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A B S T R A C T   

Over the years, advances in sensor technologies have enhanced spatial, temporal, spectral, and radiometric 
resolutions, thus significantly improving the size, resolution, and quality of imagery. These vast developments 
have inspired improvement in various hyperspectral images (HSI) classification applications such as land cover 
mapping, vegetation classification, urban monitoring, and understanding which are essential for better utiliza
tion of Earth’s resources. HSI classification requires superior algorithms with greater accuracy, less computa
tional complexity, and robustness to extract rich, spectral-spatial information. Deep convolution neural networks 
(DCCNs) have revolutionized image classification experience, with robust architectures being proposed from 
time to time. However, insufficient training samples have been earmarked as a significant bottleneck for su
pervised HSI classification and have not been fully explored in literature. To stimulate further research, this 
paper reviews current methods that handle labeled data insufficiency and the current feature learning methods 
for HSI classification using DCNNs. It also presents various methods’ results on the three most popular public HSI 
datasets, together with intuitive observations motivating future research by the hyperspectral community.   

1. Introduction 

Advances in image acquisition techniques have upscaled spectral- 
spatial image resolutions, improved image processing approaches, and 
spurred a continuous generation of high volumes of quality data (Fu 
et al., 2017). Subsequently, high quality and low-cost data obtained 
from the sensors, coupled with the availability of advanced computing 
resources such as graphics processing units (GPUs) and parallel 
computing, has led to superior computer algorithms continuously 
enabling researchers to understand the ground surface, morphological 
changes, and human processes with greater precision and detail. 

Both image classification and semantic segmentation are widely 
researched sub-domains of computer vision and have been applied in RS 
image analysis, face recognition, medical image segmentation, among 
others. In image classification, all objects within an image are grouped 
and categorized into a single class, while in semantic segmentation, each 
pixel in an image is assigned to a set of predefined classes/labels, where 

the same labels share certain characteristics (Kemker et al., 2018b). 
Hyperspectral image (HSI) classification has several applications such as 
land cover mapping and change detection (Crowson et al., 2019; Xu 
et al., 2019), soil organic carbon prediction (Meng et al., 2020), vege
tation classification (Laliberte et al., 2011), forest biomass understand
ing and tree species identification and mapping (Modzelewska et al., 
2020), urban monitoring and understanding (Chen et al., 2018a), vol
canic activity investigation and monitoring (Modzelewska et al., 2020) 
among others, courtesy of the rich spectral-spatial information obtained 
from HSI data. However, it is costly and labor-intense to label HSI data 
due to the different sensors used to capture the data and the domain 
expertise involved. This explains why the existing labeled HSI bench
mark datasets are few, making HSI classification lag behind other vision- 
based and image processing domains due to the limited annotated labels 
and the complicated nature of HSI data (Gao et al., 2018). Traditional 
classifiers such as random forest and support vector machines have had 
great success in HSI classification (Belgiu and Drăguţ, 2016), but only 
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use spectral information which limits their optimal performance. 
Moreover, the large dimensionality of spectral-spatial data, coupled 
with limited training samples impedes the improvement of classification 
performance (Zhong et al., 2018). 

Deep Learning (DL) is a data-driven paradigm that follows end-to- 
end machine learning to make decisions without human-designed al
gorithms. DL has recently been applied extensively in various research 
domains such as computer vision, speech recognition, and natural lan
guage processing. In the past decades, several methods exploited 
spectral-spatial features from HSI data using stacked autoencoders (SAE) 
and deep belief networks (DBN) (Zou et al., 2020). Features were mainly 
extracted through a flattening layer that collapsed spatial dimensions 
into a 1-D vector. Several approaches such as principal component 
analysis (PCA), independent component analysis (ICA), and Fisher’s 
linear discriminant analysis (LDA) have been used to achieve dimen
sionality reduction and feature extraction on the input data (Jiang et al., 
2021). These approaches, however, often lead to the loss of essential 
spatial information, which is critical for image classification. 

Various deep learning networks have been proposed for HSI classi
fication; Restricted Boltzmann Machines (RBMs) (Midhun et al., 2014), 
autoencoder (AE) (Tao et al., 2015), deep belief network (DBN) (Li et al., 
2014a), recurrent neural network (RNN) (Mou et al., 2017), and deep 
convolutional neural networks (CNNs). The advent of deep convolution 
neural networks (DCNNs) as subsets of DL architectures has transformed 
the image processing experience and is credited for handling image 
classification tasks (Hu et al., 2015). Broad adoption and popularity of 
DCNNs in handling image classification tasks can be associated with 
their ability to discriminately learn and extract hidden, complex, and 
underlying non-linear features from raw images, flexibility in the type of 
data they handle (such as spatial, spectral, point cloud, etc.), and cus
tomizable building blocks (number of layers, depth) (Krizhevsky et al., 
2017; Wang et al., 2019c). Moreover, DCNNs are easily implemented in 
high-end processing units such as distributed systems and GPUs and 
have demonstrated outstanding performance in several application do
mains such as image compressive sensing (Zhou et al., 2021), visual 
object tracking (Zhang et al., 2019a; Zhang et al., 2021), and hyper
spectral image classification (Zhong et al., 2018), among others. Feature 
extraction in DCNNs is achieved hierarchically. Lower layers extract 
generic features, and higher layers learn abstract and more task-specific 
representations through non-linear mapping relationships of stacked 
layers (convolutional layers, activation, and pooling layers) and a clas
sifier (Chen et al., 2016). 

