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A B S T R A C T

Hyperspectral imaging, with the hundreds of bands and high spectral resolution, offers a promising approach for
estimation of heavy metal concentration in agricultural soils. Using airborne imagery over a large-scale area for
fast retrieval is of great importance for environmental monitoring and further decision support. However, few
studies have focused on the estimation of soil heavy metal concentration by airborne hyperspectral imaging. In
this study, we utilized the airborne hyperspectral data in LiuXin Mine of China obtained from HySpex VNIR-
1600 and HySpex SWIR-384 sensor to establish the spectral-analysis-based model for retrieval of heavy metals
concentration. Firstly, sixty soil samples were collected in situ, and their heavy metal concentrations (Cr, Cu, Pb)
were determined by inductively coupled plasma-mass spectrometry analysis. Due to mixed pixels widespread in
airborne hyperspectral images, spectral unmixing was conducted to obtain purer spectra of the soil and to
improve the estimation accuracy. Ten of estimated models, including four different random forest models
(RF)—standard random forest (SRF), regularized random forest (RRF), guided random forest (GRF), and guided
regularized random forest (GRRF)—were introduced for hyperspectral estimated model in this paper. Compared
with the estimation results, the best accuracy for Cr, Cu, and Pb is obtained by RF. It shows that RF can predict
the three heavy metals better than other models in this area. For Cr, Cu, Pb, the best model of RF yields Rp
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values of 0.75,0.68 and 0.74 respectively, and the values of RMSEp are 5.62, 8.24, and 2.81 (mg/kg), respec-
tively. The experiments show the average estimated values are close to the truth condition and the high esti-
mated values concentrated near several industries, valifating the effectiveness of the presented method.

1. Introduction

With the rapid development of industry and economy, soil heavy
metal pollution has become an increasingly serious problem. The study
of soil heavy metal pollution is of great importance to the biological
world, human health, and the sustainable development of social re-
sources (Wang et al., 2017). The traditional method for obtaining the
soil heavy metal contamination is mainly implemented laboratory
chemical analyses which is expensive and time-consuming. Moreover,
the reagents of chemical analyses are harmful to environment and
generated the re-contamination (Shi et al., 2016). The emergence of
hyperspectral remote sensing technology has made the rapid mon-
itoring of soil heavy metal pollution in large areas a reality (Choe et al.,
2008; Pascucci et al., 2012; Shi et al., 2014). Using hyperspectral

images of visible and infrared bands can allow us to retrieve the heavy
metal concentration of soil (Bonifazi et al., 2018). Different from most
soil metal concentration estimation conducted in lab environment, this
research focuses on estimating the distribution trend using airborne
images of large-scale areas. Using airborne remote sensing images is
much more challenging than using in situ sample measurements, and
we have to deal with mixed pixels due to relatively rough spatial re-
solution.

Feature selection is also required for hyperspectral data (Guyon and
Elisseeff, 2003; Phuong et al., 2006), in order to simplify the model,
shorten the running time, and improve the generalization of the model.
There are three types of feature-variable selection methods: filter,
wrapper, and embedding methods (Tuia et al., 2010). The filter
methods use variable ranking techniques as the principle criterion for
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variable selection. Unlike the filter methods, the wrapper methods take
into account the correlation between variables (Kim et al., 2006). Re-
cursive feature elimination (RFE) is a typical example of encapsulation.
RFE is a backward feature-variable selection strategy that selects fea-
tures by recursively considering smaller sets of features (Kowalski,
2009). The embedding methods incorporate feature selection as part of
the training process. There are many feature selection algorithms that
can be embedded in the model, including sparse regression regular-
ization techniques (Kim and Kwon, 2010; Tibshirani, 2011; Zou and
Hastie, 2005), the least absolute shrinkage and selection operator
(LASSO) (Deng and Runger, 2013), ridge regression, elastic net (EN)
(Ho, 1995), regularized trees (Breiman, 2001), and so on.

Prediction using a single decision tree results in a lower accuracy of
retrieval. A random forest integrated approach can be a solution to this
limitation. In the 1990s, the concept of random forest was proposed by
Ho (Adam et al., 2014), and the model was extended by Breiman
(Vincenzi et al., 2011) in 2001. To date, the study of random forest
models in hyperspectral-based information retrieval has mainly focused
on biomass estimation (Abdel-Rahman et al., 2013; Svetnik et al., 2004)
and the estimation of physical and chemical properties of vegetation
(Shi et al., 2017). Svetnik et al. (Qiu et al., 2016) used a random forest
model to quantitatively describe the molecular structure of compounds
to predict their biological activity, and the results obtained with six
public data sets showed that the random forest model is superior to
other three methods (i.e., decision tree, partial least squares (PLS),
SVM), in the absence of parameter optimization. Abdel-Rahman et al.
(Shi et al., 2017) used cross-validation to optimize the parameters of a
random forest model and successfully estimated the leaf nitrogen con-
centration of sugarcane in EO-1 Hyperion hyperspectral data. Abdel-
Rahman et al. (2013) successfully estimated the biomass of a wetland
using backward feature removal and random forest. Random forest is
also used to predict Cd (Huang et al., 2009) in soil and to identify and
apportion heavy metal pollution sources in agricultural soils on a local
scale (Peterson and Stow, 2003). Wang et al. (2015) compared the
performance of several ensemble learning methods including RF to
estimate the heavy metal content of agricultural soil, but the number of
variables used to build the model was very small, and data processing
could not reflect the advantages of the RF. Hong et al. (Sun and Xia,
2017) used RF to establish the relationship between spectral data and
two heavy metals (Pb and Zn).

