
Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

Estimating the distribution trend of soil heavy metals in mining area from
HyMap airborne hyperspectral imagery based on ensemble learning

Kun Tana,b,c,*,1, Weibo Mac,d,*,1, Lihan Chenc, Huimin Wangc, Qian Due, Peijun Duf,*,
Bokun Yang, Rongyuan Liug, Haidong Lid

a Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
b School of Geographic Sciences, East China Normal University, Shanghai 200241, China
c Key Laboratory for Land Environment and Disaster Monitoring of NASG, China University of Mining and Technology, Xuzhou 221116, China
dNanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
e Department of Electrical and Computer Engineering, Mississippi State University, MS 39762, USA
f Key Laboratory for Satellite Mapping Technology and Applications of NASG, Nanjing University, Nanjing 210023, China
g China Aero Geophysical Survey&Remote Sensing Center for Natural Resources, Beijing 100083, China

G R A P H I C A L A B S T R A C T

A R T I C L E I N F O

Editor: Deyi Hou

Keywords:
Airborne hyperspectral remote sensing
Soil heavy metal estimation
Heavy metal spectral characteristics
Overfitting
Ensemble learning

A B S T R A C T

The problem of heavy metal pollution of soils in China is severe. The traditional spectral methods for soil heavy
metal monitoring and assessment cannot meet the needs for large-scale areas. Therefore, in this study, we used
HyMap-C airborne hyperspectral imagery to explore the estimation of soil heavy metal concentration. Ninety
five soil samples were collected synchronously with airborne image acquisition in the mining area of Yitong
County, China. The pre-processed spectrum of airborne images at the sampling point was then selected by the
competitive adaptive reweighted sampling (CARS) method. The selected spectral features and the heavy metal
data of soil samples were inverted to establish the inversion model. An ensemble learning method based on a
stacking strategy is proposed for the inversion modeling of soil samples and image data. The experimental results
show that this CARS-Stacking method can better predict the four heavy metals in the study area than other
methods. For arsenic (As), chromium (Cr), lead (Pb), and zinc (Zn), the determination coefficients of the test data
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set (RP
2) are 0.73, 0.63, 0.60, and 0.71, respectively. It was found that the estimated results and the distribution

trend of heavy metals are almost the same as in actual ground measurements.

1. Introduction

Soil is an important part of the terrestrial ecosystem, and the quality
of soil is directly related to the health of the organisms in it. Human
activities, such as mining, industrial waste, and the irrational use of
pesticides, increase the concentration of heavy metals in soils. This can
seriously threaten the life and health of human beings through the
heavy metal enrichment of crops (Jia et al., 2018; Wei and Yang, 2010;
Chen et al., 2015a). In order to accurately estimate the concentrations
and distributions of heavy metals in soil, hyperspectral remote sensing
has been employed in recent years, which is both time- and labor-saving
(Zhao et al., 2017; Brevik et al., 2016; Bendor et al., 2009; Chen et al.,
2015b; Wang et al., 2018a). Due to the rich spectral information, hy-
perspectral remote sensing data can capture the weak discriminative
information of heavy metals (Gholizadeh et al., 2018). An inversion
model can then be stablished to estimate the concentrations of the
heavy metals in the larger scope of the study area (Wu et al., 2007;
Kinoshita et al., 2012; Brown et al., 2006). Most of the research on
detecting heavy metals in soil by remote sensing have concentrated on
the visible–near-infrared portion of the spectrum (i.e., 350–2500 nm),
and the mid-infrared and far-infrared wavelengths have been used far
less frequently (Wang et al., 2018a; Shi et al., 2014a; Soriano-Disla
et al., 2014). This is because the visible–near-infrared spectrum has
distinctive features for soil, and rich data resources are obtained by
hundreds of sensors.

In late 20th century, some scholars have tried to detect the con-
centration of heavy metals in soil by imaging spectroscopy. Farrand and
Harsanyi, using Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) data, mapped exposed concentrations of sediments on the
floodplain of the Coeur d'Alene River in northern Idaho in 1997 based
on Constrained Energy Minimization technique (Farrand and Harsanyi,
1997). Ferrier discovered that tailings dump material consists of a
variety of ferruginous materials that often contain trace elements which
have distinctive spectral features and make them amenable to detection
and mapping by airborne imaging spectrometer data (Ferrier, 1999).
Later scholars were able to measure the concentration of heavy metals
in soil indirectly via intercorrelation with the soil attributes that are
spectrally active in this region and through their complex-action, by Fe,
Fe2O3, organic matter (OM), Clay etc. (Wu et al., 2007; Sares et al.,
2004). In general, better prediction results were found for the total
elemental concentrations of heavy metals in soil than for extractable
and exchangeable fractions (Soriano-Disla et al., 2014).

Previous studies show that it is feasible to estimate soil heavy metal
concentration by imaging hyperspectral. However, according to the
review literature (Wang et al., 2018a), there are few successful cases of
estimating soil heavy metal concentration by hyperspectral image data.
The main reason is that when the imaged area is large, spatial hetero-
geneity is significant, and imbalanced samples are caused by the areas
where heavy metals exceed the standard severely. As a consequence,
traditional estimation methods cannot effectively overcome this im-
balance problem, so it is necessary to develop new methods to improve
the stability and accuracy of model evaluation and prediction.

At present, the most successful application of heavy metals esti-
mation in soil uses ground-based hyperspectral data, which generally
includes spectral pretreatment, spectral enhancement, feature selection
and modeling (Wang et al., 2018a). Remote sensing spectroscopy was
used to estimate the content of heavy metals in freshwater sediment by
their association with organic matter (Malley and Williams, 1997).
Subsequently, many other scenarios which may cause high heavy metal
concentrations in soil have also been explored, including mining areas
(Ma et al., 2016; Choe et al., 2008; Kemper and Sommer, 2002;

Gannouni et al., 2012), reclaimed mining areas (Tan et al., 2014), river
and lake sediments (Moros et al., 2009; Liu et al., 2011a; Ji et al.,
2010), and agricultural soils (Wang et al., 2014). Most of these attempts
are successful (Liu et al., 2016; Sun and Zhang, 2017), which demon-
strated that estimation of heavy metal concentrations using spectral
analysis of hyperspectral remote sensing imagery is a feasible approach.

Many methods of spectral feature enhancement and selection have
been developed. Meanwhile, the models involved with spectral inver-
sion have also been continually advanced. The heavy metal content in
soils is usually low, so it is necessary to preprocess the spectra to en-
hance weak spectral information. A number of preprocessing methods
(Rinnan et al., 2009; Asadzadeh and de Souza Filho, 2016; Asmaryan
et al., 2014)—such as Savitzky-Golay (SG) smoothing, first derivative
(FD) preprocessing (Dehaan and Taylor, 2002), second derivative (SD)
preprocessing, standard normal variate (SNV) preprocessing (Fearn
et al., 2009), multiplicative scatter correction (MSC), and wavelet and
continuum removal (CR)—are now widely used, and they can smooth
the spectra, eliminate the signal error caused by instrument itself, and
suppress the noise in data acquisition, thereby enhancing the weak
spectral information related the heavy metals.

