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A B S T R A C T   

Airborne hyperspectral remote sensing has the characteristics of high spatial and spectral resolutions, and 
provides an opportunity for accurate and efficient inland water qauality monitoring. Many studies have focused 
on evaluating and quantifying the concentrations of the optically active water quality parameters, for parameters 
such as chlorophyll-a (Chla), cyanobacteria, and colored dissolved organic matter (CDOM). For the optically 
inactive parameters, such as the permanganate index (CODMn), total nitrogen (TN), total phosphorus (TP), 
ammoniacal nitrogen (NH3–N), and heavy metals, it is difficult to estimate the concentrations directly, and the 
traditional indirect estimation models cannot meet the accuracy requirements, especially in heavily polluted 
inland waters. In this study, 60 water samples were collected at a depth of 50 cm from the Guanhe River in China, 
at the same time as the airborne data acquisition. We also developed and investigated two deep learning based 
regression models—a pixel-based deep neural network regression (pixel_DNNR) model and a patch-based deep 
neural network regression (patch_DNNR) model—to estimate seven optically inactive water quality parameters. 
Compared with the partial least squares regression (PLSR) and support vector regression (SVR) models, the deep 
learning based regression models can obtain a superior accuracy, especially the patch_DNNR model, which 
obtained a superior prediction accuracy for all parameters, with the prediction dataset coefficient of determi
nation (Rp2) and the residual prediction deviation (RPD) values being greater than 0.6 and 1.6, respectively. In 
addition, thematic maps of the water quality classification results and water parameter concentrations were 
generated and the overall water quality and pollution sources were analyzed in the study area. The experimental 
results demonstrate that the deep learning based regression models show a good performance in the feature 
extraction and image understanding of high-dimensional data, and they provide us with a new approach for 
optically inactive inland water quality parameter estimation.   

1. Introduction 

The ecological environment is one of the most important conditions 
for the sustainable development of the social economy. Water quality 
problems caused by point and nonpoint sources of pollutants are 
particularly prominent, especially in inland water bodies (Brooks et al., 
2016; Carpenter and Carpenter, 1983). However, the traditional in-situ 
sampling approach is labor-intensive and time-consuming, and cannot 
easily be used to identify the temporal or spatial variations of water 
quality. Remote sensing has played an important role in the large-scale 
and long time-series monitoring of inland water, and it provides us with 

an intuitive and reliable method for regional water quality monitoring 
and management (Palmer et al., 2015; Ritchie et al., 2003; Tyler et al., 
2006). 

Differing from ocean and coastal water quality estimation, the area 
of inland water quality estimation is usually small, so the remote sensing 
data used for inland water quality estimation need to meet a certain 
spatial resolution. Multispectral and high-resolution remote sensing 
sensors are commonly used for inland water quality estimation (Brezo
nik et al., 2005; Chen et al., 2017; Dekker, 1993; Li et al., 2015). 
However, limited by the spectral resolution, it is difficult to extract 
effective spectral features for multiple water quality parameters and 
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complete multi-parameter water quality estimation with such data. 
Airborne hyperspectral remote sensing data have the characteristics of 
high spatial and spectral resolutions, which can help us to identify 
detailed surface information and extract optical features, and allows us 
to estimate the concentrations of water quality parameters and trace the 
source of pollution. As a result, airborne hyperspectral remote sensing 
data have the potential to be used for water quality monitoring and 
estimation, especially in rivers, lakes, and reservoirs (Kallio et al., 2001; 
Koponen et al., 2002; Olmanson et al., 2013; Pyo et al., 2018; Wass et al., 
1997). 

In the quantitative estimation of water quality, most of the previous 
studies have focused on optically active variables, such as chlorophyll-a 
(Chla) (Gitelson and Merzlyak, 1997; Xu et al., 2019), cyanobacteria 
(Kutser, 2004; Pyo et al., 2018; Simis et al., 2005), CDOM (Kutser et al., 
2005; Li et al., 2017a), and total suspended matter (TSM) (Dekker et al., 
2001; Lei et al., 2020). In view of the active absorption and reflection 
characteristics, researchers have built estimation algorithms using 
semi-empirical, semi-analytical, and bio-optical models. The 
semi-empirical models establish the relationships between the remote 
sensing data and water quality parameters by selecting characteristic 
wavebands. The semi-analytical models introduce empirical formulas to 
retrieve the water quality parameters. The bio-optical models are based 
on the theory of water radiative transfer, which is used to establish the 
relationship between the apparent optical properties (AOPs) and the 
inherent optical properties (IOPs). These models have achieved good 
results in the estimation and monitoring of the water environment 
(Gitelson et al., 2008; Gordon et al., 1988; Härmä et al., 2001; Penuelas 
et al., 1995). However, in addition to these optically active variables, 
there are also some other important water quality parameters that are 
optically inactive as they have weak optical characteristics. However, 
these optically inactive parameters, such as total nitrogen (TN), total 
phosphorus (TP), ammoniacal nitrogen (NH3–N), the permanganate 
index (CODMn), pH, and heavy metals such as cadmium (Cd), nickel (Ni), 
and zinc (Zn), can be affected by the optically active parameters. These 
optically inactive water quality parameters are related to water eutro
phication, and are of great significance to environmental assessment, 
especially for human health (Kar et al., 2008; Vakili and Amanollahi, 
2020). However, it is difficult to establish the optical characteristics of 
these parameters directly in the complex bio-optical environment of 
inland water (Allali et al., 1997; Gholizadeh et al., 2016). Nevertheless, 
these parameters can be estimated by first establishing the internal 
correlation with the optically active parameters, and then performing 
correlation analysis (El Din and Zhang, 2017; El Din et al., 2017). For 
example, TP and TN can be directly related to Chla concentration and 
indirectly related to transparency or water clarity (Kutser et al., 1995; 
Song et al., 2012; Wang et al., 2020). The suspended solids usually act as 
a carrier for both nitrogen and phosphorus, and they are generally 
highly correlated (Dekker et al., 2002). The heavy metals in water can 
exist in a particle form, a dissolved form, and a biological form (Zheng 
et al., 1982). Furthermore, the distribution of heavy metals in water is 
controlled by the suspended sediments, phytoplankton, and dissolved 
organic matter, which implies that the concentration of heavy metals 
correlates with the spectral properties of water (Chen et al., 2010). 