Despite the excellent performance of the random forest models, the
presence of mixed pixels in airborne hyperspectral images still limits
the retrieval accuracy. Spectral unmixing as a spectrum processing
technology is widely used in natural resource monitoring (Sun and Xia,
2017) and environmental monitoring (Smith et al., 2007; Li et al.,
2015). However, spectral unmixing is often a supervised approach with
known endmembers. In this research, we adopt the minimum volume
simplex analysis (MVSA) algorithm proposed by Li et al. (Ye et al.,
2019), which is a fast unsupervised linear unmixing method suitable to
airborne hyperspectral data.

The use of airborne hyperspectral data, improved by geometric
correction and radiation correction, unmixed by the MVSA method, and
estimated the distribution trend of heavy metal concentration by the RF
method, can provide the information needed for management and re-
mediation of heavy metal contamination in agriculture soils.
Remediation can be achieved through the use of biological remediation.
Ye et al. (2017) used incorporation of biochar as raw material into co-
composting with agricultural organic matter, and found the con-
centrations of available metals and arsenic in soil with great reduction
in the treatment of biochar-blended composting. Several biological re-
mediation methods were summarized for the remediation of co-con-
taminated soil with heavy metals and organic pollutants by Ye et al.
(Ren and Huo, 2010). After obtaining the distribution trend of soil
heavy metal, we can use these methods to remedy heavy metal in
agriculture soils.

Illustrated in Fig. 1, the rest of this article is structured as follows. In

Section 2, we introduce the image acquisition and processing (i.e.,
geometric correction, radiation correction), collection of soil samples
and their heavy metal concentration measurement. This section also
details the modeling methods and the MVSA spectral unmixing method.
In Section 3, we provide the results of heavy metal distribution esti-
mation from the images. Section 4 provides a summary and discussion.

2. Data and methods

2.1. Study area

The study area is located in the Liuxin coal mining area (117°13′ E,
34°37′ N), in the northwest of Xuzhou, Jiangsu province, China (Fig. 2).
Brown soil, cinnamon soil, and alluvial soil are the common soil types
in this study area. Almost 79% of China’s electricity comes from coal-
fired power plants, and Xuzhou is the main base of the power source for
Jiangsu province. There is a common phenomenon in the area of land
subsidence caused by the coal mining. The mining subsidence area has
been reclaimed by two different methods—filling with gangue and
filling with fly ash—and is currently being used for agricultural pur-
poses. Both these fillers contain a large volume of heavy metals. Due to
the impact on water cycle and wind action, the open dumps of mining
waste material in the mining areas are rapidly weathering and diffusing
to the surrounding areas, resulting in the contamination of crops and a
negative effect on human health.

Xuzhou Jielong Packaging Paper Co., Ltd. (Fig. 3c1) is located in
Sunzhuang, Liuxin Town, Tongshan County, Xuzhou City. The company
was founded in 2009 and mainly produced cardboard and cartons. The
printing process of cartons can lead to heavy metal pollution. Various
chemical liquid, such as corrosive liquid and electroplating liquid, are
used in the process of printing plate making. The liquid contains cad-
mium, copper, nickel, zinc, acid and other substances. If the liquid is
discharged to rivers and lakes without effective treatment, it causes
water and soil pollution. Heavy metals such as lead, chromium, cad-
mium and mercury in the printing process also pollute the environment
(Ye et al., 2017). Liuxin Industrial Park (Fig. 3c2) has Xuzhou Jinguan
Industrial Textile Products Co., Ltd. founded in 2007, Xuzhou Pengjia
Packaging Co., Ltd. founded in 2001, and Xuzhou Laique Biotechnology
Co., Ltd. founded in 2016. These companies mainly produce textiles,
cartons, food packaging bags. The major heavy metals produced in the
textile process are mercury, cadmium, copper, etc.

Xuzhou Gucheng Copper Industry Co., Ltd. (Fig. 3c3) was founded
in 2000. It manufactures copper rods, copper wires, cables and wires. A
large amount of pollutants including acid, Zn2+, Cu2+, Pb2+, Cd2+,
Ni2+, As3+, and Co2+ are discharged during the copper smelting pro-
cess (Ren and Huo, 2010). Xuzhou Tonghe Glass Product Factory
(Fig. 3c4) was established in 2002 to produce various glass bottles.
Abandoned coal mine are shown in Fig. 3c5. Solid wastes, such as coal
gangue and coal slime, are produced in the process of coal mining and
processing. The coal dust produced during the transportation process
increased the concentration of particulates and the particles eventually
precipitated on the surface of the soil. After long-term weathering and
leaching, solid waste and particulate matter can cause heavy metals
(Cd, Cu, Ni, Zn, Cr, Pb, Hg, As) pollution in soil and groundwater en-
vironment. The metal particulates emitted from iron and steel forging
factory (Fig. 3c6) may contain heavy metals (zinc, cadmium, lead,
nickel and chromium), depending on the grade of steel produced and
the raw materials used.

Shitun coal mine (Fig. 3c7) was mined in 1992 and its mine pro-
duction capacity was 180 thousand tons/year. Shitun Brick and Tile
Factory (Fig. 3c8) was established in 1991. Clay, shale and coal gangue
are generally used as raw materials when firing bricks and tiles. Coal
gangue is mostly transported from the nearby Shitun Coal Mine, and its
long-term accumulation causes pollution to the soil.
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2.2. Image acquisition and preprocessing

The airborne hyperspectral data were obtained by NEO imaging
spectrometers produced in Norway. The HySpex VNIR-1600 and
HySpex SWIR-384 hyperspectral cameras obtain visible and near-in-
frared (VNIR) data and short-wave infrared (SWIR) data, respectively.
The main parameters of hyperspectral data are presented in Table 1.

