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Abstract— Deep generative models such as the generative
adversarial network (GAN) and the variational autoencoder
(VAE) have obtained increasing attention in a wide variety
of applications. Nevertheless, the existing methods cannot fully
consider the inherent features of the spectral information, which
leads to the applications being of low practical performance.
In this article, in order to better handle this problem, a novel
generative model named the conditional variational autoencoder
with an adversarial training process (CVA2E) is proposed for
hyperspectral imagery classification by combining variational
inference and an adversarial training process in the spectral
sample generation. Moreover, two penalty terms are added to
promote the diversity and optimize the spectral shape features
of the generated samples. The performance on three different real
hyperspectral data sets confirms the superiority of the proposed
method.

Index Terms— Generative adversarial network (GAN), hyper-
spectral image (HSI) classification, variational autoencoder
(VAE).

I. INTRODUCTION

HYPERSPECTRAL image classification has recently
attracted considerable attention in the field of Earth

observation as the contiguous spectral information can be
utilized to discriminate different categories [1]. Discriminative
models such as support vector machine (SVM) [2], multiple
logistic regression (MLR) [3], convolutional neural networks
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(CNNs) [4], long short-term memory (LSTM) networks [5],
and CapsuleNet [6] are advantageously used in classification
because of their sampling models and higher precision when
compared with generative models. However, the conditional
distribution cannot describe the distribution characteristic and
a priori knowledge of hyperspectral data. Moreover, obtain-
ing enough labeled samples to train a classifier might not
be realistic because of the wide spatial coverage and the
costly field surveying and labeling. To address these issues,
many generative models have been put forward in the last
few years. Generative models explore a joint distribution
and focus on high-order correlation rather than classification
boundaries only. However, the shallow generative models show
a poor performance in optimization because of their limited
representation ability for high-dimensional remote sensing
data sets. Motivated by deep learning, which has made great
progress in many fields, deep generative models [7] have been
very successful in computer vision tasks. The most impor-
tant representative methods are the variational autoencoder
(VAE) [8] and the generative adversarial network (GAN) [9].
The principle of the VAE and the GAN is to learn a mapping
from a latent distribution to a data space.

The difference between these two generative models is that
variational inference is carried out to reduce the distance
between different distributions in the VAE, while the GAN
trades the complexity of sampling for the complexity of
searching for a Nash equilibrium in minimax games. Both
models have a remarkable ability to generate samples that are
similar to real samples, which have been successfully applied
in data augmentation. Before the deep generative models, data
augmentation for remote sensing classification depended on
the following strategies: 1) sample transformation, such as
rotation and translation and 2) label propagation, driven by
data or sample simulation based on a physical model, such
as spectral curve simulation under different illumination of
the same ground field. However, these enhanced approaches
are heavily reliant on the assumption of the data and the
physical environment. The VAE and the GAN have provided
a new pathway for feature learning and sample augmentation,
to address the issue of insufficient samples. Although the VAE
has worked well in generating reliable samples, the L2 norm
gives rise to blur in the generated samples. On the contrary,
the GAN can create clear samples, but it suffers from model
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collapse and gradient vanishing, which can result in the sam-
ples generated from the GAN being far from natural. To tackle
these defects, the structure of the VAE and the GAN has been
unceasingly perfected. Some works have used an adversarial
training process for the VAE [10], [11] or an additional
network [12] as the generator or discriminator, which have
been proved to be effective ways to fix the blurring problem
for the VAE. For the model collapse and gradient vanishing
of the GAN, the loss function has been modified, as in the
Wasserstein GAN [13] and the least-squares GAN [14]. Other
tricks include batch normalization, distribution sampling, and
the choice of the optimizer, which are not considered in this
article. Moreover, considering the label information, the VAE
and the GAN can be modified to perform supervised learning
and semisupervised learning tasks.

Several articles have addressed classification in remote
sensing images using the GAN [15]–[17]. Zhu et al. [18] put
forward a hyperspectral image (HSI) classification algorithm
based on an auxiliary classifier GAN [19], where the samples
generated from the GAN are added to improve the perfor-
mance of the classifier. Experiments on real hyperspectral
data sets confirmed the validity of the generated samples.
However, the effect of the improvement was proven to be
limited by Xu et al. [20], and the reason for the limitation
is that the generated samples cannot cover all the feature
space. To solve the problem of the limited improvement, some
works have focused on the loss function and training samples.
Wang et al. [21] proposed a removal strategy to weaken the
side effects of data outliers and generate high-quality samples.
Audebert et al. [22] introduced the Wasserstein distance to
ensure diversity of the generated samples, and the experiments
undertaken in this study showed that the cluster centers of the
generated samples are consistent with those of real samples.
ShiftingGAN [23] uses an “online-output” model to obtain
multiple generators, so that the generated samples are more
diverse. Moreover, to keep the high quality of the generated
samples, two additional shifting processes are added.

Although these works have proved that the generated sam-
ples from the GAN can improve the performance of classifi-
cation, the improvement is unstable because of the limitation
in the enhancement of quantity and diversity.