After spectral pretreatment, it is necessary to select or extract
spectral features for modeling, which can improve the explanatory
power of the model and reduce the amount of calculation (Balabin and
Smirnov, 2011; Xiaobo et al., 2010; Jain and Zongker, 1997). The
Pearson method is accepted by most researchers, as the features se-
lected by this method have a certain statistical basis and explanatory
power (Wilford et al., 2016). Other feature selection methods (Jain and
Zongker, 1997; Stańczyk, 2015; Yu and Liu, 2004; Guyon, 2003), such
as terrain features or vegetation indices, may be limited in general-
ization. Among these methods, competitive adaptive reweighted sam-
pling (CARS) is well-received (Duan et al., 2017; Li et al., 2009;
Vohland et al., 2014; Tan et al., 2018). Moreover, these methods has
limited capacity in coping with variations from multiple sites. An im-
proved estimation model, CARS-PLS-SVM, to cope with the nonlinear
problem in multiple sites with support vector machine (SVM) has
proposed (Tan et al. 2018). The nonlinear CARS-PLS-SVM produces the
highest accuracy in soil heavy metal (loid) estimation.

In the exploration of modeling methods, the related research pro-
gress is significant. Based on traditional statistical regression (such as
multiple linear regression, stepwise regression), the partial least squares
(PLS) method is found to be very effective in modeling spectral in-
formation (Soriano-Disla et al., 2014; Sun and Zhang, 2017; Haaland
and Thomas, 1988; Shi et al., 2014b; Pandit et al., 2010). The PLS
method can deal with very high dimensional data. Through iteration,
the importance of each characteristic variable can be estimated, thus
giving a specific expression of the inversion model. PLS can also be
applied to feature selection, and on this basis, synergy interval partial
least squares (siPLS) (Jiang et al., 2012) and other variants were de-
veloped.

Recently, machine learning and pattern recognition techniques are
applied to the inversion of heavy metals in soils (Bishop, 2006;
Mitchell, 2003), such as support vector machine (SVM) (Thissen et al.,
2004; Devos et al., 2009; Jie, 2012), least squares support vector ma-
chine (LS-SVM) (Balabin and Lomakina, 2011), artificial neural net-
works (ANNs) (Tan et al., 2014; Rodriguez-Galiano et al., 2015), fuzzy
neural networks (FNNs) (Liu et al., 2011b; Chen and Wu, 2017a), de-
cision tree (DT)-based methods (Rodriguez-Galiano et al., 2015),
random forest (RF)-based methods (Ma et al., 2016; Wang et al., 2015),
the gradient boosting decision tree (GBDT) (Wang et al., 2015), extreme
learning machine (ELM) (Chen and Wu, 2017a), etc. In particular,
Goodarzi et al. (2015) estimated the lead (Pb) concentration in a mining
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Fig. 1. The study area is located in Yitong County, Jilin Province, Northeast China. The image true color band from HyMAP-C data. The red channel is band
17(central wavelength: 0.68 μm), the green channel is band 8(central wavelength: 0.56 μm), and the blue channel is band 1 (central wavelength: 0.47 μm). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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area by an FNN method, and the decision coefficient reached 0.98,
which was higher than PLS and ANN. Wang et al. (2014) predicted the
concentrations of Pb, zinc (Zn), and copper (Cu) more accurately than
Principle Component Regression (PCR)through the use of partial least
squares regression with genetic algorithm (GA-PLSR). In 2015,
Rodriguez-Galiano et al. (2015) used Hyperion data to predict and
evaluate mineral resources in the Rodalquilar mining area of Spain.
During this study, ANN, RF, DT, stochastic forest, and SVM algorithms
were tested and evaluated. After analyzing the size sensitivity of the
training data, the sensitivity of the hyperparameters, and the ex-
planatory ability of the model parameters, it was concluded that the
stochastic forest algorithm had the highest stability and robustness.

However, most of the previous studies are based on ground spectra.
Quantitative estimation of heavy metals using imaging spectroscopy
has been explored by few researchers, and the performance is limited
due to the coarse spatial resolution. They could not provide the spatial
distribution of heavy metals in the study area. In this research, we in-
tend to estimate the distribution of heavy metals using airborne hy-
perspectral image and propose a CARS-Stacking model for efficient
estimation. This proposed strategy can map the soil heavy metal con-
centration in a large area.

In this paper, an airborne hyperspectral image cube of the study
area in Yitong County, Jilin province, China, was collected via the
HyMap-C airborne hyperspectral imaging system. Most of the study
area is farmland, and there are several mining areas and Yitong river
flow in the surrounding. After preprocessing analysis, we propose a
CARS-Stacking ensemble learning method based on a stacking strategy
to select feature, estimate, analyze, and map the soil heavy metal
concentration in the study area.

2. Materials and methods

2.1. Study area

The study area is located in Yitong County, Jilin province, China.
This area belongs to the humid monsoon climate zone in the middle
temperate zone of China. The region is hilly, with an average annual
temperature of 5.5 ℃. The annual average precipitation is 651.7 mm,
and the sunshine is sufficient. To the north of the research area are the
suburbs of Changchun, and the Yitong River runs through the whole
research area from southeast to northwest. Yitong County is rich in
mineral resources, including gold, silver, copper, and iron. The whole
research area (125.33 °E–125.47 °E, 43.22 °N–43.33 °N) covers an area
of 139 km2. The average altitude of the study area is 305 m, the lowest
altitude is 262 m, and the highest altitude is 446 m. The location of the
research area is shown in Fig. 1.

2.2. Datasets

2.2.1. Soil samples collection and testing
At the end of April and early May in 2017, after the fields had been

ploughed, the surface soil was easily accessible. It was therefore a good
time to collect surface soil samples. The principle of the soil sampling
undertaken in this study was to densely lay sampling points in the
farmland areas around the mines, while the sampling points in the other
farmland areas were arranged as evenly as possible.

The collection of surface soil samples was basically synchronized
with the airborne hyperspectral data acquisition. The method of soil
sampling is described as follows. The location of each sampling point is
expressed by the letter O. A soil sample was composed of five individual
soil samples, each with a thickness of 5 cm (Fig. 2, ABCDO), which were
then mixed together and sealed in a bag. In the process of sampling, the
physical quantity of the sample should be no less than 2 kg, which was
strictly followed to avoid the influence of random error on the soil
samples.

In order to obtain high-precision sampling point position data, real-

time kinematic (RTK) mobile station positioning technology was used
to obtain high-precision coordinates of the sampling points in real-time.
Finally, a total of 95 soil samples were collected in the study area. The
sample locations are shown in Fig. 1. We fully mix the tested soil
samples, then store them in polytetramethylene sealed bags, take them
back to the pretreatment room, air-dry the soil samples, grind 100 mesh
nylon sieves by quartering method according to the national standards,
and mix them into sealed bags for testing. After the sample is digested
by the method of total decomposition of hydrochloric acid-nitric acid-
hydrodecanoic acid-perchloric acid, the heavy metal concentrations of
the soil samples were determined by inductively coupled plasma-mass
spectrometry (ICP-MS).