Over the last few years, intense research has proposed a plethora of 
algorithms aimed at capturing complex features and abstract semantics 
from HSI data for in-depth understanding and exploitation of the rich 
spectral-spatial features (Li et al., 2019). However, large-scale HSI 
training data is limited due to the cost, complexity, and labeling con
straints in developing such datasets (Shen et al., 2019), which cause sub- 
optimal learning of DCNN with large numbers of parameters. On this 
basis, the hyperspectral community has been devoted to proposing 
methods to generate more labeled samples and developing methods that 
can perform effectively with limited labeled samples. 

While this review paper is not meant to delve into the technical as
pects of HSI data, such as acquisition mechanisms, applications, and 
data analysis, it draws insights on methods and advances relating to 
insufficient labeled data for HSI image classification. Highly informative 
reviews on HSI data analysis using ML models, pre-processing, datasets, 
change detection, and applications have recently been presented 
(Audebert et al., 2019; Li et al., 2019; Signoroni et al., 2019). Moreover, 
Paoletti et al. (2019c) presented a comprehensive review on current HSI 
airborne and satellite data acquisition, pre-processing measures, classi
fiers, and learning process optimization (drop out, regularization, 
normalization, etc.). In this report, different from the other existing 
pieces of literature, our core contribution can be summarized as follows:  

(1) We present an updated review of current methods handling 
training samples insufficiency in HSI classification.  

(2) The most recent methods advancing feature learning in spectral- 
spatial-based DCNNs for HSI image classification are presented.  

(3) A report on the performance of existing methods on select public 
datasets is provided, with short summaries and insightful 
discussions. 

The remainder of the paper is organized as follows: Section 2 high
lights new training samples generation. Methods for handling limited 
training samples are discussed in Section 3. Spatial-spectral learning- 
based DCNNs are highlighted in Section 4. Section 5 presents a perfor
mance report of the existing methods and discussions of various 
methods, while the conclusion is provided in Section 6. 

1.1. Existing public hyperspectral datasets 

Training samples are increasingly critical for all computer vision 
tasks that use the DL paradigm. The existing training sets are insufficient 
for training deep networks for HSI tasks. Using them can significantly 
cause overfitting (Castelluccio et al., 2015), while gathering and con
structing satisfactory datasets for HSI tasks remains costly, time- 
consuming, and requires domain expertise (Mnih et al., 2015). 

We present the currently available real public HSI datasets available 
to the scientific community with their respective details in Table 1. 
Notably, the existing datasets are much fewer compared to existing 
optical imagery datasets. 

The taxonomy of our work is presented in Fig. 1. Methods of 
generating new training samples to supplement the available samples 
are highlighted in the branch labeled (a), methods designed to work 
with few or no training samples are presented in the branch (b), while 
branch (c) shows the current spectral-spatial based DCNNs advancing 
improved feature learning. 

2. Generation of new training sample 

Various cost-effective and more straightforward methods have been 
proposed to help generate new training samples to mitigate the cost and 
effort required for a real HSI benchmark dataset. In this section, we first 
highlight the issue of training samples insufficiency in HSI classification 
and later present intuitive and cost-effective methods used to create new 
training samples to supplement the insufficient training samples. 

2.1. Insufficient training samples in HSI classification in a nutshell 

Supervised classification methods use labeled samples to draw in
ferences from associations and relationships within the data using 
spectral, spatial, or combination of spectral-spatial features and later 
uses the inference to categorize unlabeled data during the testing pro
cess (Romero et al., 2016). Conversely, unsupervised methods classify 
input data without prior knowledge but rely on similarities and patterns 
within the data. Supervised DCNN models have been credited for 
achieving superior performance and are preferred over unsupervised 
models (Paoletti et al., 2017). However, they suffer limited labeled 
samples constraints and thus may not effectively learn the massive 
spatial-spectral parameters required for accurate HSI classification 
(Makantasis et al., 2015). 

This bottleneck significantly inhibits their practical application in 
HSI data analysis. The construction of new HSI benchmark datasets to 
solve DL models’ training needs is expensive, time-consuming, and 
presents a significant challenge (Mnih et al., 2015). Although several 
HSI datasets have been presented over a couple of years for an array of 
HSI applications, the currently labeled HSI samples are still far below the 
demands of the current DL models and for verifying the performance of 
evolving algorithms. Limited training samples cause model overfitting 
during training which significantly affects the model’s performance. 
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Moreover, HSI images present a high burden on computational re
sources when processing the complex high dimensional data caused by 
the infinite number of features present in hyperspectral data (Alizadeh 
Moghaddam et al., 2020). Other challenges associated with HSI classi
fication include the same class objects possessing different spectrums 

and different class objects possessing the same spectrum, redundant 
information caused by sensor calibrations, and noise further compli
cating class-specific features’ separation. 