Recently, there have been a few articles utilizing the VAE
in remote sensing, instead of the GAN. For example, Gemp
et al. [24] proposed a deep semisupervised generative model,
in which the VAE is employed to extract the spectra of the
endmembers and retrieve the mineral spectra. Gong et al.
[25] utilized the VAE for change detection in multispectral
imagery, but the experiments indicated that the difference
images were blurred because of the reconstruction loss of the
training data in the VAE. Su et al. [26] proposed a VAE-based
hyperspectral unmixing method named the deep autoencoder
network (DAEN), in which the VAE performs blind source
separation after the spectral signatures are extracted, and the
VAE can ensure the nonnegativity and sum-to-one constraints
when estimating the abundances.

Inspired by the adversarial autoencoder (AAE) [10] and
the conditional GAN (CGAN) [27], we propose a variational
GAN with label information named conditional variational

autoencoder with an adversarial training process (CVA2E). The
new framework consists of a variational encoder to ensure the
diversity when using the latent variable distribution, a gener-
ator to reconstruct the samples from the latent variable distri-
bution, and a discriminator to determine if the data are from
real data or have a model distribution. Moreover, two fully
connected layers are added in the discriminator to improve
the classification ability of the framework. Considering the
inherent difference (hundreds of spectral bands in HSIs) in the
spectral dimensionality between HSIs and the common images
used in computer vision tasks, the spectral angle distance is
used as one of the observation items.

The rest of this article is organized as follows. Section II
gives the background to this article. Section III details the
CVA2E framework. Section IV describes the three real HSIs
used in the experiments, the experimental results, and the
comparisons with other methods. Finally, the conclusions of
this article are drawn in Section V.

II. PREVIOUS WORK

In this article, the main work is based on two kinds of
generative models: the GAN and the VAE. Therefore, in this
section, we briefly review these two models.

A. Generative Adversarial Network

The GAN uses deep neural networks to approximate an
unknown data distribution and is typically composed of two
networks named the generator and discriminator. The former
is aimed at learning the distribution characteristic of the data
and creating new data, and the discriminator learns to infer
whether the sample is from a model distribution or a real
distribution. When the training is over, the generator and
discriminator converge to a Nash equilibrium, in which the
discriminator cannot distinguish whether the sample is real
data or generated data from the generator, i.e., the generated
samples are indistinguishable from real samples. These two
roles are both deep neural networks, and the generator’s
training target is a certain distribution pz(z) which is consistent
with the sample G(z)’s data space. The generator is denoted as
G(z; θg), and θg represents the parameters of the deep neural
networks. For the discriminator, D(x; θd) represents a deep
neural network with parameters θd . The training process is to
solve a minimax problem by a two-player game

min
G

max
G

V (G, D) = Ex∼p(x)[logD(x)]
+ Ez∼pz(z)[log(1 − D(G(z)))] (1)

where x ∼ p(x) is the real data distribution. The optimal
model D(x) is p(x)/(p(x) + pg(x)), and the global equilib-
rium of this two-player game is obtained when p(x) = pg(x).
However, the prototype of the GAN model is difficult to
converge in the training stage, and the samples generated
from the GAN are often far from natural. To this end, many
works have tried to improve the stability by modifying the
loss function. For example, the Wasserstein GAN substitutes
the original Kullback–Leibler divergence and Jensen–Shannon
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divergence for the Earth mover’s distance. The Wasserstein
GAN is aimed at solving the problem

max
w∈w

Ex∼p(x)[ fw(x)] − Ez∼pz(z)[ fw(gθ (z))] (2)

where w represents the parameters of function f , and w ∈ W
is a strong assumption akin to assuming that w meets the K-
Lipschitz constraint ‖ f ‖w ≤ K when proving the consistency
of f . The Wasserstein GAN can improve the stability of
the learning and get rid of problems such as mode collapse,
whereas the range of the parameters of the discriminator is
limited, to meet the K-Lipschitz constraint, which decreases
the discriminative power.

B. Variational Autoencoder

The VAE uses a Kullback–Leibler divergence penalty to
make its hidden code vector like a prior distribution, i.e., the
VAE performs efficient approximate inference and learning
with directed models using a continuous latent intractable
posterior distribution. The reparameterization is carried out
to yield a simple differentiable unbiased estimator of the
variational lower bound, whose Kullback–Leibler divergence
is straightforward to optimize using the standard stochastic
gradient descent technique. The encoder Q of the autoencoder
is used as the probabilistic function approximator qτ (z | x), and
the decoder P is used as the approximation of the posterior
of the generative model pθ (x, z). The parameters τ and θ are
optimized jointly with the objective function

V (P, Q) = −KL(qτ (z | x)‖pθ (z | x)) + Recost(x) (3)

where Recost() calculates the reconstruction loss of a given
sample x through the VAE.

There have been many developments based on the VAE
and the GAN. For example, combining the VAE and the
GAN to construct a more powerful deep generative model
[10], [11]. Introducing an adversarial training process to the
autoencoder or using variational inference and elementwise
measurement in the GAN’s observation function can also
improve the drawbacks of the original model. Furthermore,
the VAE and the GAN can be modified to consider label
information and trained to conduct conditional generation,
e.g., the conditional variational autoencoder (CVAE) and the
CGAN.

