HYSPEXKappa
stze capsule vector OA coefficient OA coefficient OA coefficient
8 80.67 0.7835 89.79 0.8667 94.17 0.921

24 16 82.62 0.8022 91.69 0.8859 95.13 0.9367

24 81.91 0.7973 91.36 0.8833 94.74 0.9239

8 81.07 0.7729 88.3 0.8596 96.19 0.9333

1x3 32 16 81.2 0.7752 89.38 0.8644 94.65 0.9268
24 79.06 0.7639 87.53 0.842 93.52 0.9141

8 77.32 0.7448 84.38 0.8017 92.38 0.8916

40 16 80.04 0.7817 85.42 0.8203 94.23 0.9184

24 79.57 0.7763 86.24 0.8337 93.93 0.9047

8 85.89 0.8303 90.01 0.8831 94.5 0.9267

x5 24 16 87.14 0.8547 94.08(2) 0.9157 95.08 0.9302
24 86.25 0.8419 93.63 0.9089 95.88 0.9345

32 8 83.12 0.8026 92.38 0.8973 96.91 0.9278

16 85.45 0.8322 94.48(1) 0.9166 97.03 0.9402

24 85.32 0.8303 93.61 0.9059 97.31(3) 0.9536

8 81.77 0.7892 91.02 0.8835 93.85 0.9037

40 16 82.81 0.8017 90.88 0.8786 94.7 0.9192

24 80.26 0.773 91.2 0.8842 93.03 0.8956

8 86.55 0.8341 89.87 0.871 96.84 0.947

24 16 88.31(1) 0.8612 93.84(3) 0.9027 97.01 0.9548

24 87.72(3) 0.8469 92.61 0.8878 98.13(1) 0.9673

8 87.31 0.839 89.05 0.8535 95.59 0.9377

1x9 32 16 87.94(2) 0.8512 91.36 0.8726 97.96(2) 0.9665
24 86.23 0.8375 90.98 0.8639 97.08 0.9428

8 84.02 0.8164 85.36 0.824 94.22 0.9215

40 16 82.11 0.7903 87.11 0.8431 96.57 0.9433

24 80.8 0.7635 85.95 0.8333 95.13 0.9327

*The best results are shown in bold, where (1) represents the best result, (2) represents the second-best result, and (3) represents the third-best result.

define the number of output channels in the previous CH»
layer and then reconstruct the CHy x N> capsules. As shown
in Table II, the different CH, layers have a huge impact on
the final performance. The best dimension of CH, is 24 for
the AVIRIS and HYSPEX data sets and 32 for the ROSIS data
set. From all the results, the general trend is that the larger
the dimension of CHjy, the lower the classification accuracy.
When CH;, is set as 40, the results obtained with all three data
sets become worse in general.

In CapsNet, the dimension of the category capsule repre-
sents the contribution of all the extracted features toward the
final prediction. The output of the category layer should be
calculated by the squashing function (4), whose output denotes
the final classification result. The optimal dimension of cat-
egory capsule is more complicated. Most of the experiments
show that a low dimension cannot represent all the features
adequately, which is the same for an overlarge dimension. The
OA obtained by an 8-D category capsule and a 24-D category
capsule is lower than for the 16-D capsule in most cases.

Overall, the best parameters are 1 x 9, 24, and 16 for
the filter size, the number of primary capsule groups, and
the dimension of the category capsule, respectively, for the
AVIRIS data set, yielding the OA as 88.31% and the kappa
coefficient as 0.8612. For the ROSIS data set, the best parame-
ters are 1x9, 32, and 16, resulting in the OA as 94.48% and the
kappa coefficient as 0.9166. For the HYSPEX data set, the best
parameters are 1 x 9, 24, and 24, with the OA being 98.13%
and the kappa coefficient being 0.9673. Comparing the results

of all the experiments, the best parameters were determined as
32 and 16 for the number of primary capsule groups and the
dimension of the category capsule, respectively, for all three
data sets. The filter size was set as 1 x 9 for the AVIRIS and
HYSPEX data sets and 1 x 5 for the ROSIS data set. With
these settings, the OAs of the AVIRIS, ROSIS, and HYSPEX
data sets are 87.94%, 94.48%, and 97.96%, respectively.

C. Comparison With the State of the Art

To the best of our knowledge, none of the previous works
have introduced CapsNet into hyperspectral imagery classifi-
cation. Therefore, in this section, the results of CapsNet are
compared with the state of the art.