2.2.2. Analysis of spatial heterogeneity
In general, the areas of previous heavy metal inversion estimations

have been small, but this study area is more than 100 km2. The larger
the study area, the more complex the spatial heterogeneity of the heavy
metals is likely to be. To analyze the spatial heterogeneity, the global
autocorrelation of each heavy metal was measured by the global
Moran’s I index is adopted which is defined as

=
∑ ∑ − −

∑ ∑
= ≠

= ≠
I

w x x x x

S w

( )( )i
n

j
n

ij i j

i
n

j
n

ij

1 1
2

1 1 (1)

where xi and xj are concentration values of a certain heavy metal in the
i-th and j-th sampling points, respectively, x is the concentration
average of all the sampling points, S2 is the concentration variance of a
certain type o, n is the number of samples, and wij is the spatial weight
for the i-th and j-th sampling points.

2.2.3. Hyperspectral image data
The HyMap-C imaging spectrometer (Kruse et al., 2000) is a data

acquisition and analysis system developed by HyVista corporation,
Australia. In addition to the host computer (optical scanner, electronic
components, control components, data transmission and storage com-
ponents), it is equipped with a position and orientation system (POS)
(inertial measurement unit (IMU)/differential global positioning system
(DGPS)), a three-axis stabilized gyroscope platform, a calibration
system, an advanced data preprocessing system, and data processing
software. The technical specifications of the HyMap-C imaging spec-
trometer are listed in Table 1.

2.2.4. Image data preprocessing
After obtaining the data of the study area, geometric correction,

Fig. 2. Soil samples at each soil sampling site consist of 5 cm-thick soil at 5 sites
of OABCD. The distance between O point and other points is 1 m.
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radiation correction and atmospheric correction were carried out.

(1) Geometric correction

The process of image geometric correction is divided into systematic
geometric correction and geometric precise correction. Firstly, the
geometric correction of the system is to automatically calculate the
geographic coordinates of each pixel according to the geographic po-
sition, attitude parameters, terrain information (DEM) of the flight
platform acquired by the Position and Orientation System (POS)
system, and the relative position between the optical axis of the hy-
perspectral sensor and the flight platform. Geometric precise correction
is accomplished by selecting 160 uniformly distributed control points
on the ground, taking some control points as known points, using least
squares fitting, the fitting equation between image coordinates and
geodetic coordinates is established, and finally, the image is registered
in geodetic coordinate system. In present study, the Geometric correc-
tion work was completed specifically through HyMap system sup-
porting software HyMapTMGeo. The spatial resolution of the hyper-
spectral images is 4.5 m.

(2) Radiometric correction

Before the flight experiment, the imaging system completed the
indoor spectral calibration. The instrument central wavelength and
spectral response parameters were obtained accurately, and the radia-
tion correction parameters at each central wavelength under each pixel
were obtained. On the basis of geometric correction, the radiation ca-
libration is completed, so that the gray value of the image can be re-
stored to the radiant brightness value at the pupil entrance with phy-
sical meaning. Specifically, this paper completed the radiation
correction work by HyDn2Rad, which is the supporting software of
HyMap system.

(3) Atmospheric correction

HyCorr program is used to atmospherically correct georectified
HyMap-C radiance flight strip data to surface reflectance by ATREM
model (CSES, 1999). HyCorr processes HyMap-C radiance to surface
reflectance in two stages. The first stage is rigorous atmospheric cor-
rection of a geometrically corrected radiance dataset. The second stage
is polishing or ‘smoothing’ of the atmospheric correction to tie the re-
flectance values, of the four independent detectors, to generate a con-
tiguous spectral reflectance profile. The main parameters of atmo-
spheric correction are shown in Table 2.

The study area was made up of nine strips after geometric correction
and radiation correction. After atmospheric correction, the spectral
curves show obvious distortion or even negative value near the wave-
length of 1.4 μm and 1.9 μm. The main reason is that the absorption of

water vapor is very strong. Therefore, it is necessary to remove the
distorted wavelength in the spectral curve. The 11 related bands are
1.37 μm, 1.38 μm, 1.39 μm, 1.41 μm, 1.42 μm, 1.84 μm, 1.85 μm, 1.87
μm, 1.88 μm, 1.90 μm, 1.91 μm. The results of image spectrum ex-
traction at 95 sampling points are shown in Fig. 3. Because most of the
sampling sites are homogeneous soil surface, the spectral characteristics
at sampling points are closer to pure soil spectra.

2.2.5. Soil information extraction
The objective of this study is to estimate the concentration of heavy

metals in bare farmland soil, so it is necessary to extract bare soil from
the image scene. For this purpose, we chose the fully constrained least
squares unmixing method, which guarantees abundances are positive
and their sum is 1. Before unmixing, several representative pure spectra
of six kinds of objects were selected, which are bare soil, vegetation,
water, buildings, highlight, and roads. Then, we utilize vertex compo-
nent analysis (VCA) to automatically select endmembers. For some
complex areas, we determine the endmember candidates manually. The
fully constrained least squares (FCLS) is used to estimate fractional
abundances (Heinz and Chang, 2001).

2.2.6. Feature selection
The specific process of CARS (Duan et al., 2017; Li et al., 2009; Tan

et al., 2018) is to use the adaptive weighted sampling technique to
retain the spectral wavelengths with large absolute coefficients of the
PLS model and to delete those with small coefficients. In this way many
subsets of wavelength variables can be obtained. Then, each subset of
wavelength variables is modeled by the PLS method with Monte Carlo
cross-validation, and the optimal subset is selected by the root-mean-
square error of the model in cross-validation.

Let the data set matrix be denoted as Xm p* , where m is the number of
samples, p is the number of variables, and Ym*1 is the dependent vari-
able. Let T be an X-segment matrix, which is a linear combination of X
and W, and W is a combination coefficient. Then

=T XW (2)

= + = + = +Y Tc e XWc e Xb e (3)

where c is the regression coefficient vector, e is the prediction residual,
= = …b Wc b b b b[ , , , , ]p1 2 3 , and p represents a dimension coefficient

vector. The absolute value of the i th element in b | bi |(1≤ ≤i p) re-
presents the contribution of the i th band or the independent variable
to Y. The larger the value of | bi |, the more important the corresponding
independent variable is. We then define weights for evaluating the
importance of independent variables as

=
∑ =

ω b
b

| |
| |i

i

i
p
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for i = 1, 2, …, p. The variables are removed by the CARS algorithm,
and their weights ωi are set to 0. The main process is shown in Fig. 4.

The variable retention rate is calculated by the reference formula
= −r aei

ki, where a and e are constants. At the 1 st and Nth Monte Carlo
cross-validation samplings, all p variables and only two variables in the
sample set participate in the modeling. That is, =r 11 and =r p2/N .

Table 1
Main technical details of the HyMap-C imaging spectrometer.