In general, problems in HSI image classification can be summarized 
as follows: (1) Insufficient training samples. (2) Handling high dimen
sionality data. (3) Handling redundant information in HSI data. (4). 
High-class variance in HSI data. 

2.2. Data augmentation 

Data augmentation creates new training data from already existing 
sample data by applying transformations, thus generating realistic-like 
data through augmentations and geometric transformation such as 
shear, random rotations, shifts, flips on copies of existing images as a 
way of improving the model’s robustness (Wong et al., 2016). This 
intuitive method is helpful in training DL networks and boosting 
network performance (Chen et al., 2018). 

Data augmentation has widely and promisingly been applied in 
various studies (Chen et al., 2016; Xu et al., 2017) and achieved 
compelling results, proving to be a simple and yet effective way to create 
virtual samples. In hyperspectral data analysis, data augmentation has 
demonstrated notable improvements in DCNN generalization capabil
ities. Recently, Nalepa et al. (2020); Wang et al., 2019a proposed various 
data augmentation methods to increase the number of training samples 
in HSI classification as a cost-effective and simple way of handling 
labeled data insufficiency. Moreover, the albumentations library (Bus
laev et al., 2020), provides fast and flexible image augmentations pro
cesses with many various image transform operations relating to color, 
contrast, brightness, and other geometric transformations and have been 
applied in image classification tasks (Liu et al., 2020a). Using data 
augmentation technique have substantively alleviated limited training 
samples challenge in HSI classification. 

2.2.1. Transformation-based sample generation 
Given that HSI imagery suffers complex and varied lighting condi

tions, objects belonging to the same class tend to vary in appearance at 
varying distances and perspectives due to different radiations and illu
minations and possess similar spectral features in a given range (Aptoula 
et al., 2016). Using this basis, new virtual data can be generated by 
altering known samples. This data augmentation intuition has widely 
and promisingly been used in various studies (Lee and Kwon, 2017; Xu 
et al., 2017). 

2.2.2. Mixture-based sample generation. 
Naturally, objects belonging to the same class in hyperspectral im

ages tend to possess analogous spectral features in a given range. Guided 
by this principle, virtual samples can be generated from two given 
samples of the same class by linearly combining the samples to generate 
virtual samples (Chen et al., 2016; Kang et al., 2018). These two 
methods have proved effective in improving the vitality of the model’s 
performance in several tasks and have demonstrated that data 
augmentation is a promising technique for improving the generalization 
capabilities of DL networks. Nalepa et al., 2019a explored the power of 
data augmentation on hyperspectral data at inference time for deep 
networks and demonstrated improvement in the generalization capa
bilities of the DL networks. 

2.3. Synthetic data generation 

Gathering hundreds of thousands or millions of training samples 
required to train supervised networks can take a lot of man-hours to 
collect and label, thus making it impractical for many applications 
(Mnih et al., 2015). Although labeled data is difficult to obtain in the real 
world, it is easier to generate using simulation, making the dataset 
inherently less costly, faster to create, well-annotated, and not con
strained by the availability of time or the physics of the natural world 

Table 1 
Existing real public HSI datasets.  

Dataset Name Sensor Classes Wavelength 
range 

No of 
bands 

Spatial 
resolution 
(mpp) 

Salinas 
Valley ( 
Graña 
et al., 
2013) 

AVIRIS 16 0.4–2.5 µm. 204 3.7 

Indian Pines ( 
Graña 
et al., 
2013) 

AVIRIS 16 0.4–2.5 µm. 224 20 

Botswana ( 
Graña 
et al., 
2013) 

NASA EO-1 14 0.400–2.500 
µm 

242 30 

University of 
Pavia ( 
Graña 
et al., 
2013) 

ROSIS 9 0.43–0.86 
µm 

103 1.3 

Washington 
DC Mall ( 
Zhu, 2017) 

HYDICE 6 0.4–2.4 µm 210 – 

San Diego 
Airport ( 
Dong et al., 
2018) 

AVIRIS 7 0.37–2.51 
µm 

224 3.5 

Jasper Ridge 
(Zhu, 
2017) 

AVIRIS 4 0.38–2.5 µm 224 – 

Lunar Crater 
Volcanic 
Field 
(LCVF) ( 
Dong et al., 
2018) 

AVIRIS  0.37–2.510 
µm 

224 20 

HYDICE 
Urban ( 
Dong et al., 
2018) 

HYDICE 6 0.4–2.5 µm 210 3 

Baffin Bay ( 
Han et al., 
2019) 

HYPERION 
SENSOR 

3 0.35–2.58 
µm 

242 30 

University of 
Houston ( 
Xu et al., 
2016) 

CASI 31 0.38–1.05 
µm 

144 2.5 

Kennedy 
Space 
Center 
(KSC) 
dataset ( 
Zhou et al., 
2019) 