The concentrations of the optically inactive water quality parameters 
can be estimated using remote sensing. For example, El Din and Zhang 
(2017) estimated the concentrations of both optically active and opti
cally inactive water quality parameters using Landsat 8 data and a 
stepwise regression method, and they explored the indirect relationships 
between the spectral satellite data and the concentrations of the opti
cally inactive water quality parameters. Vakili and Amanollahi (2020) 
utilized an artificial neural network (ANN) model and a linear regression 
model to determine the relationship between Landsat 8 Operational 
Land Imager (OLI) imagery and TP and TN concentrations, and they 
showed that the ANN model can improve the prediction accuracy for 
optically inactive water quality variables based on remote sensing data. 
However, for most of these optically inactive water quality variables, the 

complex bio-optical environment containing many different water pol
lutants makes it difficult to find a specific internal correlation between 
the spectral information and the optically inactive water quality pa
rameters. In this case, the traditional linear and nonlinear regression 
techniques may not be able to model such complex nonlinear relation
ships, which is a significant obstacle in the field of inland water quality 
estimation using remote sensing technology. 

With the development of artificial intelligence, machine learning 
methods have gradually been applied to the field of remote sensing. Due 
to the unique advantages of machine learning algorithms in solving 
complex nonlinear problems, many methods such as partial least squares 
regression (PLSR) and support vector regression (SVR) have been uti
lized to estimate water quality parameter concentrations (Singh et al., 
2011; Song et al., 2013; Sun et al., 2009; Wang et al., 2017; Yang et al., 
2020). However, the traditional regression models cannot extract the 
deep spectral and spatial features of the hyperspectral data, which 
means that the regression accuracy cannot meet the requirements, and it 
is impossible to accurately reflect the pollution distribution. Differing 
from the traditional machine learning methods, deep learning based 
methods have shown their superiority in remote sensing image classi
fication (Wang et al., 2019) and spectral information reconstruction (Li 
et al., 2017b). A deep neural network (DNN) model uses multiple hidden 
layers between the input and output layers to simulate complex 
nonlinear relationships. As a result, DNN models can be used for the 
classification and regression of spectral data (Li et al., 2014). The biggest 
differences between a DNN model and a convolutional neural network 
(CNN) model are that the CNN model uses convolutional layers to obtain 
the features of the input data, and the CNN model can capture rich 
spatial and spectral information when the input data are hyperspectral 
imagery. Many studies have demonstrated the superiority of CNN 
models in hyperspectral image classification (Gong et al., 2019; Li et al., 
2016). Recently, in a pioneering study, a CNN model was utilized to 
solve the hyperspectral image regression problem, to estimate the con
centrations of phycocyanin and Chla (Pyo et al., 2019). Compared with 
the bio-optical algorithms, CNN models can obtain a higher prediction 
accuracy and reasonable spatial distribution results, which shows the 
superiority of deep learning methods in the feature extraction and image 
understanding of high-dimensional data. 

In this study, we focused on the estimation of multiple water pa
rameters in the complex bio-optical environment of inland water using 
airborne hyperspectral imagery, and we attempted to find a deep 
learning model that can accurately estimate multiple water quality pa
rameters through the use of the multi-band characteristics of hyper
spectral remote sensing data. Two deep learning based regression 
models were developed, which have a superior ability to extract the 
features of high-dimensional data. A patch-based approach is proposed 
to extract the spatial-spectral information, which makes the deep ar
chitecture more effective. Benefiting from the end-to-end learning and 
nonlinear mapping characteristics, the proposed algorithm has the po
tential to be used for optically inactive water quality parameter esti
mation. Accordingly, the aims of this study were: 1) to investigate the 
use of deep learning based regression methods with hyperspectral 
remote sensing images to estimate the optically inactive inland water 
quality parameters; 2) to compare the accuracy of the deep learning 
regression methods with that of the traditional regression methods 
(PLSR, SVR); and 3) to generate spatial distribution maps for these 
multiple water quality parameters, and analyze the overall water quality 
and pollution sources in the study area. 