The architecture of CapsNet for the ROSIS data set was
realized as follows: the input size was set as 1 x 103, which
just included the spectral features; the stride of the first layer
was set as 1; the kernel size of the ReLU Conv layer and
primary capsule layer was set as 1 x 5; and the number of
channels was set as 64 and 32 x 8 for the first two layers,
respectively. In the primary capsule layer, the stride was set
as 2 and the number of capsules was set as 32 x 47, with each
capsule an 8-D vector. The number of capsules in the category
capsule layer was set to 9, and the length of each capsule was
set as 16. The architecture of CapsNet for the AVIRIS data set
was realized as follows: the input size was 1 x 200, which just
included the spectral features; the stride of the first layer was
set as 1; the kernel size of the ReLU Conv layer and primary
capsule layer was set as 1 x 9; and the number of channels
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Fig. 8. Results obtained by different approaches for the AVIRIS data set. (a)
SVM (linear). (b) SVM (RBF). (c) SDA. (d) DBN. (e) CNN. (f) CapsNet.

was set as 64 and 32 x 8 for the first two layers, respectively.
In the primary capsule layer, the stride was set as 2 and the
number of capsules was set as 32 x 92, with each capsule an
8-D vector. The number of capsules in the category capsule
layer was set as 16 and the length of each capsule was set
as 16. The architecture of CapsNet for the HYSPEX data set
was realized as follows: the input size was set as 1 x 436,
which just included the spectral features; the stride of the first
layer was set as 2; the kernel size of the ReLU Conv layer
and primary capsule layer was set as 1 x 9; and the number
of channels was set as 64 and 32 x 8 for the first two layers,
respectively. In the primary capsule layer, the stride was set
as 3 and the number of capsules was set as 32 x 68, with each
capsule an 8-D vector. The number of capsules in the category
capsule layer was set as 9 and the length of each capsule was
set as 16. The training data were randomly sampled as 10%
of all the labeled data.

The minibatch size for training was set as 80, the learning
rate was set to 0.01, and the downweighing factor (1) was
set to 0.5. The conventional classifiers, such as SVM, and
the mainstream deep learning algorithms of SDA, DBN, and
CNN were chosen as comparative methods. The SVM used a
Gaussian radial basis function (RBF) kernel or a linear kernel
function. SDA and DBN used two layers and CNN was based
on a 1-D convolution operation. The hyperparameters of each
network were chosen empirically.

Table IIT shows that Caps-TripleGAN and CapsNet obtain
the best and second-best result of 90.02% and 87.94%,
respectively, in the experiment with the AVIRIS data set.
Classification maps are shown in Fig. 8. The linear kernel
SVM generates the worst result. Each deep learning algorithm
offers a better performance than SVM with two different
kernel functions. The training time of the CapsNet is longer
than that of the CNN, which means that the CapsNet is more
computationally expensive. In this experiment, the training
process of Caps-TripleGAN is 18 min longer, which is caused
by the sequential training process on two parts, one is training
of TripleGAN and the other is CapsNet.

For the ROSIS data set, we can see that our pro-
posed Caps-TripleGAN can produce the best performance

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 9, SEPTEMBER 2019

TABLE III

OAS AND KAPPA COEFFICIENTS OBTAINED BY DIFFERENT
APPROACHES FOR THE AVIRIS DATA SET

Method OA Kappa Elapse_d time
coefticient (min)
SVM(linear) 76.49 0.7291 5
SVM(RBF) 78.64 0.7734 8.5
SDA 82.28 0.7833 6.5
DBN 80.11 0.7794 8
CNN 82.39 0.7985 9.5
CapsNet 87.94 0.8512 13
Caps-TripleGAN 90.02 0.8924 27.5

(@

Fig. 9. Results obtained by the different approaches for the ROSIS data set.
(a) SVM (linear). (b) SVM (RBF). (c) SDA. (d) DBN. (e) CNN. (f) CapsNet.

with 96.31% OA. CapsNet generates the second best result
of 94.48%, as shown in Table IV. Classification maps are
shown in Fig. 9. The experiments were, in fact, repeated ten
times over the randomly split training and test data. During
the ten experiments, the performance of DBN was similar to
and even surpassed CapsNet. That is, there is no significant
advantage for CapsNet in the ROSIS data set when compared
with DBN. Nevertheless, the performance of CapsNet is better
than that of CNN. The training time of Caps-TripleGAN is the
longest and the difference between Caps-TripleGAN and CNN
is more significant on AVIRIS data set which is caused by the
use of more training samples.