AVIRIS 12 400–2500 
nm 

176 18 

Pavia City ( 
Zhao et al., 
2016) 

ROSIS-03 4 0.43–0.86 
µm 

115 1.3 

Umatilla 
County ( 
Liu et al., 
2017b) 

Hyperion 7 0.35–2.58 
µm 

242 30 

Chikusei ( 
Yokoya and 
Iwasaki, 
2016) 

HYPERSPEC- 
VNIR 

19 0.363 
–1.018 µm 

128 2.5 

Samson (Zhu, 
2017) 

– 3 0.401–0.889 
µm 

156 –  
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(Patki et al., 2016). Moreover, there is insignificant statistical evidence 
between the accuracy scores of experiments on synthesized data 
(Tremblay et al., 2018). 

Unlike augmented data which is largely derived from real images 
with realistic transformation (such as translation, flipping, rotation, or 
the addition of noise) to increase the diversity of the training set, syn
thetic data is partly or completely artificially generated by a synthesizer 
network using generative adversarial networks (GANs) following 
methods such as compositing, styled transformation, and foreground 
and background augmentation, and have successfully been applied on 
images, text, audio and video data (Tripathi et al., 2019). 

Over time, several DL models have used synthetic datasets to perform 
computer vision tasks such as object detection (Pepik et al., 2012) and 
scene understanding (Satkin et al., 2012). By effectively utilizing 
domain randomization (Tobin et al., 2017), the model interprets syn
thetic data as just part of the training dataset indistinguishable from 
physical information, thus exposing the model to a wide range of envi
ronments at training time (Peng et al., 2015). In this sense, synthetic 
datasets significantly improve the model’s performance and, in some 
experiments, outperform photorealistic datasets (Davari et al., 2018; 
Patki et al., 2016). This has contributed to the improvements in com
puter vision and machine learning methods in semantic segmentation, 
object detection, object recognition, and image classification. Moreover, 
synthetic HSI data have been used to increase the training set through 
synthetically generated multispectral images (Kemker et al., 2018), HSI 
classification (Zhu et al., 2017), and anomaly detection (Zhao et al., 
2017). Notably, synthetic datasets provide cheap and simple labeled 
data thus reducing the demand for massive training samples. 

2.4. Generative adversarial networks - GANs 

Generative adversarial networks (GANs) are an effective technique 
for generating new samples for training networks using the min–max 
strategy where one neural net successively generates fake samples from 
the original data. GANs consist of two parallel parts that are both 
parameterized as deep neural networks that can learn how to produce 
data from a dataset indistinguishable from the original data (Luo et al., 
2019b). For each input image, a style image from a subset of different 
styles is selected, and a styled transformation of the original image is 
generated. Both original and styled images are fed to train the net. A 

generator G produces synthetic data given a noise variable input Z while 
a discriminator D identifies whether a sample is coming from the real 
data distribution Xr or the generated data distribution Xg as shown in 
Fig. 2. The discriminator D is trained to estimate the probability of a 
given sample coming from the real data distribution, whereas the 
generator G is optimized to “fool” the discriminator to offer a high 
probability for the generated data. 

GANs have been reported to perform well even in instances with 
limited training samples and have shown excellent functionality in 
increasing the image resolution of input images (Marchesi, 2017). 
CycleGAN (Zhen et al., 2019), is powerful in style transfer from one 
image set to another. This variant of the generative adversarial network 
has been successfully used to convert visible images to generate syn
thetic InfraRed images training samples (Yun et al., 2019), and in 
combining visible band and infrared data to significantly increase the 
segmentation accuracy of RS datasets (Benjdira et al., 2019). In each of 
these works, real data were used to augment synthetic data for vision 
tasks during model training. Other variants of adversarial nets are 
Siamese-GAN (Huang and Chen, 2021), Sifting-GAN (Ma et al., 2019), 
and Attention-GAN, (Yu et al., 2020). Several other GAN-based frame
works have been proposed to alleviate the shortage of training samples 
through adversarial training for HSI classification (Zhong et al., 2020). 
GANs help to generate additional training data and have proven an 
intuitive and inexpensive method currently explored by many re
searchers in vision-based tasks. 

3. Methods proposed to deal with limited samples or no samples 

This section presents some intuitive methods proposed to train 
neural networks and produce competitive results despite the limitation 
of training samples, especially for HSI image classification. 

3.1. Unsupervised methods and semi-supervised 

Unlike supervised classification methods that use vast training labels 
to train the models, unsupervised methods learn relationships and as
sociations from data directly without labels and estimate the class labels 
of the unlabeled samples (Zhou and Prasad, 2020). Using this idea, semi- 
supervised methods harness the benefits of both supervised and unsu
pervised methods. Ideally, in semi-supervised classification, the pre- 

Fig. 1. A taxonomy of limited training samples and improved feature learning for HSI classification.  
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training is done using unlabeled data, while fine-tuning uses small 
labeled data sets. Semi-supervised methods notably offer better perfor
mance than unsupervised methods, are less costly in terms of labeling 
costs on data, and have been explored in various HSI classification tasks 
(Fang et al., 2018; ). 