It was necessary to perform geometric correction and radiation
correction on the original images. The geometric correction involved
spatial coordinate system conversion. The Hyspex VNIR-1600 data was
resampled to the same spatial resolution (0.73m) as the Hyspex SWIR-
384 data. The two images have done the geometric correction using
ground control points, and the RMSE is 0.54m. The new image with
spectral range of 400–2500 nm is generated after image registration and
stitching. The geometric correction images are shown in Fig. 4.

The radiation correction consisted of system radiation correction
and atmospheric radiation correction. HySpex RAD radiation calibra-
tion software was used, which is included in the HySpex imaging
spectrometer system for system radiation correction. Converting a unit
of data to a unit of radiance value through the radiation correction, the
unit is ∙ ∙mW/nm sr 2.In order to further eliminate the influence of

atmospheric conditions, the radiance value was converted into real
ground reflectance. The atmospheric correction model used was the
MODerate resolution atmospheric TRANsmission (MODTRAN) atmo-
spheric correction model. Setting different elevations in MODTRAN,
can eliminate the influence of terrain and elevation. The spectral sig-
natures of soil samples after atmospheric correction are presented in
Fig. 5.

2.3. Sample acquisition

The time for collecting soil samples was November 8, 2014.We had
investigated this study area before soil sampling. It was divided into the
different sampling units based on the soil characteristics and the to-
pographic maps of the sampling area. "S"-shaped sampling strategy was
adopted in farmland, which could effectively avoid sampling errors
caused by tillage and fertilization. Topsoil was the main distribution
layer of the wheat roots, and was also the farming layer of agricultural
production. Meanwhile, soil pollutants were mainly concentrated on
the surface layer because these industries discharge the contaminant on
the surface. Airborne hyperspectral imaging could only obtain the
spectrum of topsoil. Therefore, about one kilogram topsoil was

Fig. 1. The framework of soil heavy metal concentration estimation using airborne hyperspectral imagery.
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collected at a depth of 0–20 cm surface.
The visible and near-infrared spectra of the soil samples under field

conditions were measured with an ASD (Analytical Spectral Devices)
field spectrometer (350–2500 nm) while collecting soil samples.

A total of 60 soil samples were collected according to the grid
sampling method. The soil samples were sealed, marked, and brought
back to the laboratory. In the laboratory, some sundries in the soil
samples, such as stones, leaves, and roots, were removed. The soil
samples were dried and ground and passed through a 120-mesh nylon
sieve.

After drying, grinding and passing, soil samples were added to pre-
cleaned digestion flask. A solution of HNO3 and HCl with a ratio of 1:1
was poured into the samples. Then the soil samples were heated using
an oven. The samples were removed from the oven and left to cool
down to room temperature. After cooling down, the samples were di-
luted using pure deionized water and were placed on the hot plate until
evaporated near to a dry state. The samples were then left to cool down
and diluted using deionized water. At last, after filtering, the heavy
metal concentrations of the soil samples were measured by inductively
coupled plasma-mass spectrometry (ICP-MS).

From the preliminary analysis, Cr, Cu, and Pb were used in the
experiments. Table 2 shows the max, min, mean, standard deviation
(Std.), and coefficient of variation (CV) of the heavy metal concentra-
tions. It can be seen that the coefficient of variation of Cr and Pb is
about 0.2, which indicates that the data distribution is concentrated
and suitable to statistical analysis. The CV of Cu is slightly larger than
that of Cr and Pb, indicating the concentration of Cu is more dispersed
than that of the other two metals.

Sixty soil samples were ranked from low to high values according to
the heavy metal concentration in the soil. The sixty ranked soil samples
were divided into 20 groups, and then two samples in each group were
selected as training samples and one was used as the verification
sample. It is better to balance the standard deviation and coefficient of
variation for both data sets.

2.4. Hyperspectral feature selection using random forest

Feature selection can reduce the computation time, improve the
prediction performance, and gain a better understanding of the data in
machine learning or pattern recognition applications. The PLS algo-
rithm performs multiple linear regression, while principal component
analysis (PCA) and canonical correlation analysis (CCA) use statistical
frameworks. The embedding method is also widely used, such as RFE-
SVM, the regularization methods (LASSO, Ridge, EN, Ridge_c), and the
random forest methods (i.e., standard random forest (SRF), regularized
random forest (RRF), guided random forest (GRF), guided regularized
random forest (GRRF). The main idea is to incorporate the variable
selection as part of the training process. The regularization methods
involve adding additional constraints or penalties to the existing model
(loss function) to prevent over-fitting and improve the generalization
ability. LASSO and Ridge use the L1 norm and L2 norm as penalty
terms, respectively. LASSO is a good variable selection method due to
the L1 regularization making the learned model very sparse. Ridge is
appropriate for the understanding of the data because the corre-
sponding coefficient is often non-zero. In order to simplify the combi-
nation of variables in ridge regression, the Ridge_c method based on the
importance of the variables of ridge regression was proposed. EN
combines the two normalization methods of the L1 norm and L2 norm.