2. Materials and methods 

2.1. Study area 

The study area was chosen as the Guanhe River, which is located in 
the north of Jiangsu province, China, and flows from southwest to 
northeast. It is the largest river flowing into the Yellow Sea in the north 
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of Jiangsu province. The Guanhe River is a natural tidal river, with a 
stream length of about 77.5 km and a basin area of 8000 km2. The runoff 
volume of the Guanhe River is 3.5 billion m3. It is an important agri
cultural and fishery production area, as well as being one of the main 
transfer routes for the industries in the south of Jiangsu province. 

The sampling and flight area was located in the 36 km from the upper 
reaches of the Guanhe River (34.22◦N, 119.54◦E) to the river mouth 
(34.46◦N, 119.78◦E), as shown in Fig. 1a. According to the Chinese 
Environmental Quality Standards for Surface Water (GB3838-2002), the 
TN, TP, and ammoniacal nitrogen in the Guanhe River all exceed the 
standards, to varying degrees. The pollution comes from agricultural, 
domestic, and industrial sources. There are several industrial parks sit
uated around the Guanhe River, which have different degrees of impact 
on the water quality. It has also been reported that industrial chemical 
plants have polluted the Guanhe River, seriously affecting the water 
quality and posing a high environmental risk to the local aquatic or
ganisms (Han et al., 2018). The water quality of the Guanhe River also 

affects the health of the local population and the sustainable develop
ment of the social economy. 

2.2. Data acquisition 

2.2.1. Hyperspectral image acquisition 
A visible and near-infrared (VNIR) imaging spectrometer developed 

in China was used for the hyperspectral image acquisition. The sensor 
parameters are shown in Table S1. Before the flight, a monochromator 
and integrating sphere were used to carry out accurate spectral cali
bration and radiation calibration. The acquisition dates for the hyper
spectral imagery were November 23 and November 24, 2017, and 31 
strips were generated in total. 

Geometric correction was completed using airborne position and 
orientation system (POS) data, and the MODTRAN4 radiative transfer 
model was utilized for the atmospheric correction. The MODTRAN 
model solves the radiative transfer function to generate the physical 

Fig. 1. Geographic location of the study area and the selected sampling positions. (a) Map showing the location of the study area. (b) Map showing the location of the 
sampling points on the Guanhe River. (c) Mosaicked hyperspectral image after processing. 
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parameters related to atmospheric correction, such as the transmittance 
and spherical albedo. Because of the high spectral resolution of the 
radiative transfer calculation, which can reach a wavenumber of 1 cm− 1, 
it is widely used in the atmospheric correction of hyperspectral images 
(Keith et al., 2014; Pyo et al., 2018). By acquiring the atmospheric pa
rameters at the time of the flight, including the temperature, humidity, 
and aerosol optical thickness, and by inputting these parameters into the 
MODTRAN4 model, the final reflectance image data were obtained with 
a spatial resolution of 2 m. As the river flows from southwest to north
east, the flight direction was also designed to be southwest to northeast. 
The final hyperspectral image after mosaicking is shown in Fig. 1c, 
which has been rotated by 45◦. 

2.2.2. Field data collection 
The locations of the sampling points for the research area were 

established using a 0.8 × 0.8 km2 neighborhood grid for each point. In 
addition, dense sampling points were added in the key areas, such as the 
industrial areas and the river mouth, as shown in Fig. 1b. At the same 
time as the flight, 60 water samples were collected synchronously at a 
depth of 50 cm beneath the water surface and sent to the laboratory for 
testing. The water quality parameters recorded in the laboratory testing 
were the three heavy metal elements of Zn, Cd, and Ni, and the four 
organic parameters of CODMn, TN, TP, and NH3–N. The test methods 
were based on the National Standards of China. The specific test 
methods are listed in Table S2. 

2.3. Spectral feature analysis 

2.3.1. Spectral pre-processing 
The water quality parameter estimation can be regarded as a 

regression task, with the input being the spectral data after first-order 
differentiation. After the first-order differentiation, the spectra can 
better reflect the spectral change information, while the interference of 
the linear background is suppressed and the overlapping spectral char
acteristics can be distinguished. Moreover, the first-order differential 
spectral information can also eliminate the influence of the specular 
reflection of water bodies, and is an approach that is often used in water 
quality modeling (Han, 2005; Xing et al., 2013). The formula for 
first-order differential processing is as follows: 

R′

(λi)=
R(λi+1) − R(λi− 1)

2λi
, (1)  

where λi is the wavelength; Rˈ(λi) is the spectrum after first-order dif
ferential processing at wavelength λi; and R(λi-1) and R(λi+1) are the 
spectral reflectance values at wavelength λi-1 and wavelength λi+1, 
respectively. 