Main technical details Data

Spectral range 450–2500 nm
Channels 135
Field of view 60°
Instantaneous field of view 2.5 mrad
Scan rate (lines/s) 5–25 Continuous adjustable
Pixel registration Less than 0.1 pixels
Row pixel number 668
Radiance accuracy (in flight) 95 %
Dynamic range 16 bit
Signal-to-noise ratio (SNR) Visible and near-infrared mean SNR: 1000

Shortwave infrared mean SNR: 600
Working temperature (℃) −10∼+40
Integrated POS Integrated IMU/DGPS system (Novatel/SPAN SE)

Table 2
Main parameters of atmospheric correction.

Parameters Parameters setting

Aerosol Model Continental
Total ozone (atm-cm) 0.34
Atmospheric Model Mid Latitude Summer
Visibility (Km) 100.0
Gases H2O, CO2, O3, N2O, CO, CH4, O2

H2O Vap. Modeling Rock, Soil & Minerals
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2.3. Modeling methods

2.3.1. Partial least squares (PLS)
PLS is a classical statistical method, and its modeling ability is

stronger than other multiple linear regression methods in general

(Haaland and Thomas, 1988; Wold et al., 2001; Abdi and Williams,
2013). The PLS model attempts to map an independent variable X
projection into a new learning space Y, and explain the direction of the
maximum multidimensional variance in the Y space. It performs well
when multiple collinearity exists between independent variables.

Soil element concentration is correlated with corresponding spectral
reflectance values using PLSR models (Malmir et al., 2019). The po-
tential of vis-NIR spectroscopy and PLSR for prediction of chemical and
physical properties is evaluated and the accuracy of the calibrations and
validations for the different soil properties are assessed (Antonio et al.,
2012; Rossel, 2007). Partial least square regression (PLSR) models are
commonly utilized to correlate data extracted from hyperspectral
images to their corresponding chemical concentrations (Axelsson et al.,
2013). PLSR is underpinned by the assumption that the dependent
variable can be estimated via a linear combination of explanatory
variables (Wang et al., 2018a).

PLSR can be considered as a sum of regression analysis, principal
component analysis (PCA), and correlation analysis. The prediction
matrix ×Xm p (m psamples and variables) is decomposed as

= +X SP ET (7)

where a score matrix S and a loading matrix PT are derived from PCA,
and E is the error matrix. Similarly, response matrix ×Ym 1 is also de-
composed into a score matrix U and a loading matrix QT plus the error
matrix F as

= +Y UQ FT (8)

Here, S and P have a dimension of ×m k and ×n k, respectively, the
dimension of U and Q is ×m l and × l1 , respectively, and k and l are
the number of principal components for reconstructing X and Y, re-
spectively. E is derived from the summary variance of k principal

Fig. 3. Imaging spectra of the 95 sampling points.

Fig. 4. The CARS method flowchart.
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components, and F is calculated from subtraction of l principal com-
ponents from the Y matrix. Then replacing matrix X and Y with re-
sidual matrix E and F , respectively. The score matrix and loading
matrix are derived iteratively.

2.3.2. k-nearest neighbor (k-NN)
The k-NN algorithm (Mitchell, 2003) is a nonparametric algorithm.

The distance relationship between the test sample data and the pre-
viously stored training sample data is then measured, and the depen-
dent variable value of the new sample data is estimated based on this
distance relationship. The similarity between the test data and training
data is used to estimate the dependent variable values of the test data.
The core of the algorithm is training data storage, k value selection, and
distance measurement between training data and test data.

2.3.3. Support vector machine (SVM)
The SVM model is a kernel-based method proposed by Vapnik

(Devos et al., 2009; Smola and Schölkopf, 2004). It is a nonlinear
modeling method based on statistical learning theory. SVM can use
support vectors in training samples to design a optimal decision
boundary. It can handle both linear and nonlinear problems, and solve
regression modeling problems.

2.3.4. Random forest (RF)
The RF algorithm (Belgiu and Drăguţ, 2016; Breiman, 2001) is a

predictive modeling algorithm based on classification and regression
trees (CART) and the bagging learning strategy. In bagging, a decision
tree is generated from all of the properties each time, while in RF, it is
randomly generated from a fixed-size subset of all the attributes, re-
sulting in a reduced computational cost (Bauer and Kohavi, 1999).
Specifically, by the bootstrap resampling technique, random sampling
is repeated K times to generate a fixed number of subset training
samples (in general, the subset sample size is two-thirds of the training
samples) from all the samples (where K is the number of trees in the
forest). Meanwhile, for each sample, only a fixed number of sub-attri-
butes are selected. Each randomly selected subsample with its corre-
sponding sub-attributes can then be used to generate a classification
tree or regression tree, and all the trees make up the forest. Finally, the
results are obtained according to the scores of the class voting from all
the trees (certain algorithms can be implemented to determine the
average of each tree, mostly for regression trees). The trained forest

F̂ x( )RF
K

with K trees can be expressed as:

∑=
=

F̂ x
K

T x( ) 1 ( )RF
K

K

K
s1 (9)

where T x( ) is a single tree, x is all the training samples, and xs is each
tree’s training sample data obtained with the bootstrap sampling
method. Another parameter that is not noted in Eq. (8) is the number of
sub-attributes selected from all the attributes with bootstrap sampling.

2.3.5. ExtraTrees
The ExtraTrees (Geurts et al., 2006) method is a further improve-

ment to the RF method, but there are two main differences. Firstly, the
training process of the RF method uses the bootstrap method with only
some of the samples, and ExtraTrees trains each individual decision tree
with all the training samples. Secondly, in the RF method, the learning
of each tree is divided by the random subset of the characteristic, while
ExtraTrees completely randomly obtains the specific bifurcation value
to realize split learning of the decision tree.

In ExtraTrees, the bifurcation attribute of a tree is determined
randomly, so the fitting ability of a single tree is very weak, but the
predictive ability of the model increases rapidly after the aggregation of
multiple decision trees. The measurement of the fitting ability of the
aggregation model can also be tested in all data sets. Because the best
bifurcation property is randomly chosen, the predictive ability of the
same data set may result in different predictions. From the perspective

of data learning, ExtraTrees further enhances the randomness of the
sample space.

2.3.6. XGBoost
XGBoost (Chen and Guestrin, 2016; Schapire, 2003) is a tree-based

boosting algorithm. The major difference from other boosting tree al-
gorithms is that its objective function introduces a regularization term
as
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where Lm represents the number of leaf nodes of the tree model fm
generated in the mth iteration, and = ⋯ω ω ω ω( , , , )m m m mL1 2 m re-
presents the output value of each leaf node of fm. Here, γ and λ are
regularization coefficients, which provide strong control over the
complexity and output of the model. When both γ and λ are zero, the
size and output value of the generated tree are not limited.

After introducing the regularization term, the algorithm chooses a
simple and well-performing model. The regularization term ∑ = Ω f( )m

T
m0

in Eq. (9) is only used to suppress the overfitting of the weak learner
f X( )m in each iteration, and does not participate in the integration of
the final model.