A variety of effective variable selection strategies based on random
forest have been presented. In this study, we constrain the information
gain and the importance scores of the variables. RRF applies the reg-
ularized information gain and GRF applies the importance score to
guide the random forest. GRRF applies the two strategies to make the
selected variables more relevant and less redundant.

2.4.1. Standard random forest
The SRF regression algorithm is a bagging method based on classi-

fication and regression tree (CART) analysis. It employs recursive par-
titioning to divide the data into many homogenous subsets called

Fig. 2. Map showing the study area (c) at Xuzhou (b), Jiangsu Province, China (a). The area around the image includes several factories and coal mines. The
following is an analysis of how industrial activities affect the heavy metals in agricultural soil.
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regression trees (ntree), and then averages the results of all the trees.
Each tree is independently grown to its maximum size based on a
bootstrap sample from the training data set (approximately 70%),
without any pruning (that is, without stopping the selection of the input
variables at each node). In each tree, the SRF randomly selects a subset
of variables (mtry) to determine the split at each node. The Gini coef-
ficient Gini v( ) at node v can be computed as

∑= −
=

Gini v p p( ) ˆ (1 ˆ )
j

p

c
v

c
v

1 (1)

where p̂c
v is the observed value of the jth variable at node v. The Xi Gini

information gain at split node v, i.e., Gain X v( , )i , is the impurity dif-
ference between node v and the child node of node v, which is updated
as:

= − −Gain X v Gini X v w Gini X v w Gini X v( , ) ( , ) ( , ) ( , )i i L i
L

R i
R (2)

where vL and vR are the left and right subnodes at node v, respectively,
and wL and wR are the ratio of the characteristic variables to the left and
right subnodes, respectively. At each node, the mtry( ≈mtry p )vari-
ables are randomly selected in the p variables, and the characteristic
variables of the maximum information gain are finally obtained for the
splitting of node v. The importance of the variable Xi is calculated as:

∑=
∈

imp
ntree

Gain X v1 ( , )i
v S i

i
X (3)

where SXi is a collection of nodes that are split into Xi in a random forest
of ntree trees. The importance score is used to evaluate the contribution
of the characteristic variables for the prediction.

The random forest process simply includes four steps: 1) the original
sample bootstrap sampling; 2) random selection of the mtry char-
acteristics to establish the decision tree; 3) repeat the above two steps
ntree times, that is, the formation of ntree decision trees making up the
random forest; 4) for the new data, the predicted average of all the

Fig. 3. A schematic diagram of the influence factors near the image. b1, b2, b3 and b4 are the four regions in the image and their surrounding areas. The black border
indicates the location of the image in this area. The red border indicates the factory and the coal mine. c1, c2, c3, c4, c5, c6, c7 and c8 are photos taken on the spot
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).

Table 1
Main parameters of Hyspex VNIR-1600 and Hyspex SWIR-384 data.

Parameters Hyspex VNIR-1600 data Hyspex SWIR-384 data

Data of acquisition 2014-11-08 2014-11-08
Spectral range 400–1000 nm 1000–2500 nm
Channels 160 288
Spectral bandwidth 3.6nm 5.4nm
Spectral sampling interval 3.7nm 5.45 nm
Flight altitude 1km 1km
Ground sampling distance 0.19m 0.73m
Peak SNR > 200 > 1100
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decision trees is predicted. The principle of node splitting is used to
minimize the prediction error.

2.4.2. Regularized random forest
The features extracted from the decision tree model may be

redundant, and the regularization tree method can solve this problem
well. When the information gain of the next set of variable subsets is not
very different from the previous set, the regularization tree does not
repeatedly select new features to avoid feature redundancy. Each node
recursively performs feature-variable splitting. Random forest uses the
regularization strategy for the tree to form a regularized random forest
(RRF), thus selecting a subset of the characteristic of the compression.
The main difference from the original random forest is the application
of regularized information gains as:

= ⎧
⎨⎩

∉
∈

⎫
⎬⎭

Gain X v
λGain X v i F
Gain X v i F

( , )
( , )

( , )R i
i

i (4)

where F is a set of feature indices for the splitting of the previous node,
which is an empty set at the root node of the first tree. It not only
suppresses the feature subset of the current tree splitting, but also
suppresses the previously established tree. ∈λ (0,1] is the penalty
coefficient; when ∉i F , the coefficient is used to divide the ith feature
of node v. The smaller the value of λ, the greater the penalty. The RRF
uses the regularized information gain Gain X v( , )R i at each node, adding
the index of the new variable to the set F when the feature variable adds
enough predictive information for the existing variable. The difference
between RRF and SRF is that RRF usesGain X v( , )R i to select the splitting
feature. We calculate all the variables in Gain X v( , )R i that belong to F
and do not belong to the mtry variable in F. All the variables must in-
crease the gain after the penalty to enter the set.