2.3.2. Pearson correlation analysis 
The Pearson correlation coefficient is used to express the degree of 

linear correlation between two variables. The correlation coefficient 
values range from − 1 to 1. Positive and negative numbers indicate 
positive correlation and negative correlation, respectively. Its absolute 
value represents the degree of correlation between two variables. The 
closer the Pearson correlation coefficient is to 1, the stronger the cor
relation. The Pearson correlation coefficient calculation formula is as 
follows: 

r =

∑n

i=1
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − y)2

√ , (2)  

where n is the sample size; xi, yi are the individual sample points with i; 
and x, y are the mean values of the samples. 

2.4. Regression methods 

In this study, the PLSR linear regression method and three nonlinear 
regression methods were considered in the comparison. The nonlinear 
regression methods were SVR and the deep learning based methods of 
pixel_DNNR and patch_DNNR. In the following, we introduce the pa
rameters and structures of the three nonlinear models. 

2.4.1. Support vector regression (SVR) 
SVR is the support vector machine (SVM) implementation for 

regression and function approximation, which has shown its superiority 
when dealing with multi-dimensional and small sample size datasets 
(Okujeni et al., 2013; Schölkopf et al., 2002). The main idea behind SVR 
is to find an optimal approximating hyperplane in the high-dimensional 
feature space to estimate the linear dependency between the n-dimen
sional input vectors and the 1-dimensional output variables (Brereton 
and Lloyd, 2010). 

In order to map the data implicitly to a higher-dimensional feature 
space and make the data fit better, the radial basis function (RBF) was 
chosen as the kernel function. In the training process for the SVR model, 
the penalty parameter C and the kernel function parameter g are 
required to be optimized. Empirically, cross-validation with grid search 
is the most popular way to search for the best settings for parameters C 
and g (Chang and Lin, 2011; Zhang et al., 2015). In this study, we 
determined a wide parameter range (C and g within [2− 10,210]) with 
grid search and 5-fold cross-validation, to complete the training of the 
SVR model. 

2.4.2. Pixel-based deep neural network regression (pixel_DNNR) 
A DNN is a feed-forward ANN with multiple hidden layers, which are 

fully connected between the input and output layer (Qian et al., 2014). 
Many complex regression or classification problems cannot be solved 
with a single hidden layer, so we have to increase the depth of the 
network by setting multiple hidden layers. As the multiple hidden layer 
network architecture has a better ability to represent the data, it can 
extract deeper features to improve the accuracy of the regression and 
classification, and can learn patterns from the input data. 

In a DNN, there are many connecting neurons in the multiple hidden 
layers, which can lead to high redundancy, and also difficulty in 
achieving convergence of the network through the optimization process 
(Di Noia et al., 2015; Segal-Rozenhaimer et al., 2020). We introduce a 
residual block to solve the problem of gradient disappearance and 
gradient explosion caused by the multiple hidden layers. A diagram of 
the residual block structure is shown in Fig. S1. The input x is connected 
to the output of the nonlinear layer through shortcut connections, and 
the final output is H(x) = F(x) + x. The stacked nonlinear layers fit 
another mapping of F(x) = H(x) − x, and the original mapping is recast 
into F(x) + x. The residual block can adjust the weight layer and build 
the identity mapping, which can effectively improve the modeling effect 
of the deep network (He et al., 2016). 

In this study, we designed a pixel_DNNR model with seven hidden 
layers, and used a rectified linear unit (ReLU) as the activation function. 
In order to improve the generalization ability of the network, we utilized 
batch normalization before the activation function of each layer. When 
training with batch normalization, a training example is seen in 
conjunction with other examples in the mini-batch, and the training 
network no longer produces deterministic values for a given training 
example, which is advantageous to the generalization of the network 
(Ioffe and Szegedy, 2015). In addition, a dropout layer randomly ignores 
the output nodes of the prior layer, and the weight and bias are not 
updated in the backward network, resulting in generalization of the 
deep learning model and less overfitting of the training dataset (Sri
vastava et al., 2014). 

The network parameters are listed in Table S3. The other parameters, 
including the learning rate and number of epochs, were adjusted 
empirically through cross-validation. The deep regression models were 
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implemented in PyTorch, and the network optimizer was the Adam 
optimizer with mean-squared error (MSE) loss. The learning rate and 
epoch number were optimally set to 0.01 and 600, respectively. The 
architecture of the designed pixel_DNNR model is shown in Fig. 2a. The 
input is the spectral data of one pixel after first-order differentiation, and 
the final output value is the parameter concentration. 

2.4.3. Patch-based deep neural network regression (patch_DNNR) 
Pixel-based DNNs mainly consider the information of single pixels, 

and the spatial information in the image is ignored (Schwarz et al., 
2015). The input of a patch-based deep neural network has three 
dimensions—height, width, and depth—and by considering the spatial 
information, patch-based DNNs are more suitable for hyperspectral 
image processing. The convolutional layer is the core building block of a 
patch-based DNN, which reduces the amount of parameters and their 
redundancy through local perception and weight sharing (LeCun and 
Bengio, 1995). 