III. PROPOSED METHOD

In this section, we describe the proposed CVA2E framework
for HSI classification and generation, which is illustrated
in Fig. 1. First, we introduce the notations that are adopted
throughout this article. If we suppose that a hyperspectral data
set with b spectral bands contains N labeled samples for L
classes, and each is represented by {x1, x2, . . . , x N } ∈ R

1×b,
then the corresponding label vector is Y = {y1, y2, . . . , yL} ∈
R

1×L .
As mentioned earlier, the GAN and the VAE have shown

good performances in data generation, whereas their latent
variables cannot learn the label knowledge during the adver-
sarial training and variational inference process. Moreover,
the intrinsic loss measurement of the VAE gives rise to blurry

generated samples, which result in defective pattern learning
for hyperspectral data. There will be various samples in the
same category in hyperspectral imagery, so the diversity of
the generative model can be guaranteed. The GAN can create
clear samples, which is an improvement over the VAE, but
it always overfits on local properties, which leads to the
generated spectra samples appearing disordered. To handle the
above problems, we propose CVA2E.

As shown in Fig. 1, the spectral feature vectors are utilized
as the input of CVA2E as we try to explore the individ-
ual hyperspectral pixels with no spatial context. Inspired by
Larsen et al. [12], the CVA2E framework consists of three
networks: an encoder network E, a generator network G, and
a discriminator network D. There are two connected parts of
discriminator network D, which execute the distinguishment
and the classification task, respectively. All the networks are
deep fully connected networks. For HSI classification, it is
critical to assign a high-dimensional spectral pixel with the
correct label, which can be represented by the conditional
distribution p(y | x). The input of E and G concatenates the
original spectral vector x with the 1-D categorical vector y.
With the connection of the spectral and categorical features,
the encoder network E maps x to a latent variable z through
the probabilistic function approximator PE (z | x, y), where y is
the category of x . Following the encoder process, the sampled
z is utilized to generate the fake data through the other
learned probabilistic function approximator PG (x | z, y) in the
generative network G. After this, D establishes whether the
data are real data or a model distribution, and G tries to
learn the real data distribution during the adversarial training
process.

A. Variational Inference Process of CVA2E

The variational inference process in CVA2E is the same
as in the VAE, where the input data consider the category
information. The principle of the VAE is to learn a distrib-
ution which has a certain sampling space to sample the real
data distribution x . The learned distribution is described as
z = N(μ, σ 2). The latent variable z is encoded by E(z, θg)
and is sampled from this distribution, which is based on
reparameterization, where θg represents the parameters of the
deep neural network. The objective is to minimize the distance
between z and a given distribution (in this work, the given
distribution is a standard normal distribution). The distance
can be denoted as follows:

L = −D(N (μ, σ 2)||N (0, 1)) + EE [logP(x |μ, σ 2)] (4)

where μ and σ are obtained by the encoder network E.
It is often possible to express a random variable z which
obeys the Gaussian distribution as a deterministic variable
z = N(μ, σ 2), where μ and σ are obtained by feedfor-
ward operation of the deep neural network in the VAE.
The values of μ and σ can be calculated and taken as
derivatives, whereas this is not possible for the sample
process. In this case, reparameterization is useful since it
can be used to rewrite the sample process as z = μ + σξ ,
where ξ is an auxiliary noise variable and ξ = N (0, 1).
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Fig. 1. Construction of CVA2E.

Therefore, Ez∼N (μ,σ 2)[ f (z)] = Eξ∼N (0,1)[ f (μ+σ 2ξ)]. After
this, the sample process is no longer involved in the gradient
descent but the result of the sampling is used, which makes
the model straightforward to optimize using the standard sto-
chastic gradient descent technique. Therefore, the variational
inference process D(N (μ, σ 2)||N (0, 1)) can be transformed
by reparametrizing as follows:

LKL = D(N (μ, σ 2)||N (0, 1))

= 0.5(1 + logσ 2 − μ2 − exp(logσ 2)) (5)

where σ and μ are the latent variables encoded by E. The
sample process of z is based on reparameterization of variable
ξ . The Kullback–Leibler divergence penalty is utilized to make
its latent variable z like a prior distribution. The second part
of (4) is replaced by binary cross entropy, which is the same
as the VAE, to represent the reconstruction loss

LRecost = EE [logP(x |μ, σ 2)]
= x log(G(z, y)) + (1−x)log(1 − G(z, y)) (6)

where G(z, y) represents the consideration of the category in
the generative process.

B. Least-Squares Loss of CVA2E

The GAN is based on a minimax two-player game, which
can provide a powerful sample approach to estimate the target
distribution and generate new samples. The adversarial training
process of the regular GAN is shown in (1), which can be
transformed into a two-player game as follows:

LD = −Ex∼p(x)[logD(x)]−Ez∼pz(z)[log(1−D(G(z)))] (7)

LG = −Ez∼pz(z)[log(D(G(z)))]. (8)