2.4.3. Guided random forest
Guided random forest (GRF) is a variable selection method based on

random forest. It involves the use of the importance score in random
forest to guide the random forest. Gain X( )i represents the Gini in-
formation gain for the feature Xi to be split at the tree node. The central
idea of GRF is to weight Gain X( )i using the importance score in RF:

=Gain X λ Gain X( ) ( )G i i i (5)

where λi is calculated as:

= − +λ γ γ
imp
imp

1
*i
i

(6)

Here, impi is the importance score of variable Xi in the random forest,
imp* is the maximum importance score, imp

imp
i
* is the normalized im-

portance score, and ∈γ [0,1] controls the weight of the importance
score in the SRF. It can be seen that features with smaller importance
scores are more heavily penalized, and the penalty increases as γ be-
comes greater (GRF becomes SRF when γ = 0). In this research, the
maximum penalty (i.e., γ = 1) is used, in order to select a small number
of features in GRF. So Gain X( )G i becomes:

=Gain X
imp
imp

Gain X( )
*

( )G i
i

i
(7)

2.4.4. Guided regularized random forest
Guided regularized random forest (GRRF) involves the use of the

importance score to guide the RRF, thus realizing the feature-variable
selection process. The standardized importance score is defined as:

′ =
=

imp
imp

impmaxi
i

j
p

j1 (8)

Unlike RRF, which imposes a unique penalty parameter on all the
features, GRRF assigns a penalty factor to each feature as

= ⎧
⎨⎩

⋅ ∉
∈

⎫
⎬⎭

Gain X v
λ Gain X v i F

Gain X v i F
( , )

( , )
( , )R i

i i

i (9)

where ∈λ (0,1]i is the coefficient for ∈X i p, {1, ... }i and is calculated
based on the importance score of Xi from ordinary random forest as

Fig. 4. Geometric correction images (a: VNIR; b: SWIR).

Fig. 5. Airborne reflectance curves of the soil samples after atmospheric cor-
rection.

Table 2
Statistical results of the soil heavy metal concentration.

Element Max (mg/kg) Min (mg/kg) Mean (mg/kg) Std. (mg/kg) CV (%)

Cr 81.34 25.03 50.60 10.90 0.22
Cu 60.03 4.68 24.19 11.98 0.50
Pb 24.93 10.32 15.77 3.75 0.24
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= − + × ′λ γ λ γ imp(1 )i i0 (10)

where ∈λ (0,1]0 is the base coefficient to control the degree of reg-
ularization, and ∈γ [0,1] is the importance coefficient to control the
weight of the importance score after normalization. Note that the RRF is
a special case of the GRRF with γ =0. In general, γ and λ0 together
affect the size of the feature subset. To reduce the number of parameters
of GRRF, λ0 is fixed to be 1 and γ is considered as the only parameter
for GRRF. With λ0 =1, we have:

= − + × ′ = − − ′λ γ γ imp γ imp(1 ) 1 (1 )i i i (11)

A larger γ leads to a smaller λi, thus a larger penalty on Gain X v( , )i

when Xi has not been used in the nodes prior to node v. Consequently, γ
is essentially the degree of regularization.

The models are evaluated with the coefficient of determination for
calibration (Rc

2), the root-mean-square error of calibration (RMSEC),
the mean relative error of calibration (MREc), the coefficient of de-
termination for prediction (Rp

2), the root-mean-square error of pre-
diction (RMSEP), and the mean relative error of prediction (MREp),

which are defined as

∑
∑

= −
−

−
=

=

R
y y

y y
1
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( ¯)
i

n
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i

n
i

2 1
2

1
2

(12)

∑
=

−
=RMSE

y y

n

( ˆ )
i

n
i i1

2

(13)

∑
= =

−

MRE
n

i

n y y
y1

| ˆ |i i

i

(14)

where n is the number of samples, yi is the ith measured value, ŷi is the
ith predicted value, and ȳ is the average of the measured values. In
general, a large value of R2 combined with small values of RMSE and
MRE means better prediction.

2.5. Spectral unmixing

The presence of mixed pixels in airborne hyperspectral images
would limit the retrieval accuracy. Some pixels which contain both
vegetation and soil would have a serious effect on the accuracy of re-
trieval. The soil spectrum extracted from the pixel is improper while the
vegetation in the pixel influences the whole pixel spectrum. However,
such impact can be alleviated by spectral unmixing.

MVSA approaches hyperspectral unmixing by fitting a minimum
volume simplex to the hyperspectral data, constraining the abundance
fractions to belong to the probability simplex. The vertex component
analysis (VCA) algorithm (Ahmed et al., 2008) is an efficient method
based on the pure pixel hypothesis. Therefore, the initial of the MVSA
algorithm is realized by the VCA algorithm.

Fig. 6 shows the airborne spectra of the soil samples after spectral
unmixing, where the bands affected by water vapor have been re-
moved. The spectra of the pixels after unmixing are smaller than the
original spectra. The original spectra are between 0 and 0.45 and the
spectra after unmixing are between 0 and 0.25.

Fig. 6. Airborne reflectance curves of the soil samples after unmixing.

Table 3
Regression results of PLS, RFE-SVM, LASSO, Ridge, EN, Ridge_c, SRF, RRF, GRF, GRRF for field spectra.

Element Method Rc2 RMSEc MREc Rp2 RMSEp MREp No. of variables

Cr PLS 0.3665 8.5259 0.1380 0.1487 14.4045 0.2352 4
RFE-SVM 0.9560 2.2597 0.0223 0.3500 14.8095 0.2493 233
LASSO 0.4833 9.1266 0.1364 0.2675 19.6251 0.3028 0
Ridge 0.3080 9.7283 0.1481 0.2640 16.5195 0.2677 394
EN 0.4831 9.4766 0.1405 0.2677 18.3581 0.2896 0
Ridge_c 0.3704 9.0496 0.1388 0.5804 19.4263 0.3027 155
SRF 0.8542 5.1676 0.0789 0.3326 15.4499 0.2570 394
RRF 0.8682 5.2712 0.0871 0.4113 15.0728 0.2473 6
GRF 0.8536 5.1275 0.0790 0.3661 15.2697 0.2527 137
GRRF 0.8320 5.3159 0.0815 0.3489 14.8008 0.2463 9