The multi-dimensional image pixels contain complex and highly 
heterogeneous spatial and spectral features, and the input patch size 

affects the feature representation of the patch_DNNR model. Previous 
studies have found that a relatively small input patch size (8 × 8) for the 
regression is more suitable for extracting nonlinear spatial features, 
without losing heterogeneous information (Pyo et al., 2019). Consid
ering the image resolution and overall image size, the input patch size 
was set to 9 × 9 through the optimization. 

The network architecture of the patch_DNNR model is described in 
Table S4. The designed patch_DNNR model is made up of three con
volutional layers, one dropout layer, and three fully connected layers. 
The stride of each convolutional layer is one, while the filter size of the 
first convolutional layer is 3 × 3, and that of the other convolutional 
layers is 2 × 2. After three layers of convolution and dropout, the 
extracted deep features are fed into three fully connected layers, and the 
final output value is the parameter concentration. Batch normalization 
and the ReLU activation function are utilized in each layer. The pa
rameters of the learning rate, number of epochs, and filter size were 
adjusted empirically through cross-validation. The learning rate and 
epoch number were optimally set to 0.01 and 150, respectively. The 
architecture of the designed patch_DNNR model is shown in Fig. 2b. 

Fig. 2. The architecture of the designed regression models. (a) The pixel-based deep neural network regression model (pixel_DNNR). (b) The patch-based deep neural 
network regression model (patch_DNNR). 
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2.5. Model evaluation 

In this paper, the model performance is evaluated by the commonly 
used regression evaluation indices of the coefficient of determination 
(R2), the MSE, the mean absolute error (MAE), the mean normalized bias 
(MNB), and the residual prediction deviation (RPD). Rc2, MSEc, MAEc, 
and MNBc are the evaluation indices for the calibration, while Rp2, 
MSEp, MAEp, and MNBp are the evaluation indices for the prediction. 
The RPD is the ratio of the standard deviation of the prediction dataset 
(SDval) to the standard error of prediction (Williams, 1987). The indices 
are calculated as follows: 

R2 = 1 −

∑n

i=1

(

ŷi − yi

)2

∑n

i=1

(

yi − yi

)2 (3)  

MSE =
1
n
∑n

i=1

(

ŷi − yi

)2

(4)  

MAE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒ŷi − yi

⃒
⃒
⃒
⃒ (5)  

MNB=
1
n
∑n

i=1

(

ŷi − yi

)

yi
× 100% (6)  

RPD=
SDval

RMSE
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n/(n − 1)

√ , (7)  

where yi is the measured value, ŷi is the predicated value, and n is the 
number of sample points. In general, a model can be said to perform well 
if it has higher R2 and RPD values and lower MSE, MAE, and MNB 
values. 

3. Results and discussion 

3.1. Data analysis 

The collected water samples were tested by a professional institution, 
with the basic statistical analysis including the mean value (MEAN), 
maximum value (MAX), minimum value (MIN), standard deviation 
(STD), and coefficient of variation (CV). The test results are listed in 
Table S5. It can be seen that the CV of these parameters is less than 0.6%, 
which indicates slight data dispersion and the fact that these data are 
suitable for regression analysis. 

To determine if the sample size was large enough, a statistical for
mula, as shown in Eq. (8), based on the desired power of the analysis was 
utilized (El Din and Zhang, 2017): 

n= [(z × σx)/ME]2, (8)  

where n is the minimum sample size, z is the value of the standard 
normal distribution for the desired confidence level (e.g., z = 1.96 for a 
95% confidence level), and ME is the desired margin of error. At a 
confidence level of 95%, a desired marginal error of ±2 units, and a 
maximum standard deviation of 4.41 for the seven measured water 
quality parameters, z = 1.96. Accordingly, the calculated sample size is 
18.6, which indicates that the 60 water samples were adequate in this 
study. 

On the basis of the Chinese Environmental Quality Standards for 
Surface Water (GB3838-2002), inland water quality is divided into five 
standards—Class I to Class V—of which Class I is the best and Class V is 
the worst. If the water parameter concentration exceeds the Class 5 
standard, it is deemed as “inferior Class 5”. Table S6 lists the standard 
values of the basic items for the environmental quality standards for 

surface water (the value for Ni is not given in the standards). According 
to the test results for the sampling points, the statistics for the water 
quality grades are listed in Table S7. It can be seen from the statistical 
results that the heavy metal items are all at Class I levels. In terms of the 
organic parameters, the water quality classification results for TP are 
between Class III and Class V, of which the Class IV standard accounts 
for 66.6% and the Class V standard about 26.6%. The classification re
sults for CODMn are all Class III and Class IV, accounting for 40% and 
60%, respectively. Some of the NH3–N and TN samples exceed the Class 
V standard, and even reach the inferior Class 5 standard, accounting for 
36.6% and 85%, respectively. In general, the organic pollution and 
eutrophication of the Guanhe River can be deemed serious, and the 
overall water quality for the Guanhe River is inferior Class V. 