Equations (7) and (8) denote the two trained targets corre-
sponding to D and G. The optimizing direction is to close
the distance between the real distribution and the model
distribution. The measurement of the distance impacts on the
convergence of these two probability distributions. In general,
the convergence of the distribution is easier when the distance
induces a weaker topology. Unfortunately, Jensen–Shannon
divergence is utilized in the regular GAN, which is not a
stable cost function when learning distributions supported

by low-dimensional manifolds. This is because the supports
of x ∼ p(x) and x ∼ pg(x) have an empty intersection.
Intuitively, for the trained discriminator, we have D(x) → 1
and D(G(z)) → 0, so the gradient ∂LG/∂(D(G(z))) → −∞,
which may lead to the gradient-vanishing problem during the
learning process. Therefore, x ∼ pg(x) cannot be represented
explicitly, and D must be synchronized well with G during
the training process, which causes the regular GAN to be
unstable. This kind of GAN works well for either categorical
discrimination or generation, but cannot be optimal at the same
time. The Earth mover’s distance-based Wasserstein GAN
improves the instability, but the convergence is much slower
than the regular GAN. In this work, we introduce least-square
loss for the discriminator to address the gradient-vanishing
problem during the learning process, which is an approach that
is inspired by the least-squares GAN [13]. The idea is that the
least-squares loss function is able to move the fake samples
toward the decision boundary because the least-squares loss
function penalizes samples that lie a long way from the correct
side of the decision boundary and pulls them toward the
decision boundary, even though they are correctly classified.
In this way, the least-squares GAN is more stable during the
learning process. Moreover, when the generator is updated,
the parameters of the discriminator are fixed, which results in
the training of the least-squares GAN being faster to converge
than the Wasserstein GAN, as the Wasserstein GAN requires
multiple updates for the discriminator. The objective functions
for the traditional least-squares GAN are defined as follows:

LD = −0.5Ex∼p(x)[(D(x) − 1)2]
− 0.5Ez∼pz(z)[(D(G(z)) − 0)2] (9)

LG = −0.5Ez∼pz(z)[(D(G(z)) − 1)2] (10)

where 1 and 0, respectively, denote the labels for real data and
fake data in (9), and 1 denotes the value that the generator
wants the discriminator to believe for fake data in (10).
Because the CVA2E framework incorporates the variational
inference process, the generated inputs are not only from the
normal distribution samples but also from the latent distribu-
tion encoded from E. Furthermore, to create the deterministic
relationship between the multiple categories, the label infor-
mation is added. Therefore, the objective functions of least-
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squares loss are transformed as follows:

LD = −0.5Ex∼p(x)[(D(x |y) − 1)2]
− 0.5Ez∼pz(z)[(D(G(z|y)) − 0)2]
− 0.5Eξ∼N (0,1)[(D(G(ξ |y)) − 0)2] (11)

LG = −0.5Ez∼pz(z)[(D(G(z|y)) − 1)2]
− 0.5Eξ∼N (0,1)[(D(G(ξ |y)) − 1)2] (12)

where G(z|y) denotes that the initial samples are sampled from
z ∼ N (μ, σ 2), and μ, σ are obtained by encoder network
E. G(ξ |y) denotes that the initial samples are sampled from
ξ ∼ N (0, 1). The initial samples are then input into the
generator network G to obtain the final fake data. Therefore,
the discriminator network D should recognize if a sample is
from the real data distribution or from the two fake distri-
butions, which are described as the three parts of (11), and
the generator network should use both the conditional normal
distribution and the latent distribution to fool the discriminator.

C. Enhancement of Diversity and Spectral Characteristics
With CVA2E

The motivation of the CVA2E framework is to learn the
spectral distribution characteristics of individual hyperspec-
tral pixels. While the deep neural network is a remarkable
function approximator, the inherent difference (hundreds of
spectral bands) in spectral dimensionality between HSIs and
the common images used in computer vision tasks should
be taken into account. Regular loss functions are generally
based on cross-entropy or least-squares loss, which focuses
on the local feature matching. Here we introduce the spectral
angle distance to match the generated samples based on the
similarity of the curves of the spectra. The spectral angle match
method was proposed by Kruse [28]. This method regards the
spectrum of an individual hyperspectral pixel in the image as a
high-dimensional vector and measures the similarity between
the spectra by calculating the vectorial angle between the
two high-dimensional vectors, where the smaller the angle,
the more similar the two spectra are, and the more reliable the
generator will be. Here we utilize cosine similarity to replace
the spectral angle

LSAD = 1

bs

∑[(
G(z|y)Tx√

G(z|y)TG(z|y)
√

x T x
+ 1

)

+
(

G(ξ |y)Tx√
G(ξ |y)TG(ξ |y)

√
xTx

+ 1

)]
(13)

where bs represents the batch size in the training process. The
spectral angles are calculated between the real spectra and the
two kinds of generative spectra. Inspired by the spectral angle
match method, we utilize the vectorial angle measurement on
an intermediate layer of the generator network. The difference
in purpose is that we want the feature space of the generative
samples to be big enough to contain the entire training data
distribution, and thus reduce the likelihood of mode collapse,
so the vectorial angle between pairwise features of an inter-
mediate layer should be the maximum. The vectorial angle of

the features is calculated as follows:

LFVA

= 1

L

L∑
l

1

Sl(Sl − 1)

×
S∑
m

l
S∑

n 	=m

l F(zm | yl)
T F(zn | yl)√

F(zm | yl)
T F(zm | yl)

√
F(zn | yl)

T F(zn | yl)
+1

(14)

where bs represents the batch size in the training process, and
F(·) denotes the features of an intermediate layer. In this
work, the output of the penultimate layer of the generator
network is chosen as the compared features. The vectorial
angle is calculated among the samples which belong to the
same category. Each F(z) should be calculated with the feature
which is the same category in the ergodic case, except itself.
After L iterations (L is the number of categories), the vectorial
angle of the features is the cumulative sum in Sl (Sl − 1)L
times, and the average is obtained using division by the
number of times. A larger LFVA means that the features
are similar and that the generative model should have low
diversity.