Cu PLS 0.8606 5.8718 0.2843 0.0376 11.8562 0.8750 394
RFE-SVM 0.9652 2.6939 0.0454 0.2302 11.2012 0.8166 45
LASSO 0.2647 11.1132 0.5612 0.1597 12.6780 0.7015 0
Ridge 0.2793 10.7163 0.5329 0.1426 12.5894 0.6841 394
EN 0.2690 11.1419 0.5634 0.1912 12.6041 0.7036 0
Ridge_c 0.2813 10.5979 0.5231 0.1405 12.8322 0.6715 300
SRF 0.8606 5.8718 0.2843 0.0376 11.8562 0.8750 394
RRF 0.8434 6.4974 0.3331 0.4146 13.1818 0.9933 5
GRF 0.8491 5.9185 0.2923 0.0955 13.1024 1.0014 127
GRRF 0.8002 6.7166 0.3363 0.3988 13.0845 1.0068 5

Pb PLS 0.2262 3.2407 0.1763 0.2278 5.3203 0.2310 4
RFE-SVM 0.2111 3.4022 0.1514 0.0833 4.9307 0.2883 6
LASSO 0.4664 2.8426 0.1532 0.3690 7.1831 0.3192 2
Ridge 0.2280 3.5291 0.1918 0.5807 4.9440 0.2805 394
EN 0.4725 2.8318 0.1529 0.3749 7.6277 0.3703 3
Ridge_c 0.2667 3.4488 0.1884 0.5618 4.9192 0.2675 295
SRF 0.9040 1.7360 0.0922 0.2380 5.0296 0.2765 394
RRF 0.8400 1.9587 0.1056 0.5710 4.9364 0.2719 7
GRF 0.8950 1.7891 0.0957 0.3904 4.9612 0.2822 136
GRRF 0.8606 1.9344 0.1061 0.5345 4.8534 0.2779 7
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3. Results and discussion

3.1. The influence factors of retrieval accuracy

In general, there are four main factors that influence predication

accuracy. Firstly, the acquisition process of airborne hyperspectral data
would influence the accuracy of the predictions, such as flight condi-
tions, flight route and instrument precision etc. Before the flight, the
weather and flight conditions would be considered and a suitable time
would be selected. Meanwhile, the instrument calibration should be

Table 4
Regression results of PLS, RFE-SVM, LASSO, Ridge, EN, Ridge_c, SRF, RRF, GRF, GRRF using the original pixels.

Element Method Rc
2 RMSEc MREc Rp

2 RMSEp MREp No. of variables

Cr PLS 0.6333 6.531 0.1032 0.2337 10.3331 0.1627 6
RFE-SVM 0.0851 10.5156 0.1559 0.1782 10.1048 0.1162 30
LASSO 0.0629 10.6793 0.1649 0.2225 10.4021 0.1264 0
Ridge 0.0988 10.3320 0.1594 0.2049 9.5907 0.1176 375
EN 0.0000 10.7852 0.1662 0.0000 10.6154 0.1295 0
Ridge_c 0.0894 10.3536 0.1612 0.2140 9.5708 0.1175 156
SRF 0.9231 5.2718 0.0836 0.3018 9.0063 0.1280 375
RRF 0.8932 5.2224 0.0819 0.4164 8.4908 0.1160 13
GRF 0.9235 5.2652 0.0796 0.3511 8.8422 0.1266 134
GRRF 0.8814 5.4282 0.0841 0.4040 8.6346 0.1137 11

Cu PLS 0.4503 8.7784 0.4318 0.0690 11.8575 0.6234 5
RFE-SVM 0.9973 1.0505 0.0341 0.1486 10.9203 0.4876 33
LASSO 0.0872 11.4220 0.5851 0.0549 11.4452 0.5661 0
Ridge 0.0646 11.5620 0.5932 0.0503 11.4866 0.5699 375
EN 0.0877 11.4249 0.5854 0.0527 11.4509 0.5664 0
Ridge_c 0.0713 11.4435 0.5796 0.0511 11.4100 0.5681 215
SRF 0.9198 4.9589 0.2674 0.1649 10.6759 0.5726 375
RRF 0.9248 5.1768 0.2743 0.2358 10.2737 0.5379 15
GRF 0.9155 5.0480 0.2738 0.1685 10.6558 0.5724 150
GRRF 0.9120 5.0161 0.2507 0.1330 10.9086 0.5390 16

Pb PLS 0.5853 2.3284 0.1226 0.0110 4.1451 0.2007 6
RFE-SVM 0.9925 0.3935 0.0116 0.0693 3.7798 0.1821 18
LASSO 0.0510 3.5870 0.1965 0.0001 3.8206 0.1928 0
Ridge 0.0463 3.5560 0.1979 0.0007 3.8265 0.1973 375
EN 0.0510 3.5882 0.1964 0.0001 3.8207 0.1927 0
Ridge_c 0.0298 3.5840 0.1963 0.0355 3.7814 0.1923 2
SRF 0.8857 1.6904 0.0926 0.0508 3.8335 0.1900 375
RRF 0.9061 1.7289 0.0960 0.3773 3.1457 0.1508 8
GRF 0.8988 1.6966 0.0936 0.1106 3.6494 0.1802 135
GRRF 0.9200 1.8004 0.1013 0.2242 3.4381 0.1735 7

Table 5
Regression results of PLS, RFE-SVM, LASSO, Ridge, EN, Ridge_c, SRF, RRF, GRF, GRRF using unmixed pixels.