3.2. Spectral characteristics analysis and curve fitting models 

The Pearson correlation coefficients of the spectra after the first- 
order differentiation were analyzed using single bands and the band 
ratio. The results of the correlation analysis for the seven water quality 
parameters are shown in Fig. 3. It can be seen that the concentration 
values of some of the organic, parameters, such as CODMn and TN, are 
closely related to the processed spectra. The high-correlation wave
lengths are around 600 nm, 670 nm, 700 nm, 770 nm, and 820 nm. In 
addition, the absolute value of the correlation coefficients is more than 
0.6 around 600 nm–800 nm, which shows the consistent absorption and 
reflection characteristics for Chla (Gitelson et al., 2008). 

The characteristic band with the highest correlation was selected for 
the curve fitting modeling, to estimate the water quality parameter 
concentrations. It can be seen from the curve fitting modeling results 
listed in Table 1 that the R2 and RPD values are less than 0.6 and 1.2, 
respectively. Therefore, it is difficult to meet the accuracy requirement 
for the optically inactive water quality parameter concentration esti
mation using the spectral feature selection method. 

3.3. Comparative analysis of the water parameter estimation models 

The dataset used in the experiment was made up of 60 items of 
spectral data (pixel-based for PLSR, SVR, and the DNNR model, and 
patch-based for the DNNR model) and laboratory test data, which were 
randomly divided into a training set (40) and a test set (20) according to 
the ratio of 2:1. The heavy metals of Zn, Cd, and Ni and the organic 
pollution parameters of CODMn, NH3–N, TN, and TP were estimated 
using PLSR, SVR, the pixel_DNNR model, and the patch_DNNR model. 
The regression results for these seven parameters are listed in Table 2. 
The PLSR model shows the worst accuracy, with the Rp2 values all less 
than 0.6, expect for TN. The SVR model shows good regression results 
for Zn, CODMn, and TN, but it cannot meet the accuracy requirements for 
the other parameters. The pixel_DNNR model performs better than SVR, 
and obtains good regression results, except for Ni and NH3–N. Differing 
from the SVR model and pixel_DNNR model, the input of the 
patch_DNNR model is patch-based spectra. The patch_DNNR model 
obtains a high prediction accuracy for all seven water quality parame
ters, with the Rp2 values and the RPD values being greater than 0.6 and 
1.6, respectively, and it shows the best regression performance. The 
scatter plots for the observed water quality parameter values and the 
predicted values of the patch_DNNR model are shown in Fig. 4. 

Overall, comparing the accuracy of the three models, it can be seen 
that the deep neural network regression models (pixel_DNNR, 
patch_DNNR) can identify the deep spectral features of the optically 
inactive water quality parameters, and the regression accuracy is greatly 
improved when compared with the results of the traditional machine 
learning based PLSR and SVR models. Moreover, the patch_DNNR model 
performs better than the pixel_DNNR model, which indicates the 
robustness and accuracy of the designed patch_DNNR model in solving 
complex regression problems. 
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Fig. 3. The correlation of single bands and the band ratio after the first-order differential pre-processing. (a) Zn, (b) Cd, (c) Ni, (d) CODMn, (e) TN, (f) TP, and 
(g) NH3–N. 

Table 1 
Curve fitting results for the water quality parameters.  

Parameter Modeling formula Selected wavelength R2 MSE MAE MNB RPD 

Zn y = − 0.0808x2 + 2.1047x + 2.7453 x = 826.54/570.09 0.4128 11.2566 2.6451 16.4807 0.8382 
Cd y = − 1.9955x + 0.1932 x = 826.54 0.2585 0.0001 0.0087 0.3086 0.5905 
Ni y = 4.0208e− 0.453x x = 831.38/429.76 0.3417 1.0583 0.7824 1.73 0.6941 
CODMn y = 421.21x + 3.4429 x = 671.70 0.5287 0.5557 0.6368 1.5425 1.0592 
TN y = − 61964x2 + 1359.6x − 2.6174 x = 671.70 0.5705 0.6057 0.6314 5.4216 1.1525 
TP y = − 0.002x2 + 0.0403x + 0.1309 x = 753.96/570.09 0.4178 0.0014 0.0298 2.3324 0.8611 
NH3–N y = 0.8996x + 0.645 x = 778.15/429.76 0.2759 0.3928 0.4806 14.9260 0.6172  
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3.4. Water quality parameter estimation for the airborne hyperspectral 
imagery 

After comparing the accuracies of the different regression models, 
the trained patch_DNNR model was applied to estimate the water quality 
parameters for the airborne hyperspectral images of the study area. The 
spatial distribution of the seven water quality parameters is shown in 
Fig. 5. It can be seen that the estimated high-value areas are distributed 
in the lower reaches of the Guanhe River and around the river mouth, 
and the estimated pollution in the upper reaches of the Guanhe River is 
relatively light. Except for Ni, the other parameters were classified into 
the six pollution classes of the Chinese Environmental Quality Standards 
for Surface Water (GB3838-2002), as shown in Table S6. The water 
quality classification maps for the Guanhe River are shown in Fig. 6. The 
water quality classification results for Zn and Cd are shown in Fig. 6a 
and b, where the overall water quality is Class I. For the organic water 
quality parameter of CODMn, as shown in Fig. 6c, the water quality is 
Class III to IV. For the TN in the study area, the pollution is serious, and 
this parameter is generally the inferior Class V, as shown in Fig. 6d. It 
can be seen from Fig. 6e that the Class V water is distributed in the 
middle and lower reaches and near the river mouth. The NH3–N 
pollution is also serious, and the water quality in the middle and lower 
reaches also reaches inferior Class V. 