Table V shows that Caps-TripleGAN and CapsNet obtain
the best and second-best result of 98.42% and 97.96%, respec-
tively, on the HYSPEX data set. All the methods achieve
results above 90% and generate similar classification maps in
Fig. 10. This is due to more spectral information in this data
set. With the rich spectral characteristics, CapsNet is more
effective at excavating efficient features for classification and
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TABLE IV

OAS AND KAPPA COEFFICIENTS OBTAINED BY DIFFERENT
APPROACHES FOR THE ROSIS DATA SET

Method OA Kappa Elapse_d time
coefticient (min)
SVM (linear) 90.89 0.8776 7.5
SVM (RBF) 94.24 0.9233 12
SDA 92.27 0.9014 11.5
DBNs 94.38 0.9256 14
CNN 93.29 0.9062 13.5
CapsNet 94.48 0.9166 22
Caps-TripleGAN 96.31 0.9511 38
TABLE V

OAS AND KAPPA COEFFICIENTS OF DIFFERENT
APPROACHES FOR THE HYSPEX DATA SET

Method OA Kappa Elapsefi time
coefficient (min)
SVM (linear) 95.97 0.9412 12.5
SVM (RBF) 97.01 0.9584 19
SDA 96.51 0.9468 18.5
DBN 97.37 0.9620 21.5
CNN 96.68 0.9579 26
CapsNet 97.96 0.9665 42
Caps-TripleGAN 98.42 0.9799 79

Fig. 10. Results of different approaches for the HYSPEX data set. (a) SVM
(linear). (b) SVM (RBF). (c) SDA. (d) DBN. (e) CNN. (f) CapsNet.

Caps-TripleGAN is more faithful in predicting the category
labels. The training time of Caps-TripleGAN is three times
longer than CNN, and the difference between these two
algorithms is the largest on this data set due to the large
training set and high spectral dimension.
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Fig. 11. Results of Caps-TripleGAN for the AVIRIS data set. (a) Triple-
GAN 1%. (b) TripleGAN 1% + CapsNet. (c) TripleGAN 5%. (d) Triple-
GAN 5% + CapsNet. (e) TripleGAN 10%. (f) TripleGAN 10% + CapsNet.

TABLE VI

OASs AND KAPPA COEFFICIENTS OBTAINED BY CAPS-TRIPLEGAN
FOR THE AVIRIS DATA SET

Method OA Kappa

Triple GAN 1% 44.41 0.3943
Triple GAN 1%+CapsNet 32.20 0.3072
Triple GAN 5% 77.87 0.7319
Triple GAN 5%+CapsNet 75.46 0.7032
Triple GAN 10% 86.94 0.8440
Triple GAN 10%+CapsNet 90.02 0.8924

D. Training on a Small Number of Labeled Samples
With Caps-TripleGAN

To explore the impact of training size, three experiments
were designed with 1%, 5%, and 10% of labeled samples.
At the beginning, TripleGAN was trained with the true training
data. When the game was converged or the training epochs
approached to a certain number, the output from the generator
was regarded as a reliable data pair (x, y). CapsNet was then
trained by the hybrid of the generated and real data pairs.
We have found that the labeled samples were not sufficient
in our experiments, so fake labels were generated through the
classifier for the unlabeled samples, and assigned these data
pairs a positive label when training the D of TripleGAN. That
is to say, the positive data pairs were a hybrid of the real
data pairs (x,, y,) and the assigned data pairs by the classifier
(Xc» Ye)-

For the AVIRIS data set, Fig. 11 and Table VI show that
both CapsNet and TripleGAN provide the worst performance
on 1% training data, for which the OAs are 44% and 32%,
respectively. Except with 1% and 5% training data, Caps-
TripleGAN shows a better performance than just using Triple-
GAN. Caps-TripleGAN with 10% training samples for the
AVIRIS data set generates the best performance. The perfor-
mance of CapsNet depends on the reliability of the generator
in TripleGAN. When training on 1% labeled samples, some
categories have inadequate labeled data, which causes poor
training of TripleGAN and poor usability of the generated data.

For the ROSIS data set, the results in Fig. 12 and Table VII
show that, as with the AVIRIS data and 1% training samples,
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Fig. 12. Results of Caps-TripleGAN for the ROSIS data set. (a) Triple-
GAN 1%. (b) TripleGAN 1% + CapsNet. (c) TripleGAN 5%. (d) Triple-
GAN 5% + CapsNet. (e) TripleGAN 10%. (f) TripleGAN 10% + CapsNet.