Several fully connected network architectures have been proposed 
using a semi-supervised approach to classify HSI imagery (Liu et al., 
2017a; Ma et al., 2016). Wu and Prasad (2018a), employed a non- 
parametric Bayesian clustering algorithm to generate pseudo labels 
that help in pre-training Convolution Recurrent Neural Networks 
(CRNN) for the HSI classification task. Mou et al. (2018) proposed an 
end-to-end unsupervised feature learning using convolution and de- 
convolution networks in place of encoder and decoder, while Zhan 
et al. (2018) employed GAN to design a semi-supervised feature learning 
framework for HSI classification, where the generator created counter
feit hyperspectral sample images that were similar to the real data to 
train the GAN. 

This shows that semi-supervised learning mechanisms have notable 
capabilities in extracting good spectral and spatial features suitable for 
satisfactory results. Current semi-supervised feature learning assumes 
the encoder-decoder concept without using labels data. 

3.2. Weakly supervised methods 

Deep learning (DL) frameworks demand massive labeled samples to 
train and test network models accurately. However, the required labeled 
samples are unavailable for various applications due to the annotation 
costs and time required. Moreover, training DL models with few labeled 
samples results in overfitting, thus poor generalization performance on 
unseen data. 

To overcome this, weakly supervised networks are trained with 
partially annotated images that are based on simple annotations. These 
annotations are easier to generate and less demanding as opposed to 
fully labeled images. This alleviates the burden of obtaining hand- 
labeled datasets, which can be costly or impractical (Torresani, 2014). 
Usually, weakly-supervised methods handle the limited ground truth 
annotation for HSI data using various approaches and for applications 
such as; annotating small sets of regions of interest for HSI classification 
(Signoroni et al., 2019), use of region growing method on the annotated 
areas (the annotates regions are referred as seeds) with pixel-level su
pervision for semantic segmentation (Moliner et al., 2020), and hyper
spectral unmixing (Hong et al., 2019). In the subsequent subsections, we 
briefly discuss weakly supervised-based methods, namely few-shot and 
one-shot, and how they address the deficiency of training samples. 

3.2.1. One-shot learning and siamese network 
One-shot learning attempts to solve the limited training samples by 

classifying images given only a single training example for each cate
gory, using fast nearest-neighbor algorithms for efficient memory usage 
(Kaiser et al., 2017). The initial concept was inspired by the visual 
ability of human beings to learn a lot of information from just a single 
category or few images. With great success, one-shot learning has 
extensively been explored in facial recognition systems (Lake et al., 
2013). The one-shot learning concept helps to alleviate the challenge of 
massive training samples required to train DL models. Other variants are 
zero-shot learning, where the model does not learn from any examples 
from the target class; and k-Shot learning, where the model observes k- 
examples from the target class during training (Palatucci et al., 2009). 

Siamese network (Bromley et al., 1993), follows the one-shot 
learning concept where input pairs are fed to a pair of identical paral
lel networks that share the same configurations and parameters. The 
network is trained with a pairwise loss that minimizes the distance be
tween image patches of the same class and maximizes the distance be
tween image patches of different classes. By so doing, the network learns 
similarity scores on the input pairs instead of how neural networks learn 
to classify images for specific output classes (Koch et al., 2015). In this 
sense, few class instances are enough to train a network model and show 
competitive results. Siamese networks have been applied in HSI image 
analysis to extract non-linear, highly complex spectral-spatial features 
from the limited images even when class variance is wide (Liu et al., 
2018a). Siamese networks learn hidden representations and semantic 
similarities from limited training samples by combining inputs into a 
single network. Other works have used the Siamese network in HSI 
classification (Cao et al., 2020), change detection (Tang et al., 2021a), 
object tracking (Abdelpakey et al., 2018), among other tasks. 

3.2.2. Few-shot learning 
Few-shot learning is a self-supervision paradigm that seeks to train 

models with little or no labeled data by optimizing models to recognize 
patterns within the data labels. This ensures that the resultant models 
can efficiently learn and recognize a set of classes even under limited 
training samples (Doersch et al., 2015). This transfer learning paradigm 
is used to overcome overfitting caused by data scarcity and is usually 
achieved in two steps. In the first step, the model is trained using base 
classes associated with a large set of training annotations such that the 
trained model gains visual analysis abilities in the form of learned rep
resentation. In the second stage, the model learns from a new set of 
classes using only a few samples from each class. Some variants of few- 
shot learning approaches that have been proposed include; gradient 
descent-based approaches (Ravi and Larochelle, 2017) which learn 
recognition tasks using less gradient descent iterations; metric-based 
approaches (Sung et al., 2018), which uses distance metrics between a 
test image and a set of training images in a few-shot task; among others. 
Few-shot learning has been explored in the HSI classification task to 

Fig. 2. An illustration of the GAN-based hyperspectral imagery (HSI) classification (Lin et al., 2018).  
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train a classifier from a given source domain and applied directly to a 
target domain with limited training labels without additional ground 
truth labels and in other instances, class labels guided in the generation 
of more samples (Qu et al., 2019). Lately, other works have explored 
few-shot learning to overcome domain shift in HSI classification (Li 
et al., 2021); explored relationships between samples using attention 
weighed graphs (Tong et al., 2020b); and handled unknown classes in 
HSI landcover classification (Liu et al., 2021). 