2.3.7. Extreme learning machine (ELM)
ELM (Chen and Wu, 2017b) is a novel training algorithm for single-

hidden-layer feedforward networks (SLFNs), in which only needs to set
the number of hidden layer nodes of the network, and it does not need
to adjust the input weight of the network and the offset of hidden
elements in the process of execution. No parameters need to be
manually tuned except predefined network architecture. Therefore, it
maintains faster training speeds and has higher generalization perfor-
mance.

2.3.8. AdaBoost
AdaBoost (Rätsch et al., 2001) is an excellent boosting algorithm.

The principle of the algorithm is that, the best weak learner is selected
from the trained weak learners, then the best weak learners combine
into a final strong learner by adjusting the weight of samples and the
weight of the weak learners. The advantages of AdaBoost are that it
fully considers the weight of each learner and it has few parameters, so
there is no need to adjust too many parameters in practical application.

2.3.9. Back Propagation Neural Netwok (BPNN)
A Back Propagation Neural Netwok (BPNN) (Zhang et al., 2018) is

an effective learning method for multilayer neural networks. Its
learning rules are constantly adjusting the weights and thresholds of the
network through back propagation to minimize the sum of the squared
errors of the network. By constantly adjusting the network weight
value, the final output of the network is as close as possible to the ex-
pected output, so it can achieve the purpose of training.

2.3.10. CARS-Stacking
From the perspective of data mining, the characteristics of inversion

analysis can be summarized as follows: 1) the high-dimensional feature
space; and 2) the small sample size that may lead to model overfitting.
The first problem can be solved by effective feature selection method
(CARS). For the second problem, it is necessary to improve the gen-
eralization ability of the prediction model. The most representative way
to improve the model predictive and generalization ability is to use an
ensemble learning method (Dietterich, 2000; Zhou, 2012). Therefore, in
this paper, we construct an integrated model based on a stacking en-
semble strategy (Breiman, 1996; Wolpert, 2011). The CARS-Stacking
method of this paper will be described below, and its flowchart is
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shown in Fig. 5.
The feature data are extracted from CARS and put into the stacking

method. In the selection of learners in Level 0 and Level 1 of the

stacking ensemble strategy, due to the realistic problems of airborne
hyperspectral data with high-dimension, a small and unbalanced sam-
ples of soil heavy metal concentrations, and weak hyperspectral

Fig. 5. Flowchart based on the CARS-Stacking method.
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response capabilities of soil heavy metal concentrations (Wang et al.,
2018b), we strive to find a way to overcome the above problems and
use Stacking method for efficient integration (Table 3).

We construct the stacking ensemble strategy to overcome the dis-
advantages of each individual sole method such as RF, ExtraTrees,
XGBoost, SVM and k-NN. These machine learning algorithms offer
overall good performance in soil heavy metals estimation from airborne
hyperspectral imagery, especially when there is limited or no knowl-
edge about data distrib ution or the form of relationship (Koushik et al.,
2020). RF, ExtraTrees, XGBoost, SVM and k-NN are selected as the
Level 0 of the Stacking ensemble strategy models, and ExtraTrees is
selected as the Level 1 of the Stacking ensemble strategy model. Ex-
traTrees has many advantages such as relatively stable performance,
strong prediction ability, simple parameter adjustment, and fast im-
plementation speed. The Level 1 learner attaches more importance to
the characteristics of the learner with stable and fast performance.

In order to simplify the process, three methods (RF, ExtraTrees, and
XGBoost) are unified with decision forest, but the five methods in the
process of implementation are independent and do not affect each
other. As shown in Fig. 5, firstly, the training data set is divided into m
parts by cross-validation (Kohavi, 1995). Taking the SVM as an ex-
ample, it is trained by m−1 data sets, and the remaining one is used as
the test set to estimate the accuracy of the model. After completing the
m cycles, the accuracy of the test set is obtained by averaging the
prediction results. During the whole process, the accuracy of the test set
is observed to adjust the SVM parameters, such as gamma and C. Si-
milarly, the other decision forest method and k-NN method are carried
out independently. After determining the parameters of the Level 0
layer of each base learner, the estimated results of each learner in Level
0 is connected in parallel to form a joint feature dataset and input to
Level 1, and further training and study are done by the method of Ex-
traTrees. Similarly, we use the remaining part of the data set to verify
and adjust the model parameters, and finally determine the parameters
of the Level 1 learner in the whole model. −P1 5 is the result of Level 0,
and Pf is the final prediction result.

The training process of the whole stacking method is completed in
Training Data, and the overall parameters of the model are determined
after the training is completed. The fitting degree of the model is then
evaluated by New Data. New Data in Fig. 5 refers to validation data sets
or other unlabeled spectral data that need mapping prediction. These
data are consistent with the structure and organization of model
training data.

2.4. Model evaluation method

In order to evaluate the fitting and generalization ability of the
model, three determinant indicators are selected: coefficient of de-
termination (R2), root-mean-square error (RMSE), and mean absolute
error (MAE), which are defined as
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where observed is the true value, and predicted is the predicted value,
observed¯ is the average of the true value, and N is the number of sam-
ples. The three evaluation indices are distinguished by the letters C and
P at the end of the right-lower corner of the model training data set and
the prediction data set, respectively (from the initials of Calibration and
Prediction, respectively). That is, the training data set evaluation is
represented as RC

2, RMSEC, and MAEC, and the prediction data set
evaluation is respectively expressed as RP

2, RMSEP, and MAEP .

3. Results

3.1. Data acquisition or preprocessing results

(1) Soil heavy metal data

The basic statistical analysis of heavy metal concentrations, in-
cluding mean, standard deviation, minimum value, maximum value,
and coefficient of variation (C.V.), is provided in Table 4. It can be seen
that the maximum value of arsenic (As) is far beyond the minimum, and
the gap is two orders of magnitude. There are few samples with very
high concentrations, and the concentration of most of the samples is
very low. Overall, the sample appears imbalanced. The coefficient of
variation of As and chromium (Cr) is very high, indicating that the
variation in the sample set is also very high. The coefficient of variation
of Pb and Zn is relatively low, indicating that the spatial distribution of
Pb and Zn is more random and even, and is less affected by human
activities. As and Cr clearly show sample imbalance. Among the four
heavy metals, As and Cr exceeded the national standard level 2 and 3
most, and As exceeded the national standard most obviously.

(2) Pearson correlation between the four heavy metals

The correlation analysis between the heavy metals can provide
some reference for the explanation of their physical distribution. The
correlation between the four types of heavy metals is analyzed in terms
of Pearson correlation coefficients in Table 5. Pb and Zn have a certain
correlation with As, at 0.29 and 0.24, respectively, while the other
heavy metals have a very weak correlation. This indicates that there is a
weak linear relationship between Pb, Zn, and As in the soil.