TABLE VII

OAS AND KAPPA COEFFICIENTS OBTAINED BY CAPS-TRIPLEGAN
FOR THE ROSIS DATA SET

Method OA Kappa

Triple GAN 1% 83.36 0.7539

Triple GAN 1%+CapsNet 83.11 0.7163
Triple GAN 5% 90.33 0.8781

Triple GAN 5%+CapsNet 93.58 0.9047
Triple GAN 10% 94.02 0.9108

Triple GAN 10%+CapsNet 96.31 0.9511

TripleGAN obtains a better performance than Caps-

TripleGAN. As shown by the black ellipse in Fig. 11,
the pixels are not well recognized by TripleGAN (caused by
the unbalance of samples between the painted metal sheet
and gravel), so the pixels in the black ellipse are wrongly
classified on both 5% and 10% training samples; however,
this is improved when CapsNet takes part in the classifica-
tion. In other words, TripleGAN provides sufficient training
samples for the capsule training, and CapsNet, in turn, assists
TripleGAN.

In the HYSPEX experiment, Fig. 13 and Table VIII show
that Caps-TripleGAN offers a better performance than just
TripleGAN on 1%, 5%, and 10% training data. The best OA of
98.42% is obtained by Caps-TripleGAN on 10% training data.
It is demonstrated that a fully trained TripleGAN can generate
reliable labeled samples to assist the training of CapsNet as
in other experiments.

E. Comparison With HSI-GANs and HSI-CapsuleNet

In Table I, the proposed Caps-TripleGAN is compared with
HS-GAN; [45], HS-GAN; [43], HS-GAN3 [46], CapsuleNet-
HS [22], InfoGAN [32], ACGAN [33], CatGAN [35],

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 57, NO. 9, SEPTEMBER 2019

@ @©

Fig. 13. Results of Caps-TripleGAN for the HYSPEX data set. (a) Triple-
GAN 1%. (b) TripleGAN 1% + CapsNet. (c) TripleGAN 5%. (d) Triple-
GAN 5% + CapsNet. (e) TripleGAN 10%. (f) TripleGAN 10% + CapsNet.

TABLE VIII

OAS AND KAPPA COEFFICIENTS OBTAINED BY CAPS-TRIPLEGAN
FOR THE HYSPEX DATA SET

Method OA Kappa

Triple GAN 1% 90.15 0.8761

Triple GAN1%+CapsNet 91.57 0.8925
Triple GAN 5% 92.80 0.9085

Triple GAN5%+CapsNet 94.61 0.9369
Triple GAN 10% 97.17 0.9640
Triple GAN 10%+CapsNet 98.42 0.9799

TSVM [24], Graph-based SSL [25], and cotraining [26].
TSVM, Graph-Based, and cotraining used in the experiments
are implemented with the scikit-learn package. The other
algorithms come with the pytorch platform. Cotraining we
utilized is based on single view and multiclassifier. The two
classifiers, SVM and KNN, have been employed to construct
the cotraining algorithm. HS-GAN;, HS-GAN;, HS-GAN3,
and CapsuleNet-HS are carried out using the experimental
parameters from references. Due to the lack of real application
of ACGAN, InfoGAN, and ACGAN on hyperspectral imagery,
the detailed parameters are implemented as the same as the
TripleGAN. As shown in Table IX, the InfoGAN shows the
worst performance on the three hyperspectral images among
these GAN frameworks. CatGAN is better than InfoGAN
and ACGAN on AVIRIS and ROSIS data sets. The OAs of
TSVM are lower than that of other conventional algorithms
on three hyperspectral images. Cotraining provides the best
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TABLE IX
OASs AND KAPPA COEFFICIENTS FROM HSI-GANS AND HSI-CAPSULENET ON THE THREE HYPERSPECTRAL DATA SETS

Algorithm AVIRIS ROSIS HYSPEX

OA Kappa OA Kappa OA Kappa
InfoGAN 72.06 0.7313 89.92 0.8603 93.58 0.8983
CatGAN 77.27 0.7368 91.93 0.88 95.73 0.9247
ACGAN 73.95 0.712 90.57 0.8674 95.81 0.9337
HS-GAN; 74.51 0.7003 92.33 0.9069 97.22 0.9428
HS-GAN, 82.49 0.7932 92.47 0.892 96.34 0.938
HS-GAN; 89.21 0.8731 96.08 0.9433 97.63 95.22
CapsuleNet-HS 83.47 80.15 95.79 0.9147 97.94 0.9618
Caps-Triple 90.02 0.8924 96.31 0.9511 98.42 0.9799
TSVM 76.55 0.736 91.62 0.9098 94.7 0.9244
Graph-based SSL 81.23 0.7936 93.58 0.9083 94.85 0.9142
Co-training 88.16 0.86 95.83 0.9283 98.16 0.9556

*The best results are shown in bold
TABLE X

(® (h) ®
Results of Caps-TripleGAN with different window sizes. (a) 3 x
3_AVIRIS. (b) 5 x 5_AVIRIS. (c) 9 x 9_AVIRIS. (d) 3 x 3_ROSIS. (e) 5 x
5_ROSIS. (f) 9 x 9_ROSIS. (g) 3 x 3_HYSPEX. (h) 5 x 5_HYSPEX.
(1) 9 x 9_HYSPEX.