3.3. Active learning 

Active learning (AL) helps perform optimal selection instance sam
pling on a given target object to extract information using a given se
lection criterion while highlighting samples possessing the highest 
representation and low redundancy (Samat et al., 2015). Instead of 
generating random labels, the most informative instances are considered 
and selected for annotation during the learning process (Yanik and 
Sezgin, 2019). Given that HSI images contain high abstract and semantic 
features with high interclass similarities and low intra-class variance, 
accurate identification of the high-level semantic representations can be 
challenging even to a human-labeler. AL uses concepts like object-level 
learning to statistically learn key semantics of the labeled objects within 
the images to improve and simplify the classification task (Li and Guo, 
2014). Besides, AL aims at selecting optimal discriminative features 
during the domain-expert annotation process using minimal labeled 
data. Recently AL has been explored in HSI image classification to 
improve classification performance and reduce labeling overheads (Mu 
et al., 2020b). A comprehensive survey on active learning algorithms for 
supervised spatial-spectral image classification is presented (Tuia et al., 
2011) with comprehensive details. 

3.4. Transfer learning 

Training DL models from scratch can be time-consuming and require 
massive training samples. Transfer learning (TL) uses techniques to 
provide DL models with experiences in the form of training data to make 
inferences and later use for target tasks (Yosinski et al., 2014). 

TL is mainly applied in tasks with little data to train a full-scale 
model from scratch. After the parameters transfer, the new network 
can use the learned features for classification tasks using supervised or 
unsupervised methods. To handle new tasks, the parameters of the top 
layers are randomly initialized. Usually, during pre-training, the 
network uses features extracted from the network to perform classifi
cation, while in fine-tuning, the network is tweaked with a small number 
of training samples for the target task. A network pre-trained on source 
data possesses knowledge on low-level features that can be transferred 

for other unseen tasks. Besides, since low-level features can best fit for 
most generic DL classification problems, pre-training helps the network 
learn certain generic features from the lower layers, such as color blobs, 
edges, as well as other low-level features that can be generalized for 
other image classification tasks (Castelluccio et al., 2015). Fig. 3. illus
trates how features learned from low and middle network layers are 
transferred to another network with the same architecture as the learned 
one. 

TL has successfully been applied in object recognition, image clas
sification, scene recognition, fine-grained recognition, attribute detec
tion, and image retrieval and has proved to be a great baseline concept 
for image analysis tasks. Using TL significantly reduces the demand for 
training samples, and the model’s learning process is greatly acceler
ated, thus decreasing the model’s training time compared to training a 
model from scratch. Moreover, TL improves network performance by 
transferring knowledge obtained from the source domain to the target 
domain (Deng et al., 2019) and has successfully been explored in RS 
applications such as image classification (Sumbul et al., 2018; Zhou and 
Prasad, 2018), crop type mapping (Nowakowski et al., 2021), tree spe
cies classification (Briechle et al., 2021), HSI classification (Liu et al., 
2020b), to overcome the limitation of training samples. 

However, due to many varying factors such as pose, illumination, 
image quality, and spectral disparities, there is always some impending 
domain variance between two application areas, causing degrading of 
the performance (Wang and Deng, 2018). This has influenced many 
researchers to work on new domain adaptation and randomization 
concepts to address domain variance in TL (Othman et al., 2017). These 
methods are discussed in the later sections. 

Fine-tuning is an approach in transfer learning that involves 
tweaking the network with a small number of training samples for the 
target task. To achieve this, some initial network layers are frozen, and 
few top layers are adapted to learn features of the target to produce 
accurate predictions using an optimization algorithm task (Long et al., 
2015b). In so doing, DL models can apply learned expertise to deliver 
accurate predictions for unseen data for various target tasks (Lundervold 
and Lundervold, 2019). However, training the network from scratch is 
recommended for situations where a wide domain shift exists between 
the original dataset and the target dataset while the network is initial
ized using pre-trained weights. 

3.4.1. Domain adaptation 
Domain adaptation (DA) is a transfer learning paradigm that exploits 

labeled information in one relevant application to execute new tasks in 
another application domain (Kouw and Loog, 2019). The goal of domain 
adaptation is to minimize the domain gap (where data from the source 
and target domains may either be considered homogeneous or 

Fig. 3. Illustration of transfer learning (Pan and Yang, 2009).  
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heterogeneous) and to transfer knowledge in cases where a wide domain 
gap exists; while attempting to reduce dataset bias caused by the dif
ference in the statistical distributions between training and test domains 
(Hoffman et al., 2014). In various cases, transfer learning may suffer 
“domain shift”. A change in data distribution causes this condition as a 
result of several factors such as platform inconsistencies due to diverse 
sensor settings, image acquisition platforms, image calibration settings, 
and device mechanical configuration variations resulting in a situation 
referred to as “data shift problem” (Othman et al., 2017). Consequently, 
models trained on one platform may fail to perform well in another 
platform thus requiring an adaptive system that seeks to bridge the 
difference between two environments (Tuia et al., 2016). 