(3) Spatial Heterogeneity Analysis

Firstly, the spatial weights were generated according to the spatial
position of the sampling points, and then the Moran’s I index of each
heavy metal was calculated according to Eq. (1). Meanwhile, the eva-
luation index z-score and the p-value of the Moran’s I index were

Table 3
Stacking method selection strategy.

Problem Methods Advantages Combination strategy

High dimensional characteristics of airborne
hyperspectral data

SVM, SVM: strong learning ability of small
samples

the Level 0 of the Stacking ensemble strategy models are RF,
ExtraTrees, XGBoost, SVM and k-NN, and the Level 1 model is
ExtraTreesk-NN k-NN: nonparametric learning strategy

Small and unbalanced samples of soil heavy metal
concentrations

RF, RF: strong adaptability to data sets, good
anti- noise performance.

SVM SVM: high generalization performance
Weak spectral characteristic response capabilities of

soil heavy metal concentrations
XGBoost, XGBoost: data mining
ET ET: more stable and higher prediction

accuracy than RF
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obtained. The p-value represents the probability that the observed
spatial pattern is created by a stochastic process. The z-score is a mul-
tiple of the standard deviation. The higher the absolute value of the
Moran’s I index, the stronger the spatial aggregation pattern. The ab-
solute value of the z-score reflects the degree of dispersion. When the
absolute value of p is small, the reliability of the Moran’s I index is high.

As shown in Table 6, the Moran’s I index of As is about 0.2, in-
dicating that the concentration distribution of As has positive spatial
correlation and spatial aggregation characteristics. Moreover, the z-

score is extremely high, and the p-value is close to 0, showing that the
confidence of this model is very high. The Moran’s I index values of the
other three heavy metals are low or less than zero, the p-values are all
greater than 0.1, and the z-scores are low. This shows that the spatial
aggregation patterns of Cr, Pb, and Zn are extremely weak, and the
spatially random patterns are obvious.

(4) Unmixing result

After unmixing, the abundances and residual of each pixel were
obtained, as shown in Fig. 6.

The soil pixels have abundance values of greater than 0.65, ac-
counting for 48.73 % of the total number of pixels in the entire study
area. The soil distributed area were obtained by mask processing.

3.2. Spectral feature

Based on the principle of “survival of the fittest”, CARS can even-
tually choose characteristic variables with strong adaptability. The
input data of this method are the original reflectance spectra. The op-
timum number of iterations is determined at the minimum cross-vali-
dation error in the PLS model, and the selection of the CARS results
corresponding to heavy metals is determined under this iteration
number. Finally, a statistical rendering table for the four CARS features
of heavy metals is given in Table 7. In the later stage, the validation and
analysis of the heavy metal spectral validity and inversion modeling are
based on the spectral characteristics listed in Table 7. The simple sta-
tistics show that the number of variable sets (14–16) after CARS feature

Table 4
Descriptive statistics of heavy metal concentration (Unit: mg/kg).

Metal Mean Std Min Max C.V Siping Citya Jilin Provinceb Nationalc

As 42.00 67.45 6.35 419.96 1.61 9.46 11.6 15
Cr 399.43 864.10 36.04 4617.56 2.16 49.64 42.4 90
Pb 15.30 4.00 9.04 36.79 0.26 17.87 14.96 35
Zn 51.83 10.75 38.48 117.18 0.21 58.44 49.95 100

a Bao Xinhua, Jilin-Changchun-Siping Urban Economic Zone Surface Soil Environmental Quality Assessment asnd Ecogeochemical Zoning. Jilin University, 2011.
b China Environmental Monitoring Station. Background Value of Soil Elements in China. China Environmental Science Press, 1990.
c National Environmental Protection Agency. Environmental quality standard for soils Beijing; National Environmental Protection Agency. 1995: 1–5. (GB15618-

1995).

Table 5
Pearson correlation between the four heavy metals.

As Cr Pb Zn

As 1 −0.07 0.29 0.24
Cr −0.07 1 −0.02 −0.13
Pb 0.29 −0.02 1 0.14
Zn 0.24 −0.13 0.14 1

Table 6
Statistics of the global Moran’s I index of the heavy metals in the soil.

Metal Moran's I z p

As 0.20 5.31 0.00
Cr −0.07 −1.32 0.19
Pb 0.01 0.48 0.63
Zn −0.01 0.07 0.95

Fig. 6. Results of the pixel unmixing.
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selection accounts for 11–13 % of the total variables (124), which
greatly reduces the computational complexity of the subsequent mod-
eling. However, the effectiveness of such selection needs to be eval-
uated.

3.3. Modeling evaluation

The heavy metal concentrations and the spectral characteristics
selected by the CARS method are modeled in this section. Firstly, all the
samples are divided into training sets and test sets according to the 2:1
ratio and the method of decreasing the concentration gradient of heavy
metals. The training set is used to adjust the parameters and establish
the model, and the test set is used to test and evaluate the general-
ization ability of the model. The accuracies of the seven models are
listed in Table 8.

The RC
2 of the SVM, XtraTrees, XGBoost, k-NN, AdaBoost, ELM,

BPNN reach one, which appear in the accuracy evaluation of the
training data set but not in the testing data set. It also illustrates that the

traditional models show serious overfitting. In contrast, the ensemble
learning method based on a stacking strategy has better performance on
the training set, which reflects the strong generalization performance of
the method. For Pb and Zn, the RC

2 of the SVM model reaches one. The
RC

2 of the ExtraTrees model is one for Cr, Pb and Zn.The RC
2 of the

XGBoost and k-NN models reach one for all four metals. As for the k-
NN, it is to preprocess the training data set efficiently before inputting
the test set. Each testing sample searches for k nearest training samples
according to distance measurement; in the regression, its estimated
value is obtained in a weighted manner of the k samples. The stacking-
based method is superior to other methods in inversion accuracy of all
the heavy metals. For As, the RC

2 of different methods are more than 0.9
except PLS, which is a linear model and prone to overfitting in heavy
metal retrieval. However, the RP

2 of the ExtraTrees model reaches 0.2,
and the RP

2 of the RF and XGBoost models are less than 0.1. The accu-
racy of the training data set is abnormally high. This indicates that,
based on the characteristic subset of As selected by CARS, the decision
forest inversion model shows serious overfitting. These three models
cannot estimate heavy metals although the RC

2 values are better. The
SVM inversion model performs better than the decision forest model.
Based on the proposed stacking model, the RP

2 of As is 0.73, the RMSEP
is 37.09, and the MAEP is 23.70. The RP

2 is the highest while the RMSEP

and the MAEP are the least among all the methods. Therefore, the
performance and predictive ability of the model based on stacking are
the best. For other heavy metals such as Cr, Pb, Zn, there are the same
phenomena. The RC

2 of different methods are almost larger than 0.9
except PLS. Based on the proposed CARS-Stacking model, the RP

2

reaches the highest value. Finally, the CARS-Stacking model is stable
and robust using the small training set. It can been utilized to estimate
heavy metals in practical applications. The inversion scatter diagram of
CARS-Stacking model is shown in Fig. 7.