The final structure of CVA2E is shown in Fig. 2. The
input of the discriminator network is the concatenation of the
spectral and categorical vectors, which is used to estimate
the two joint probability distributions p(xg, y) and p(x, y).
Moreover, the discriminator network is reused to execute
the classification task. When the network plays the role of
classifier, the categorical vector is replaced by a zero vector,
so that the weights in the discriminator network corresponding
to categorical features are disabled, and the last layer is
replaced by a softmax layer to obtain the posterior probability
p(y|x) or p(y|xg).

Up until now, the final goal of CVA2E can be shown as
follows:

L = LD + LG + LC + LKL + λ1 LFVA+λ2 LSAD+λ3LRecost

(15)

where each part is given the explicit expression above. λ1,
λ2, and λ3 are empirically set to 0.3, 0.6, and 1. As shown
in Fig. 2, “red” means the data pair from the real distribu-
tion, and “blue” and “green” denote the data pair from the
generated distribution. The difference is that the “blue” data
pairs are generated based on the latent distribution encoded
by E, and the “green” data pairs are based on a certain
distribution. LD is related to the ability to distinguish between
real and fake data pairs, LG represents the ability of G to
fool D, LC denotes the capability of the network to classify
spectra from different categories, LKL influences the latent
distribution encoded by E to obey a certain distribution,
LRecost is related to the variational inference, LFVA improves
the diversity of G, and LSAD considers the spectral similar-
ity between the real spectrum and the generated spectrum.
Finally, in order to summarize the whole training process,
Table I gives a detailed description of the proposed learning
algorithm.
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Fig. 2. Detailed illustration of the CVA2E framework. The data pairs from different distributions are colored in red, blue, and green, respectively, and each
loss function is labeled on the corresponding samples.

TABLE I

PSEUDOCODE OF THE PROPOSED ALGORITHM
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Fig. 3. Implementation of each network in CVA2E. (a) Encoder network. (b) Discriminator network. (c) Generator network.

TABLE II

NUMBER OF TRAINABLE PARAMETERS AND MEMORY OVERHEAD IN CVA2E

IV. EXPERIMENTS

In order to demonstrate the performance of the proposed
technique, three real HSIs were utilized. To explore the
distribution of the real spectra, the fully connected layers
were utilized to constitute the different compositions of the
model. In our experiments, the category information, which
was transformed as a “one-hot vector,” was merged with the
spectral vector. A “one-hot vector” is a vector with one single
“1” and all the others as “0,” where the position of “1”
indicates which category the pixel belongs to. The construction
of the three networks is shown in Fig. 3, where the encoder
network E is a three-layer fully connected network, and the
input of each layer is merged by the spectral vector and “one-
hot vector” in advance. μ and σ are from two different layers,
and the rectified linear unit is utilized as the activation function
to obtain μ and σ . The discriminator D and generator G
consist of four-layer fully connected networks. For D, when
it determines real or fake samples, the “one-hot” vector is
applied; otherwise, the categorical vector is set to zero, and
the softmax and sigmoid functions are utilized for the two
outputs. The former output is a posteriori probability of the
categories, and the latter is used for the loss calculation of
D in the adversarial training process. For G, the “one-hot”

vector determines the category of the generated sample, which
is represented by the results of the sigmoid function of the last
layer. The number of neurons in each part of the network for
three different data sets is shown in Fig. 3, the mini-batch
size for training is set as 80, and the learning rate is set to
0.0002. To exhibit the complexity referring to the previous
research [29], the number of trainable parameters and memory
overhead in CVA2E are given in Table II.

The experimental analysis starts with the generated samples
by the given generative models. The compared methods were
chosen from the mainstream deep generative models. In order
to fairly compare each method, we used the same network
structure to implement the different models. After verification
of the validity of the generated samples, the overall accuracy
(OA) and kappa coefficient (kappa) are used to report the per-
formance of all the models. To demonstrate the performance
of the proposed technique, three real HSIs were utilized. The
training samples in all the experiments were made up of 10%
of the labeled data.

A. Data Set Description

1) Pavia University ROSIS Data Set: The Pavia University
data set was acquired by the Reflective Optics System Imaging
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Fig. 4. Pseudocolor composite image and the corresponding ground truth for the Pavia University ROSIS data set.

Fig. 5. Pseudocolor images and the corresponding ground truth of the Xuzhou HYSPEX data set.

Spectrometer (ROSIS) sensor over the Engineering School of
the University of Pavia, Italy. This data set consists of 610 ×
340 pixels, with a spatial resolution of 1.3 m/pixel. A total
of 103 spectral bands ranging from 430 to 860 nm were used
in the experiments after removing the noisy bands. The data set
contains nine categories of interest. There are large differences
in the spectral features between the different categories, which
can verify the learning ability of the generative model. The
pseudo-color composite image and the labeled categories are
shown in Fig. 4.