A typical example is training a model on SAR imagery and testing it 
on an optical dataset. The two datasets fall on different domains, and 
thus a model that has been trained on one platform may not generalize 
well in another target task. DA in RS imagery on Hyperion, National 
Center for Airborne Laser Mapping (NCALM), and WorldView-2 datasets 
demonstrates the power of DA for HSI imagery (Song and Ma, 2017) and 
HSI image classification (Fan et al., 2019b) using the unsupervised 
approach on how it effectively addresses the issue of limited or unla
beled datasets. To solve this, vision-based models have been proposed to 
investigate fitting specific-domains models to target domains (Long 
et al., 2015b); re-training models in the target environment (Yosinski 
et al., 2014); pre-trained models adaptation (Li et al., 2016); using pre- 
trained weights for feature extraction (Gupta et al., 2016); and learning 
similar features between domains (Tzeng et al., 2014). DA can improve 
classification performance in situations where training data is scarce. 

3.4.2. Domain randomization 
The concept of domain randomization (Tobin et al., 2017) helps the 

model to interpret unreal (or synthetic) data as part of the training 
dataset indistinguishable from physical information, thus exposing the 
model to a wide range of environments at training time (Peng et al., 
2015). Despite the significant contribution of synthetic datasets, some 
studies observe that they may suffer from a reality gap – a situation 
caused by quality differences between original data and generated 
synthetic data due to the natural richness, non-rigidity, and noise 
evident in real-world data and thus, models trained purely on synthetic 
data may not generalize well on real-world (Bousmalis et al., 2018). 
Moreover, synthetic datasets require validation against real-world data 
which complicates the processing tasks. Other challenges that synthetic 
datasets suffer include; lack of acceptance from some users, dependency 
on the quality of the data model, and the difficulty in keeping track of all 
necessary features required during replication. Besides, real HSI RS 
datasets possess high-class variance and redundant data, which presents 
a domain gap between synthetically generated HSI RS data and real HSI 
RS data (Rajpura et al., 2017). Several researchers have proposed 
domain randomization as one of the approaches to bridge the reality gap 
(Tobin et al., 2017), an active research area that can enable synthetic 
data to work well in practical and real-life applications. 

3.5. Capsule networks and bass adaptive spectral-spatial networks 

Capsule networks use a group of neurons (referred to as a capsule) to 
encode spatial information and the probability of an object being pre
sent in an image being identified. Specifically, capsule networks focus on 
position, rotation, shape, and scale details in a high dimension space 
(Sabour et al., 2017). Capsule networks were proposed to address the 
drawbacks caused by pooling layers in convolutional neural networks 
(CNNs) that lead to the loss of essential spatial information. Besides, 
general CNN-based network architecture has difficulties in accurately 
exploiting and learning complex relationships in high dimensional HSI 
data directly, which significantly affects their performance (Paoletti 
et al., 2019a). To deal with this, capsule networks use spectral-spatial 
capsules to learn and represent spatial and positional details, spectral 
information, and other essential transformational details regarding a 

scene or image’s spatial features and positional orientation. The ability 
of capsule networks to learn and represent the complex relationship of 
features from an image or parts of an object have seen it applied in image 
classification tasks (Deng et al., 2018), object tracking (Abdelpakey 
et al., 2018), and generation of synthetic training samples (Jaiswal et al., 
2018). Moreover, since RS possesses hidden representation and complex 
features, capsule networks have been explored in HSI classification 
(Ding et al., 2021; Xue, 2020) to tackle the limited training samples. 

Additionally, HSI data contains high dimensional data, and some 
part of it is considered redundant. Processing the high dimensional data 
using machine learning models poses a great challenge due to the curse 
of dimensionality. Some former methods such as local Fisher’s 
Discriminant Analysis and Principal Component Analysis have been 
proposed to deal with dimensionality reduction. However, these former 
methods result in the loss of some essential information, thus affecting 
classification performance. Given that not all spectral-band information 
from the HSI data is used during training, and since some spectral band 
information is application-specific, band-adaptive spectral-spatial 
(BASS) networks (Santara et al., 2017)has been proposed to address 
the redundant information and high dimensionality issue by extracting 
band-specific spectral-spatial features to train its network, resulting to 
lesser network training time and better model performance. Besides, 
since BASS network architecture has fewer independent connection 
weights, it performs well with few training samples. 

3.6. Summary 

The challenge in HSI classification based on the lack of sufficient 
training samples draws significant interest in the hyperspectral com
munity. Many researchers have proposed methods to generate new 
samples from existing data or artificially to intuitively use the limited 
samples to train the models, while others have focused on developing 
network methods that can efficiently utilize the limited labeled samples. 
Limited training samples problem in HSI classification can be summa
rized as follows:  

▪ Data augmentation and synthetic data generation through 
GANs and synthesizers are robust and cost-effective methods to 
increase training samples.  