4. Discussion

4.1. Spectral feature summary

The common characteristics of heavy metal spectra are discussed in
this section. All the features are drawn on the average spectral line of
the sample sets, to analyze their spectral characteristics more clearly.

The intersections between the spectral characteristics of the four
heavy metals are marked by the black vertical dashed lines. It can be
observed that the characteristic spectrum of As is densely distributed in
the range of 2–2.4 μm in Fig. 8. In this investigation (Ren et al., 2009)
spectral regions around 460, 1400, 1900, and 2200 nm were jointly
used to build the prediction models of As. Meanwhile, some other
spectral feature regions like those around 550, 760, and 2300–2500 nm
were also used in the construction of the prediction models of As con-
centrations. Compared with Ren’s results, the bands between 0.4–0.75
μm has not been selected as the characteristic bands in this study. As is
not strictly a heavy metal, but is a metallic element. Therefore, the
spectral characteristics of As are different from those of the other me-
tals.

For other heavy metals, their characteristic spectral bands are
scattered. In addition to the presence of characteristic bands between
2–2.4 μm, there are also some characteristic bands in the visible band of
the 0.5–0.75 μm spectrum. Cr, Pb, and Zn are strictly heavy metals.
According to the spectrochemical analysis, the spectral characteristics

Table 7
Feature band statistics based on the CARS method.

Metal Wavelength (Unit: μm) Sum

As 1.14, 1.45, 1.66, 1.69, 1.98, 2.06, 2.14, 2.19, 2.21, 2.23, 2.40, 2.41, 2.43, 2.44 14
Cr 0.48, 0.57, 0.63, 0.67, 1.08, 1.27, 1.51, 1.56, 1.58, 1.98, 2.09, 2.12, 2.15, 2.21, 2.36, 2.40 16
Pb 0.51, 0.55, 0.57, 0.67, 0.89, 0.97, 1.11, 1.53, 1.79, 2.06, 2.11, 2.23, 2.28, 2.33, 2.36 15
Zn 0.47, 0.51, 0.59, 0.74, 0.78, 0.88, 1.14, 1.50, 1.53, 1.77, 2.06, 2.09, 2.15, 2.21 14

Table 8
Regression results of PLS, SVM, ExtraTrees, RF, XGBoost, k-NN, and stacking.

Metal Method RC
2 RMSEC MAEC RP

2 RMSEP MAEP

As PLS 0.73 37.20 58.24 0.63 43.01 57.86
SVM 0.90 23.30 10.68 0.64 42.57 27.78
ExtraTrees 0.90 30.52 20.17 0.21 63.10 39.01
RF 0.97 25.67 15.16 0.10 68.35 40.38
XGBoost 1.00 4.62 1.22 0.08 73.76 46.03
k-NN 1.00 0.00 0.00 0.24 62.82 34.93
AdaBoost 1.00 0.87 0.21 0.58 12.57 6.47
ELM 0.70 24.33 17.62 0.42 27.44 19.86
BPNN 0.58 12.54 9.23 0.47 20.78 13.41
CARS-Stacking 0.91 22.35 12.73 0.73 37.09 23.70

Cr PLS 0.41 24.11 29.17 0.21 26.27 28.68
SVM 0.83 13.41 5.03 0.61 16.68 11.74
ExtraTrees 1.00 0.63 0.41 0.60 17.29 12.80
RF 0.95 11.24 8.45 0.46 20.08 16.56
XGBoost 1.00 0.03 0.01 0.40 21.00 16.85
k-NN 1.00 0.00 0.00 0.38 21.11 15.78
AdaBoost 1.00 1.22 0.17 0.35 23.68 12.38
ELM 0.54 37.20 29.33 0.40 39.90 32.07
BPNN 0.48 20.96 15.85 0.46 22.94 14.06
CARS-Stacking 0.68 18.97 13.85 0.63 16.47 12.76

Pb PLS 0.54 2.24 3.23 0.17 3.20 3.23
SVM 0.99 0.30 0.15 0.56 2.24 1.64
ExtraTrees 1.00 0.12 0.07 0.55 2.34 1.67
RF 0.97 0.98 0.74 0.52 2.45 1.81
XGBoost 1.00 0.00 0.00 0.54 2.27 1.72
k-NN 1.00 0.00 0.00 0.41 2.61 1.73
AdaBoost 1.00 0.05 0.00 0.57 2.21 1.35
ELM 0.59 4.12 3.23 0.32 4.47 3.55
BPNN 0.44 3.49 1.88 0.33 2.76 2.15
CARS-Stacking 0.65 2.03 1.52 0.60 2.17 1.53

Zn PLS 0.41 5.98 7.34 0.14 6.97 6.95
SVM 1.00 0.10 0.10 0.70 4.38 3.34
ExtraTrees 1.00 0.12 0.08 0.66 4.34 3.15
RF 0.96 2.49 1.95 0.47 5.35 4.06
XGBoost 1.00 0.00 0.00 0.48 5.10 3.83
k-NN 1.00 0.00 0.00 0.26 4.24 3.20
AdaBoost 1.00 0.10 0.01 0.54 4.89 2.98
ELM 0.52 9.51 7.62 0.40 9.06 7.30
BPNN 0.50 0.54 4.29 0.30 6.22 4.94
CARS-Stacking 0.71 4.34 3.25 0.71 4.03 3.03
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Fig. 7. Inversion Scatter Diagram of CARS-stacking Model (Unit: mg/kg).

Fig. 8. Reflectance spectrum characteristics of heavy metals based on the CARS selection results.
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of the heavy metals in the soil are closer in the ultraviolet wavelengths,
where the spectral characteristics are more significant. This explains
why the three heavy metals (Cr, Pb, Zn) have characteristic bands be-
tween 0.4–0.75 μm, but As has no distinct spectral characteristics. In

order to accurately analyze the common spectral characteristics of the
four heavy metals, their intersection is shown in Table 9.

It is found that the spectral wavelengths of 2.0–2.3 μm are

Table 9
CARS feature wavelength intersection.

As Cr Pb Zn

As
Cr 1.98, 2.21, 2.40
Pb 2.06, 2.23 0.57, 0.67, 2.36
Zn 1.14, 2.06, 2.21 2.09, 2.15, 2.21 0.51, 1.53,2.06

Fig. 9. The estimation results for As, Cr, Pb, and Zn in the study area. The locations marked A–G are affected by human activities. Colors are used to show different
areas, divided by the soil environmental quality risk control standard for soil contamination of agricultural land. (For interpretation of the references to colour in this
figure text, the reader is referred to the web version of this article.)

Table 10
Soil environmental quality Risk control standard for soil contamination of
agricultural land (Agency, 1995; Regulation, 2018) (Unit: mg/kg).

Metal Background Risk screening values Risk intervention values

As 15 40 150
Cr 90 150 850
Pb 35 90 500
Zn 100 200 NA
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characteristic bands for a variety of heavy metals, and are generally
representative. In addition, there are some common features near the
wavelength of 0.5 μm. Also, Song et al. has found that the common
characteristic bands of Cu and Cr in the soil of Chongqing Wan-sheng
mining area are around 480 nm, 500 nm, 610 nm, 750 nm, 1430 nm,
1920 nm and 2260 nm (Song et al., 2015). There are the characteristic
bands of Cr same as our finding.