Element Method Rc
2 RMSEc MREc Rp

2 RMSEp MREp No. of variables

Cr PLS 0.4960 7.6565 0.1372 0.3627 9.2370 0.1467 6
RFE-SVM 0.8520 4.5489 0.0675 0.7234 5.5090 0.0803 35
LASSO 0.1286 10.7234 0.1648 0.4483 10.5000 0.1275 0
Ridge 0.2442 9.5526 0.1585 0.6351 7.9588 0.1033 375
EN 0.1284 10.2261 0.1566 0.4495 9.3813 0.1117 0
Ridge_c 0.2345 9.6102 0.1575 0.6484 8.0473 0.1037 355
SRF 0.9200 3.9849 0.0665 0.7460 5.6241 0.0836 375
RRF 0.9144 4.2060 0.0713 0.7250 5.8046 0.0924 13
GRF 0.9138 4.2897 0.0713 0.7433 5.7199 0.0823 142
GRRF 0.9178 4.5130 0.0745 0.6734 6.4840 0.0999 8

Cu PLS 0.5473 7.7109 0.4423 0.5630 8.1702 0.3940 10
RFE-SVM 0.5582 7.6969 0.4299 0.5758 8.3345 0.3909 16
LASSO 0.2435 10.0307 0.5966 0.3999 9.8157 0.4380 0
Ridge 0.2087 10.2628 0.5959 0.3754 10.0129 0.4347 375
EN 0.2432 10.0444 0.5961 0.3961 9.8576 0.4403 0
Ridge_c 0.2952 9.6762 0.5852 0.3998 9.6489 0.4304 42
SRF 0.9343 4.8343 0.2643 0.2776 10.5051 0.5191 375
RRF 0.9070 5.1337 0.2854 0.6383 8.3616 0.4018 9
GRF 0.9295 4.7051 0.2517 0.3793 9.7912 0.4983 140
GRRF 0.8936 5.4407 0.3021 0.6826 8.2408 0.3742 8

Pb PLS 0.2631 3.1039 0.1694 0.2571 3.3256 0.1612 7
RFE-SVM 0.4455 2.7356 0.1128 0.4212 3.5216 0.2007 16
LASSO 0.3863 2.8849 0.1605 0.3892 3.0474 0.1639 0
Ridge 0.2493 3.2241 0.1795 0.2413 3.2379 0.1764 16
EN 0.3940 2.8667 0.1595 0.3991 3.0021 0.1577 0
Ridge_c 0.2431 3.2366 0.1801 0.2317 3.2582 0.1777 248
SRF 0.9143 1.5931 0.0860 0.6156 2.8899 0.1492 375
RRF 0.8959 1.7219 0.0929 0.6493 2.8141 0.1490 8
GRF 0.9269 1.5990 0.0870 0.6921 2.7727 0.1425 138
GRRF 0.8878 1.7368 0.0967 0.7375 2.8099 0.1417 9
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finished. Secondly, the quality of airborne imagery should be improved
by spectral unmixing methods MVSA, geometric correction and radia-
tion correction. Thirdly, the acquisition process of soil samples and the
concentration of heavy metal also have the impact, such as sampling
strategy and the operating process of the concentration measure of
heavy metal. In this research, "S"-shaped sampling strategy is adopted
in farmland and heavy metals are measured strictly in accordance with
nationality standards to eliminate these effects. Last, the performance
of models, including feature selection strategy, also have effect to the
accuracy of the predictions.

3.2. Ten models regression analysis for field, original airborne and unmixed
spectra

The heavy metals of Cr, Cu, and Pb were retrieved by PLS, RFE-
SVM, LASSO, Ridge, EN, and Ridge_c, and our proposed methods. The
field spectra, original airborne spectra and unmixed airborne spectra
were used for the regression analysis, and the results are listed in Tables
3–5, respectively. The results of ten models using field spectra confirm
that the random forest methods are more robust and can consistently
offer excellent performance. The results of Cr and Pb are better than
that of Cu. The random forest models perform slightly better than the
others but cannot meet the retrieval requirements using original air-
borne spectra. The results of the retrieval unmixed pixels are

significantly better than those of the original airborne spectra. The
random forest models produce excellent results using the unmixed
spectra for the retrieval analysis, and they also perform significantly
better than other retrieval methods. The SRF model obtains the highest
accuracy for Cr prediction (Rp

2= 0.7460, RMSEP=5.6241,
MREP= 0.0836). The accuracy of Cr is better than that of Cu and Pb.
The accuracy of the retrieval of Pb is highest (Rp

2= 0.7375,
RMSEP=2.8099, MREP=0.1417) using the GRRF method. The
random forest models are more stable and extract about 10 character-
istic variables, which has advantages for large-area applications.
Random forest methods work better due to the variable selection
strategy of the information gain and the importance score of the vari-
able. GRRF of the random forest models has a better performance.
GRRF involves using the importance score to guide the RRF, and assigns
a penalty factor controlled by the importance score to each feature thus
realizing the feature-variable selection process. RRF is a modification of
a random forest that incorporates regularization into the tree growing
algorithm. Specifically, RRF establishes a penalty for the use of a fea-
ture that was not previously used in a current tree construction. This
penalty is proportional to the potential information gain from building
a split on this feature, so that only features with significant information
that is not redundant with respect to already built splits will be included
in the model (Fig. 7).

Fig. 7. Scatter plots of the measured against predicted concentrations of the best methods for Cr, Cu, Pb using the original (a, c, e) and unmixed spectra (b, d, f).
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Fig. 8. Unmixed airborne image heavy metal (Cr) estimation map.