2) Xuzhou HYSPEX Data Set: The Xuzhou data set was
collected by an airborne HySpex hyperspectral camera over
the Xuzhou peri-urban site. This data set consists of 500 ×
260 pixels, with a very high spatial resolution of 0.73 m/pixel.
A total of 368 bands ranging from 415 to 2508 nm were
used in the experiments after removing the noisy bands. The
spectral range is close to that of the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) data set, but the higher
spectral resolution and more noise bands cause disturbance

during the learning process of the generative model. The
pseudo-color composite image and the labeled categories are
shown in Fig. 5.

3) Indian Pines AVIRIS Data Set: The Indian Pines data
set was collected by the AVIRIS sensor over the northwestern
Indiana agricultural test site. This data set consists of 145 ×
145 pixels, with a spatial resolution of 17 m/pixel. A total
of 200 bands ranging from 400 to 2500 nm were used in
the experiments after removing the noisy bands. The available
training samples cover 16 categories of interest, which are
mostly different types of vegetation. The similar spectral
characteristics among the different categories brings great
difficulty for the learning of the spectral feature distribution.
The pseudo-color composite image and the labeled categories
are shown in Fig. 6.

B. Visualization Analysis of the Generated Samples

In order to illustrate the performance of the proposed
approach, we utilized a 10% labeled training set randomly
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Fig. 6. Pseudocolor composite image and the corresponding ground truth for the Indian Pines AVIRIS data set.

Fig. 7. Comparison of the generated “Tree” samples on the ROSIS data set. (a) CVAE. (b) CGAN. (c) CAAE. (d) CVA2E. (e) CVA2E_SAD. (f) CVA2E_
FVA. (g) CVA2E_SAD_FVA. (h) Real spectra.

Fig. 8. Samples generated by CVA2E_SAD_FVA in all the categories of the ROSIS data (the red solid lines denote the fake spectra and the black dashed
lines denote the real spectra). (a) Asphalt. (b) Meadows. (c) Gravel. (d) Trees. (e) Bare soil. (f) Bitumen. (g) Self-blocking bricks. (h) Shadows. (i) Painted
metal sheets.

selected from the test data set, so that the generative ability
of CVA2E could be verified. We chose the samples from a
vegetation-related category in the three data sets to explore
the performance of the different methods. For a comparison,
CVAE and CGAN were chosen as two representative kinds

of deep generative models, and the conditional AAE (CAAE)
represents a joint model that consists of a GAN and a VAE.
The CAAE is a probabilistic autoencoder that uses the GAN
to perform variational inference by matching the aggregated
posterior of the hidden code vector with an arbitrary prior
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distribution. CVA2E was implemented in four different forms:
1) the prototype CVA2E; 2) CVA2E_SAD with the spectral
angle penalty term; 3) CVA2E_FVA with the feature angle
penalty term; and 4) CVA2E_SAD_FVA with both these
penalty terms. In this experiment, the input of all the models
was a concatenation of normally distributed sampling and the
categorical indicator. For the ROSIS, AVIRIS, and HySpex
data sets, the indicator vector was “Tree,” “Tree,” and “Grass-
trees,” respectively, which are in the same category. The
quality of the generated samples was assessed in terms of
the smoothness of the curves, the diversity, and the spectral
absorption features.

For the ROSIS data set, Fig. 7 shows that each generative
model can generate a spectrum similar to that of vegetation,
where the “red edge” was learned well by all seven models.
However, the models perform differently in the learning of
the detailed feature distribution. The spectrum derived from
CVAE is the smoothest. CAAE obtains the worst shape, which
appears noisier than the others. CGAN is the second noisiest,
and CVA2E with the spectral angle penalty term obtains
the most realistic curve. The variation within a category is
small in CGAN and CVAE. The generated spectra have a
bigger diversity in CAAE, but some spectral structures are
lost. The samples from CVA2E_FVA with the feature angle
penalty term perform better in diversity than CVA2E. The
spectrum of CVA2E_SAD_FVA is clear with well-preserved
features. Samples of all the categories can be obtained by
CVA2E_SAD_FVA, as shown in Fig. 8.

The HySpex data set has a wider band range than the ROSIS
data set, and more spectral absorption characteristics of the
vegetation can be explored in the spectrum. It can be observed
from Fig. 9 that the spectrum is clear, with well-preserved
absorption features, which are consistent with the vegetation
biochemical response. These signatures are characterized by
absorption with wave troughs around 450, 550, 1450, and
1950 nm, which are captured successfully by the generative
model. Some samples are not well controlled by CGAN and
CAAE. CVA2E with the spectral angle penalty term shows a
poor performance compared with CVA2E without this penalty
term. The spectral angle constrains the spectrum fit for the
real samples, but with the abundant noise in the HySpex
data set, the local noisy bands disturb all the generated
samples. In this case, the constraint should be reduced to
avoid the impact of the noise. CVA2E_FVA obtains the best
performance.

All categories of the HySpex data are obtained by CVA2E_
FVA, as shown in Fig. 10. The synthetic spectra can cover
almost all the feature space, and have a higher signal-to-noise
ratio than the real spectra.

The AVIRIS data set has the widest band range and a lower
spectral resolution than HySpex. Fig. 11 shows that the absorp-
tion characteristics at 450, 1450, and 1950 nm are successfully
captured by CVA2E_FVA, while some features are missing
in the results of CGAN and CAAE (e.g., the absorption
characteristic at 550 nm).