4.2. CARS-Stacking modeling summary

When comparing the accuracy evaluation indicators of all the
models, the CARS-Stacking model performs well. It shows an im-
provement in the ability to overcome the various problems caused by a
small sample set and imbalanced data. In the estimation result of CARS-
Stacking, the RP

2 of the prediction data set is 0.73, 0.63, 0.60, and 0.71
for the four metals (As, Cr, Pb, Zn). HyMAP data has utilized to map
heavy metal distribution in stream sediments of the Rodalquilar mining
area (Choe et al., 2008). This study is to derive parameters from
spectral variations associated with heavy metals in soil and use these
parameters to map the distribution of areas affected by heavy metals.
The reliable nature of results obtained by multiple linear regressions
(generally, R2>0.5) between the ground-derived spectral parameters
and heavy metal concentrations. Moreover, the proposed CARS-
Stacking model in this paper has better performance which indicates

the feasibility of retrieving heavy metal concentrations based on spec-
tral features. The statistical evaluation of the comprehensive training
data set shows that the CARS-Stacking model does not result in over-
fitting, and the overall performance is stable.

After field analysis and verification, it is confirmed that the dis-
tribution of heavy metal concentrations (especially the heavy metals
with high spatial heterogeneity) based on model inversion is consistent
with the actual distribution trend, and the model is reliable.

4.3. Heavy metal estimation from the imagery

Based on the characteristics of the four heavy metals selected by the
CARS method, the image features were constructed and input into the
stacking model. The inversion of the four heavy metals in the whole
study area was carried out to further analyze the spatial distribution of
heavy metals.

Fig. 9 shows the estimation results of the CARS-Stacking model for
As in the study area. The criterion is refer to the national standard
(GB15618-1995, GB15618-2018) in China (Agency 1995; Regulation
2018). These standards are used to define the background and
anomalies in Chinese soil in Table 10. In the study area, Pb and Zn do
not have anomalous distribution in the chemical dataset.

For the purpose of analysis and interpretation, the areas of great
interest and the areas with higher estimated concentration values in the
estimation map are marked with red ellipses, and the numbers are in-
dicated by the letters A–G. According to the previous analysis, there is
spatial clustering of As. In this paper, the estimation results are related
to the possible occurrences of foreign heavy metal sources (see Fig. 9)
for in-depth verification analysis.

In Table 11, the area proportion of different soil environmental
quality has been calculated. For As, the risk intervention area are more
than 70 %. Moreover, it is about 1 % soil which is serious pollution.
Special care should be taken for this area in red plot of Fig. 9. For Cr, it
is about 17 % under risk screening. Pb and Zn are within the normal

Table 11
The area proportion of different soil environmental quality.

Metal Background Risk screening
values

Risk intervention
values

Pollution

As 0 27.477 % 71.545 % 0.978 %
Cr 82.318 % 17.677 % 0.005 % 0
Pb 100 % 0 0 0
Zn 100 % 0 0 0

Fig. 10. Analysis of As with regard to human activity. (For interpretation of the references to colour in this figure text, the reader is referred to the web version of this
article.)
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scope.
The A and B areas in Fig. 9 are gold mining areas. It can be observed

that the concentration of As in the local areas of A/B is high. Area A is a
gold mining area with no strong environmental protection measures for
tailings and mining production. Therefore, the gold mining area in Area
A has a significant impact on the surrounding environment. Area B was
once a gold mine, and some of the surrounding area has been partially
reclaimed and restored. Therefore, the As pollution in Area B does not
spread as much as in Area A. Area C is at the boundary of the entire
study area, and a mining area is found in the adjacent area on the east
side of the study area. This area is likely to be the main factor causing
the high concentration of As in Area C. There is also a mining area in
the west side of Area F. The high concentrations of As in Area E are
found close to the residential area, as various wastes from the re-
sidential area can also cause high concentrations of heavy metals. Area
D is a small hill, and some areas are planted with crops. No significant
human activities take place in this area. The reason for this may be that
the concentration of As is historically high. Area G is near the road,
surrounded by farmland, and the concentration of As in some parts of
the area is high due to the presence of a concentrating mill. It can also
be seen from Fig. 8 that As exists to different degrees on both sides of
the river sedimentation zone, from upstream to downstream.

From the correlation analysis results, there is no linear relationship
between As and Cr. The interpretation of the results of As estimation is
thus difficult to overlap with the interpretation of Cr. Due to a large
number of abnormal samples removed for Cr, the prediction of the
model may be low for high-concentration regions. Although the model’s
ability to fit Cr is stronger than the traditional method, there is room for
improvement in the fitting ability. From Fig. 10, it can be seen that Cr
shows an abnormal concentration near the mining areas. There are also
abnormalities in the sedimentation area on both sides of the river, and
the other areas are basically normal. The concentration of Pb is high in
some areas. As indicated by the red ellipse in Fig. 10, the west side of
the Yitong River is the road. The local geological structure is also very
complex, and a large number of mineral types are densely distributed in
a small area. Therefore, the local geological environment has a certain
explanatory power for the estimation results of Pb. The estimation re-
sults for Pb are extremely low compared with the previous global
Moran’s I index, the z-score is higher, the p-value is higher, and the
spatially random distribution is more intense. Only for a very few pixels
is the estimated concentration of Zn high. The distribution has a
random pattern.

5. Conclusions

In this paper, in order to overcome the problems of overfitting and
model instability, we have proposed a CARS-Stacking method for esti-
mating soil heavy metals. Comparing the accuracy indices of all the
models using the combined features selected by the CARS method, the
accuracy and stability of the CARS-Stacking method is the best. The
CARS method is also simple and efficient in selecting spectral char-
acteristics. The spectrum in 2–2.3 μm is the common characteristic
band for the four heavy metals. The CARS-Stacking method can over-
come the overfitting problems caused by imbalanced data and the small
training sample set. Moreover, even for As with high spatial hetero-
geneity, the heavy metal concentration distribution is consistent with
the actual verification analysis. The reliability of the CARS-Stacking
estimation model is high. However, the CARS-Stacking method has a
high complexity. It is therefore necessary to explore low-complexity
estimation methods, such as semi-supervised active learning and stra-
tegies based on GIS-based spatial analysis. This proposed strategy can
actually map the soil heavy metal concentrations in a large spatial area.
Such mapping provides the guidance for in-field sampling and precise
measurement as needed if some place is under risk screening or risk
intervention. Also, these results provide early warning reference for
people in polluted areas. In this paper, the analysis of the factors

affecting the heavy metals is relatively deficient. In practice, the geo-
logical environment, topography, crops, and even seasonal changes
have certain effects on the transport and transfer of heavy metals in soil.
Therefore, we will give full consideration to these factors and make a
thorough analysis of their impacts in the future study.
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