Fig. 9. Unmixed airborne image heavy metal (Cu) estimation map.
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3.3. Heavy metal estimation of the airborne hyperspectral image

The best retrieval structures of the four models (linear: PLS; kernel
function: RFE-SVM; regularization method; random forest) were ex-
tracted and applied to the heavy metal estimation of the airborne hy-
perspectral image. Figs. 8–10 show the distribution of three heavy
metals (unit: mg/kg). The estimates of the random forest model are
concentrated, with Cr between 40–70mg/kg, Cu between 10–50mg/kg
and Pb between 5–40mg/kg. From the estimated results of the random
forest model, it can be seen that the values in Area1 and Area3 are very
high. The effects of surrounding environment on soil heavy metals will
be described in detail in the discussion section.

To assess the accuracy of the heavy metal estimation with the
HySpex image, three areas with high estimated values were selected
and compared with reference values. The results are shown in

Figs. 11–13.
It can be seen from Fig. 11 that the PLS method is unstable for Cr

estimation because its estimated maximum is far greater than the re-
ference maximum, and the minimum estimate is unreasonably nega-
tive. The maximum estimate of the RFE-SVM method is higher than the
reference maximum, and the estimated minimum is smaller than the
reference minimum. The estimated mean, maximum of the Ridge_c
model are close to the reference. The SRF model is stable, although the
estimated minimum is slightly higher than the reference minimum.

As can be seen from Fig. 12, PLS and RFE-SVM are unstable, pro-
ducing an estimated maximum much larger than the reference max-
imum, and their estimates may be negative. Although the estimated
mean and estimated maximum values of Ridge_c are close to the re-
ference values, the estimated value can also be negative. Therefore,
GRRF is the best predictor in the estimation of Cu concentration.

Fig. 10. Unmixed airborne image heavy metal (Pb) estimation map.

Fig. 11. Estimated and measured values of Cr concentration from the airborne image.
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Fig. 13 is about the Pb concentration, which shows the estimated
mean values of the four methods are close to the reference mean. The
most stable method is still GRRF, because the maximum and minimum
estimates using the PLS and RFE-SVM methods are far greater than the
reference values and the minimum estimates are even negative.

Some minimum estimates using PLS, RFE-SVM and Ridge_c are
negative. Due to the introduction of randomness of variable selection
and feature selection, random forest has the ability to prevent over-
fitting and noise. In contrast, PLS, RFE-SVM and Ridge_c could appear
overfitting, yielding negative estimated values. In conclusion, PLS, RFE-
SVM and Ridge_c are not as stable as random forest.

The soil background values of three heavy metals Cr, Cu and Pb in
Xuzhou are 55.5,12.61,16.3 mg/kg respectively (Nascimento and Dias,
2005). The concentration of Cr and Pb in a few areas is higher than the
soil background value of Xuzhou. But in most areas, the concentration
of Cu exceeded the background value.

After analyzing the estimation results with the industries around the
study area, the copper industry has great influence on the concentration
of Cu in the soil, which makes the Cu concentration in most areas
higher than the soil background value of Xuzhou. The mining and
transportation of coal and the stacking of solid waste cause heavy metal
pollution in the surrounding soil. In particular, Shitun coal mine has a
long working time, resulting in the concentration of the three heavy
metals higher than other areas.

4. Conclusions

In this paper, the spatial distribution of heavy metal from airborne
hyperspectral images based on spectral unmixing and random forest has

been studied. The results show that MVSA can quickly provide the so-
lution of unsupervised unmixing and using unmixed pixels can improve
the retrieval accuracy. For Cr, with the original mixed pixels, the
random forest models yielded Rp

2 values of 0.30–0.42, which are im-
proved to 0.64–0.74 when using unmixing pixels. Comparing the re-
trieval results of various models, it was found that the existing methods,
such as PLS, LASSO, Ridge, EN, and Ridge_c models, perform poorly,
RFE-SVM performs slightly better, and the best model is random forest,
which provides the most robust estimates. For the three metals using
unmixing pixels, except the prediction results of SRF and GRF models
slightly worse (Rp

2< 0.5), the other random forest models reported Rp
2

values of 0.55–0.74. In a large area estimation of soil heavy metal
concentration, the estimated values of the random forest models are the
closest to the reference values. Therefore, the random forest model is a
promising approach to predict the low heavy metal concentrations from
airborne hyperspectral imagery. The estimated results are consistent
with the real situation surveyed, which further validated the effec-
tiveness of the method. The concentrations of Cr and Pb in a few areas
are higher than the soil background value of Xuzhou. But in most areas,
the concentrations of Cu are higher than background value. The copper
industry has great influence on the concentration of Cu in the soil. The
mining and transportation of coal and the stacking of solid waste cause
heavy metal pollution in the surrounding soil. In particular, Shitun coal
mine has a long working time, resulting in three heavy metals con-
centration higher than other areas. In this paper, few samples in the
field and narrow image lead to limited coverage. Sediment con-
tamination can also be predicted if there are the hyperspectral data and
heavy metal concentration of sediment samples. In future research,
more detailed plans will be made. The relationship between soil spectra

Fig. 12. Estimated and measured values of Cu concentration from the airborne image.

Fig. 13. Estimated and measured values of Pb concentration from the airborne image.
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and chemical properties such as organic matter, carbon, phosphorus
and potassium will be fully explored. Comprehensive utilization of
spatial and spectral information will make the results more accurate.
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