The spectra derived from CVAE are blurry and show a
poor performance in diversity. CAAE obtains the worst shape
curves, which appear noisier than the others. CVA2E with the

spectral angle penalty term obtains the most realistic curves,
as with the ROSIS data set. The samples from CVA2E with
the feature angle penalty term perform better in diversity
than CVA2E without LFVA. The spectra of CVA2E_SAD_FVA
are the clearest, with the well-preserved features showing the
strength of the proposed method. When the signal-to-noise
ratio of the bands is high, the utilization of LSAD positively
improves the quality of the spectra; otherwise, it has a negative
effect. All categories of the AVIRIS data set can be obtained
by CVA2E_SAD_FVA, as shown in Fig. 5. All categories of
the AVIRIS data can also be obtained by CVA2E_SAD_FVA,
as shown in Fig. 12.

C. Training on Real and Fake Data Sets

In this section, the validity of the generated samples for the
classification task is explored. In order to fairly compare each
method, the generated samples and the model are separated,
which means that the classification part of the conditional
generative model is discarded and replaced by an independent
classifier. This has the advantage of making the comparison
between samples from all the generative models straightfor-
ward, and the classification accuracy directly indicates the
validity of the samples. Moreover, the experiments included
two scenarios for each data set.

1) Training on the real data set and testing on the generated
data. This can describe the separability of the generated
data using hyperplane learning from the real data, which
indicates whether the generative model has captured the
boundaries among all the categories of real data.

2) Training on the generated data set and testing on the real
data set. The purpose here is to explore if the features
from the generative model support the features of the
real data set under a dimensional manifold space.

SVM with a linear kernel was utilized as the universal
classifier. In the first experiment, the training data set of the
generative model was utilized to train the SVM classifier, and
600 generated samples per class were used in the testing.
In the second experiment, 600 generated samples per class
were used to train the SVM classifier, and all the labeled data
were used in the testing.

Table III shows that all the models obtain a high accuracy.
CVAE obtains the highest accuracy with the ROSIS and
AVIRIS data sets, and CGAN obtains the highest accuracy
with the HySpex data set. The results show that the generated
samples from these two models can be separated precisely
by the real-data learned boundaries. For example, the learned
features have a high correlation with the training data, and
the generated samples are similar to the training data. CAAE
obtains the lowest accuracy, which is likely caused by the
distortion of the spectra. CVA2E obtains a lower accuracy
than CVAE on the three data sets and a higher accuracy
than CGAN on AVIRIS data set. The samples generated
by CVA2E are more diverse compared with the samples
generated by CVAE, which results in the higher accuracy
of CVAE as given in Table II. Moreover, Figs. 7–12 show
that CVA2E outperforms CGAN in the sample generation,
the generated sample is more diverse than CVA2E while it
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Fig. 9. Comparison of the generated “Tree” samples on the HySpex data set. (a) CVAE. (b) CGAN. (c) CAAE. (d) CVA2E. (e) CVA2E_SAD. (f) CVA2E_
FVA. (g) CVA2E_SAD_FVA. (h) Real spectra.

Fig. 10. Samples generated by CVA2E_FVA in all categories of the HySpex data (the red solid lines denote the fake spectra and the black dashed lines
denote the real spectra). (a) Bare Land-1. (b) Lakes. (c) Coals. (d) Tree. (e) Cement. (f) Crops-1. (g) Bare Land-2. (h) Crops-2. (i) Red title.

TABLE III

TRAINING ON THE REAL DATA AND TESTING ON THE GENERATED DATA

is more anamorphic which caused that the difference between
CVA2E and CGAN is not obvious in Table II. CVA2E with
the feature angle penalty term obtains a lower accuracy

than CVA2E without the penalty term on the ROSIS and
AVIRIS data sets, where the feature angle penalty term forces
the intermediate output of the generator to be different in

Authorized licensed use limited to: East China Normal University. Downloaded on January 23,2024 at 07:17:13 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: CVA2E FOR HYPERSPECTRAL IMAGERY CLASSIFICATION 5687

Fig. 11. Comparison of the generated “Grass-Tree” samples on the AVIRIS data set. (a) CVAE. (b) CGAN. (c) CAAE. (d) CVA2E. (e) CVA2E_SAD.
(f) CVA2E_FVA. (g) CVA2E_SAD_FVA. (h) Real spectra.

Fig. 12. Samples generated by CVA2E_SAD_FVA in all categories of the AVIRIS data (the red solid lines denote the fake spectra and the black dashed
lines denote the real spectra). (a) Alfalfa. (b) Corn-Notill. (c) Corn-Mintill. (d) Corn. (e) Grass-Pasture. (f) Grass–Trees. (g) Grass-Pasture-Mowed. (h) Hay-
Windrowed. (i) Oats. (j) Soybean-Notill. (k) Soybean-Mintill. (l) Soybean-Clean. (m) Wheat. (n) Woods. (o) Buildings–Grass–Trees–Drives. (p) Stone–Steel–
Towers.