Fig. 14.

performance on conventional SSL algorithms, which is lower
than Caps-TripleGAN. The Caps-TripleGAN is slightly supe-
rior to the cotraining model. In comparison with the recently
proposed classifiers, HS-GANj3 obtains the secondary higher
accuracy on AVIRIS and ROSIS data sets which is lower than
Caps-TripleGAN by less than 1%. HS-GAN3 is improved by
introducing the neighborhood majority voting. After spectral

OAS AND KAPPA COEFFICIENTS FROM CAPS-TRIPLEGAN
WITH DIFFERENT WINDOW SIZES

Method OA Kappa
AVIRIS no spatial 90.02 0.8924
AVIRIS 3x 3 91.35 0.9031
AVIRIS 5% 5 92.34 0.9140
AVIRIS 9% 9 90.02 0.8861
ROSIS no spatial 96.31 0.9511
ROSIS 3% 3 96.50 0.9537
ROSIS 5x5 96.17 0.9490
ROSIS 9% 9 96.55 0.9542
HYSPEX no spatial 98.42 0.9799
HYSPEX 3x3 98.71 0.9836
HYSPEX 5x 5 98.97 0.9869
HYSPEX 9x 9 99.02 0.9876

classification, the majority voting strategy is carried out to
improve classification accuracy by using spatial features. How-
ever, the combination of CapsuleNet and TripleGAN is more
helpful with performance improvement.

F. Exploring Spatial Information With Caps-TripleGAN.

In this experiment, we explored the use of spatial infor-
mation in the Caps-TripleGAN framework. The first three
principal components of the PCA-analyzed images were uti-
lized to extract the spatial information. Three different window
sizes were used to concatenate with the spectral characteristics:
3x3,5x5,and 9 x 9. We also note that only 10% of the
labeled samples were used in this experiment.

As shown in Fig. 14 and Table X, accuracies are improved
by spatial feature utilization for all the three data sets, and the
size of the neighborhood has a great influence. The ideal size
for the AVIRIS data set is 5 x 5, for which the OA is 92.34%.
When the size continues to increase up to 9 x 9, the OA is
similar to the result without spatial features, but the kappa
coefficient is lower. From Fig. 13(a)—(c), the area of blue
shows that the salt-and-pepper noise is the minimum at 5 x 5,
and the areas marked with the red ellipse show that the best
size is 9 x 9. That is to say, the optimal window size depends
on the size of ground objects. For the ROSIS data results,
the improvement is not significant when the size is 5 x 5, and
the OA is lower than with no spatial utilization. The best OA
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of 96.55% and kappa coefficient of 0.9542 are obtained when
the size equals 9 x 9. The results for the HYSPEX data set
show that the best size is 9 x 9, yielding an OA of 99.02%
and a kappa coefficient of 0.9876. Furthermore, we can see
that the spatial features can be learned by the Caps-TripleGAN
framework, and the optimal window size is independent of the
spatial resolution.

V. CONCLUSION

In this paper, an innovative network named CapsNet was
proposed, which take features’ locations and directions into
account in feature extraction. CapsNet was modified to
adapt to hyperspectral image classification. From the results
for the three standard hyperspectral data sets, we have
shown that CapsNet can outperform other methods. Triple-
GAN was adopted to boost the performance of CapsNet
on small numbers of training samples, and a framework
named Caps-TripleGAN, combining TripleGAN and CapsNet,
was proposed for hyperspectral image classification with a
1-D CNN. The results showed that the reliable generator
in TripleGAN can improve the performance of CapsNet.
Moreover, spatial information is used in the Caps-TripleGAN
framework and the results showed that spatial features can
be learned by the generator and can further improve the
classification performance. There are two limitations of Caps-
TripleGAN as follows.

1) Spatial-spectral features should be imported integrally
in the end-to-end model not using handcrafted features.
Its performance will be improved if considering spatial—
spectral features simultaneously rather than concatenat-
ing the handcrafted spatial and spectral features.

2) The sequential training model of Caps-TripleGAN is
inefficient and the thread waiting wastes computing
resources.

In our future work, more experiments will be conducted
by using spatial-spectral data block, and the spatial-spectral
network architecture will be explored on the generator. The
distributed training process with GPU will also be utilized
for Caps-TripleGAN to improve its efficiency. In addition,
more effective sample selection strategy will be investigated
to increase the reliability of the created samples.
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