3.5. Analysis of the pollution sources 

Through on-site investigation, we established that there are two 
large industrial parks and residential areas in the heavily polluted area, 
as shown in Fig. 7. There are more than 100 enterprises in the industrial 
parks, including printing and dyeing, pharmaceutical and cosmetic, 
pesticide, and other industries. Industrial parks can have different de
grees of environmental problems, such as wastewater discharged 
without treatment, illegal disposal of hazardous waste, etc. The Guanhe 
River is also surrounded by large areas of farmland, in addition to 
poultry and livestock plants. Synthetic chemical fertilizer is the main 
source of nitrogen in water, and a large volume of unused nitrogen 

compounds from crops can enter groundwater and surface water by 
farmland drainage and surface runoff. When the urine and feces of 
poultry, livestock, and aquatic animals are discharged into a water body 
without treatment, the TN and NH3–N in the water body can easily 
exceed the standards. 

In our study area, the pollution situation for TN, TP, and NH3–N is 
serious. The overall spatial distributions of these parameters are roughly 
the same, i.e., light in the upper reaches and serious in the middle and 
lower reaches. The TN pollution is the most serious, and the inferior 
Class V makes up more than 90% of the total. In addition, the maximum 
concentration is more than twice the value of the Class V standard. The 
NH3–N pollution is also serious in the middle and lower reaches, where 
the inferior Class V standard accounts for more than 40%, and the 
maximum concentration is more than twice the value of the Class V 
standard. Compared with TN and NH3–N, the TP pollution is lighter, but 
the water quality in the middle and lower reaches of the region also 
reaches Class V. The main problems for the water environment of the 
Guanhe River Basin are as follows:  

1. Industrial pollution sources are widely distributed in the research 
area, and a large amount of industrial wastewater is discharged 
indiscriminately into the river, without any treatment, resulting in 
serious pollution in the lower reaches of the Guanhe River.  

2. Agricultural pollution, including pollution from crop production, 
aquaculture, and livestock breeding, is also serious. The amount of 
agricultural pollution sources discharged into the river is huge, 
resulting in the levels of TN, TP, and NH3–N exceeding the standards 
by a significant margin.  

3. The Guanhe River Basin is densely populated, and the industrial 
parks attract a large number of migrant workers, which leads to an 
increase in domestic sewage discharge. 

3.6. Limitations and future prospects 

In this study, our main concerns were establishing the pollution 
status of the research area quickly and accurately, estimating the 

Table 2 
Regression results for the water quality parameters.  

Water quality parameter Method Rc2 MSEc MAEc MNBc Rp2 MSEp MAEp MNBp RPD 

Zn PLSR 0.7634 4.8544 1.7006 − 3.4963 0.4404 9.1986 2.6598 − 8.7651 1.4124 
SVR 0.9266 1.5377 0.4217 1.0254 0.7034 4.5838 1.7638 5.8942 1.8042 
pixel_DNNR 0.9701 0.6198 0.6595 0.7827 0.7207 4.4651 1.7396 7.4872 1.8367 
patch_DNNR 0.9509 1.0123 0.4937 0.8220 0.8828 1.8960 0.7981 − 5.4661 2.7279 

Cd PLSR 0.2167 0.0002 0.0097 2.1062 0.1980 0.0001 0.0078 5.0944 1.2177 
SVR – – – – – – – – – 
pixel_DNNR 0.7529 0.0001 0.0004 0.1328 0.6255 0.0002 0.0101 1.8237 1.6388 
patch_DNNR 0.6961 0.0001 0.0063 − 0.5263 0.7209 0.0001 0.0051 − 0.5367 1.8931 

Ni PLSR 0.8116 0.3338 0.4424 0.0513 0.2528 0.9474 0.6973 4.0442 1.2386 
SVR 0.9374 0.1282 0.1711 − 0.0173 0.3382 1.1579 0.5791 − 5.7684 1.2866 
pixel_DNNR 0.7241 0.4112 0.5360 0.1047 0.4598 0.8908 0.7965 3.3765 1.4328 
patch_DNNR 0.8041 0.3166 0.4434 − 0.0405 0.7956 0.3245 0.4398 − 1.9035 2.2121 