TABLE IV

TRAINING ON THE GENERATED DATA AND TESTING ON THE REAL DATA
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Fig. 13. Results of different approaches for the ROSIS data sets. (a) Classification part of ROSIS. (b) Stacked denoising autoencoder (SDA) of ROSIS. (c)
CNN of ROSIS. (d) LSTM of ROSIS. (e) CVAE of ROSIS. (f) CGAN of ROSIS. (g) CAAE of ROSIS. (h) CVA2E of ROSIS. (i) CVA2E_TT of ROSIS. (j)
CVA2E_SAD of ROSIS. (k) CVA2E_FVA of ROSIS. (l) CVA2E_SAD_FVA of ROSIS.

a training batch, which is on account of the improvement
of the diversity. These diverse samples can be regarded as
“distortion samples” for the trained SVM. The difference is
that the diverse samples do not coincide with the features
of the training data, which is helpful for the training of the
classifier, while the samples from CAAE mismatch the spectral
features and are thus poor data that degrade the classification
performance.

The accuracies of the classifiers trained by the generated
samples are given in Table IV. CAAE obtains the worse per-
formance on all three data sets, which verifies that the samples
are distorted. CVA2E_SAD_FVA obtains the best results of
90.79% and 80.27% with the ROSIS data set and AVIRIS
data set, respectively, which indicates that the support set of
generated samples from CVA2E_SAD_FVA is bigger than that
of the other models, and is more consistent with the real data
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Fig. 14. Results of different approaches for the AVIRIS data sets. (a) Classification part of AVIRIS. (b) SDA of AVIRIS. (c) CNN of AVIRIS. (d) LSTM of
AVIRIS. (e) CVAE of AVIRIS. (f) CGAN of AVIRIS. (g) CAAE of AVIRIS. (h) CVA2E of AVIRIS. (i) CVA2E_TT of AVIRIS. (j) CVA2E_SAD of AVIRIS.
(k) CVA2E_FVA of AVIRIS. (l) CVA2E_SAD_FVA of AVIRIS.

TABLE V

TRAINING ON THE JOINT GENERATED AND REAL DATA

distribution. CVA2E_FVA obtains a better performance than
CVA2E_SAD_FVA by 0.84% on the HySpex data set, which
may have been caused by the noise disturbance of the spectra
in this data set.

D. Performance Comparison for Classification

Section IV-C discarded the classification part of the model,
which is more suitable for the classification task than the
traditional SVM because the training process is integral,

and the classification part reuses the discriminator net-
work. During the categorical distribution learning process,
the network learns the features for classification from the
real and generated data. In this section, the classifica-
tion ability of the generative models is explored. As men-
tioned above, each model is combined with the classification
part. In order to fairly compare each method, the struc-
ture was implemented as the same as the discriminator
in CVA2E.
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Fig. 15. Results of different approaches for the HySpex data sets. (a) Classification part of HySpex. (b) SDA of HySpex. (c) CNN of HySpex. (d) LSTM of
HySpex. (e) CVAE of HySpex. (f) CGAN of HySpex. (g) CAAE of HySpex. (h) CVA2E of HySpex. (i) CVA2E_TT of HySpex. (j) CVA2E_SAD of HySpex.
(k) CVA2E_FVA of HySpex. (l) CVA2E_SAD_FVA of HySpex.
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In this experiment, the training process of the classification
part was divided into two stages. The first was with the vari-
ational inference and the adversarial training process, where
the classification part was trained with the real data. When the
game converged or the training epochs approached a certain
number, the output from the generator was regarded as a
reliable data pair(x; y). The classification part was then trained
by the hybrid of the generated and real data. The mainstream
deep learning algorithms such as SDA, LSTM, and CNN
were chosen as comparative methods. The “Classification part”
was extracted as an independent network, which was trained
using the real labeled data to carry out the classification
task. Moreover, to verify the valid of augmented samples
from CVA2E, we include additional experiment “CVA2E_TT,”
which trained on the real labeled data without any data
augmentation.

Table V shows that CVA2E_SAD_FVA obtains the best
results of 96.74% and 89.7% with the ROSIS data set and
AVIRIS data set, respectively. CVA2E_FVA obtains the best
result of 98.33% with the HySpex data set. HySpex and
AVIRIS data sets. LSTM obtains the worst performance on
ROSIS data set. CVA2E with two training stages outperforms
that without any data augmentation, which demonstrates that
CVA2E can provide sufficient generative samples to improve
the classification performance. The results of each genera-
tive model are better than those based on the traditional
SVM classifier as shown in Table III. This proves that
CVA2E_SAD_FVA is more effective at excavating efficient
features for classification. Figs. 13–15 show the results of
classification by each model.

V. CONCLUSION

In this article, an innovative generative network named
CVA2E has been proposed, which combines variational infer-
ence and an adversarial training process to obtain a more
powerful performance. From the visualization analysis on
three standard hyperspectral data sets, we showed that CVA2E
can outperform the other methods in its capacity for spectral
synthesis. Moreover, to understand the fine-grained spectral
distribution characteristics of individual hyperspectral pixels,
the spectral angle distance and vectorial angle measurement
are introduced in the loss calculation of CVA2E. The improved
CVA2E showed a superior performance in the spectral synthe-
sis of different categories. To demonstrate the ability of the
generated samples for the classification task, three kinds of
scenarios were carried out, and all the results showed that the
proposed model gave the best performance.

In our future work, spatial–spectral features will be taken
into account in CVA2E. In addition, the denoising ability
will also be considered during the generative process for the
applications of low signal-to-noise ratio data.
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