CODMn PLSR 0.8736 0.1667 0.3362 1.4032 0.4897 0.4568 0.5941 6.7809 1.4203 
SVR 0.7296 0.3341 0.4089 2.3466 0.5678 0.4446 0.5610 − 3.0733 1.4822 
pixel_DNNR 0.8498 0.1619 0.3335 − 1.8763 0.7227 0.3317 0.4671 4.0494 1.8463 
patch_DNNR 0.9373 0.0724 0.1785 0.2131 0.8439 0.1902 0.2700 3.2312 2.5311 

TN PLSR 0.8881 0.1666 0.3388 − 4.1478 0.6129 0.4676 0.5718 9.0966 1.6754 
SVR 0.9124 0.1314 0.2087 2.4598 0.6950 0.3207 0.4777 − 7.0413 2.1774 
pixel_DNNR 0.9311 0.0986 0.2241 3.0378 0.8281 0.2349 0.3762 6.0679 2.7867 
patch_DNNR 0.9821 0.0248 0.1163 2.2942 0.9394 0.0806 0.1814 4.2852 4.0636 

TP PLSR 0.6732 0.0003 0.0218 2.0117 0.4507 0.0012 0.0312 4.0674 1.4742 
SVR – – – – – – – – – 
pixel_DNNR 0.9578 0.0001 0.0008 0.2308 0.7724 0.0004 0.0164 2.3669 2.0472 
patch_DNNR 0.8914 0.0002 0.0129 − 1.4593 0.8677 0.0003 0.0145 − 2.2867 2.7497 

NH3–N PLSR 0.7823 0.1059 0.2663 4.7965 0.3899 0.3761 0.4617 8.0437 1.3421 
SVR 0.9864 0.0091 0.0936 3.7687 0.0926 1.2557 1.3845 12.3478 1.1624 
pixel_DNNR 0.9974 0.0010 0.0241 3.4388 0.4895 0.4368 0.5245 − 8.7246 1.4682 
patch_DNNR 0.6401 0.1903 0.3543 5.7231 0.6189 0.2167 0.3469 7.8709 1.6199 

(The “-” in the table indicates that the Rp2 is less than 0.01). 
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optically inactive water quality parameter concentrations, and mapping 
the distribution of the pollution. Because only one temporal period of 
hyperspectral image data of the study area was obtained in this study, 
this scenario was more suitable for quickly establishing the water quality 
of the river and tracing the pollution sources, rather than building a 
universal water quality estimation model. However, for a study area 
with a high concentration of suspended solids, and for locations where 
the atmospheric absorptive aerosol effect affects the accuracy of the 

atmospheric correction, the water surface reflectance obtained by the 
traditional atmospheric correction method would be affected, resulting 
in a reduction in the model accuracy. In addition, some common rules 
for optically inactive inland water parameter estimation based on deep 
learning regression and airborne hyperspectral images need to be 
further explored. In the future, we will attempt to establish an atmo
spheric correction method for use in a turbid water scenario, and we will 
explore the effect on the model precision of water bodies with different 

Fig. 4. Scatter plots of the observed water quality parameter values and the estimated values predicted by the patch_DNNR model for: (a) Zn, (b) Cd, (c) Ni, (d) 
CODMn, (e) TN, (f) TP, and (g) NH3–N. 

C. Niu et al.                                                                                                                                                                                                                                      



Environmental Pollution 286 (2021) 117534

10

Fig. 5. Water quality parameter concentration spatial distribution maps for the Guanhe River: (a) Zn, (b) Cd, (c) Ni, (d) CODMn, (e) TN, (f) TP, and (g) NH3–N.  
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turbidity levels. We will also introduce some optically active water 
quality parameters to find the internal relationship with the optically 
inactive water quality parameters, and we will analyze the mechanism 
between the hyperspectral features and the retrieval objects. 

4. Conclusion 

Optically inactive water quality parameter estimation is a difficult 
task in water quality monitoring using remote sensing techniques, and 
the traditional semi-empirical and semi-analytical models cannot meet 
the accuracy requirements, especially in the complex bio-optical envi
ronment of inland water. In this study, we implemented deep learning 
based regression for the estimation of the optically inactive water pa
rameters in an inland water body. The experiments showed the 

superiority of the deep learning based regression models in solving 
complex regression problems. Compared with the traditional machine 
learning models, the deep learning based model accuracy was greatly 
improved. The patch_DNNR model obtained a high prediction accuracy 
for all seven water quality parameters, especially for Zn, CODMn, TN, 
and TP, which all had Rp2 values of greater than 0.8. After the accuracy 
evaluation, spatial distribution maps and water quality classification 
maps were generated using the hyperspectral imagery of the study area. 
Through the analysis of the laboratory test data and the on-site inves
tigation of the research area, the spatial distribution maps were found to 
accurately reflect the actual situation, with the high-value regions 
distributed around the two large industrial parks and residential areas. 
In summary, the deep learning based regression models will be useful for 
water pollution monitoring, and could help government departments to 

Fig. 6. Water quality parameter classification maps for the Guanhe River. (a) Zn, (b) Cd, (c) Ni, (d) CODMn, (e) TN, (f) TP, and (g) NH3–N.  
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make pollution prevention and control decisions for inland water 
bodies. 
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