▪ Transfer learning can mitigate the demand for training samples 
by transferring learned weights from source data to initialize 
network weights, thus reducing training time and improving 
accuracy. Moreover, low-level features learned from source 
data can reduce training time compared to training the network 
from scratch.  

▪ Weakly supervised methods utilize useful features learned from 
unlabeled data and using minimal labeled data to tune the 
classification network models, while active learning intuitively 
learns from the domain-expert annotation process to optimize 
classification using minimal training data.  

▪ Data augmentation and transfer learning can significantly 
improve HSI classification accuracies even with limited 
training samples (Li et al., 2019).  

▪ There is a need to develop new, larger, and more complex (e.g., 
with more classes and varied spectral range) reference hyper
spectral datasets for comparative research in different HSI 
application domains.  

▪ Since deep generative models can now synthesize hyperspectral 
pixels from scratch, more experiments on these data samples 
are necessary to validate their performance in classification and 
varied HSI tasks. 

4. Spectral-spatial based DCNNs 

DCNNs have been credited for their superiority in handling image 
classification problems and have gained popularity for their ability to 
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learn discriminately, extract and represent hidden, complex, and non- 
linear features from raw images (Wambugu et al., 2021). Based on 
this fact, DCNNs have been applied in HSI image classification in the RS 
field. Over the last few years, intense research has proposed a plethora of 
networks aimed at capturing more complex features and descriptors 
necessary to capture non-linear and abstract semantics of HSI data for 
understanding using rich spatial and spectral features for an array of 
applications. 

To achieve this, DCNNs architectures either use spectral, spatial, or 
spectral-spatial features in HSI data representation. This section first 
highlights joint spectral-spatial feature learning and later discusses the 
current DCNNs using joint spectral-spatial features for robust HSI 
feature representation. Specifically, the networks have been categorized 
based on the intuition of how they learn features based on the network 
architecture. 

4.1. Joint spectral-spatial feature networks overview 

The Hyperspectral data can be analyzed from either spatial, spectral, 
or joint spatial-spectral perspective. Most of the early DL methods only 
exploit data pixel-wise (1-dimensional approaches), working in the 
spectral direction by extracting spectral signatures from single pixels or 
groups of pixels either surrounding a central pixel or belonging to a 
given point of interest. This approach requires some prior knowledge 
and a pre-processing step to detect and map the regions of interest 
(usually done through segmentation). On the other hand, spatial-feature 
networks focus on extracting spatial features of the HSI data and later 
fuse the extracted features with spectral features extracted through 
other techniques (Jon Atli and Pedram, 2015). Different from others, 
spectral-spatial classifiers integrate both spectral and rich spatial fea
tures to boost classification performance (Fauvel et al., 2007). Instead of 
extracting the spectral and spatial features separately and later pro
cessing them together, the joint spectral-spatial 2-D CNNs extracts fea
tures from the original data directly. 

4.2. Fully convolutional based networks 

The success of deep learning in image classification traces many 
years back. Great advances can be related to contributions made by the 
full convolution network (FCN) (Long et al., 2015a), which allowed 
feature extraction through end-to-end training without the fixed size 
constrain of fully connected layers using convolution and deconvolution 
layers. In FCN, all output nodes are linked to preceding layers (regional 
input nodes) and used multiple convolutional layers followed by down- 
sampling layers that help the network achieve large receptive field 
coverage. However, down-sampling through pooling layers reduces the 
spatial dimensions of feature maps, leading to the loss of essential po
sitional information of objects and greatly affecting image classification 
results. Since HSI data is complex and rich in multidimensional spectral- 
spatial features, it is difficult to process it like other generic images. 

Most 2D and 3D CNN-based methods perform image classification by 
extracting robust and deep spectral-spatial features from raw HSI input 
images. The learning process can be achieved through feedforward and 
backpropagation processes simultaneously. In so doing, complex 
spectral-spatial features are extracted from HSI data. Several FCN-based 
frameworks have recently been proposed for RS analysis. For example, 
Zhang et al. (2019b) developed a fully convolutional network for remote 
sensing scene classification based on DenseNet, Zhao and Du (2016) 
extracted spatial features from the first three components bands of HSI 
data using a 2-D CNN and then combined the spatial information with 
spectral features for HSI classification, while Chen et al. (2016) designed 
big networks with strong constraints which can utilize virtual samples to 
improve classification results using 3D-CNN models to address the HSI 
feature extraction and classification problem with limited training 
samples. Moreover, FCNs have successfully been used for HSI classifi
cation (Hang et al., 2019; Li et al., 2019), hyperspectral image analysis 

(Jiao et al., 2017), and HSI scene parsing (Wang et al., 2021b) and have 
proven powerful in extracting useful discriminative features from 
hyperspectral data. 

4.3. Residual based networks 

He et al. (2016) introduced residual connections allowing the design 
of very deep networks that do not suffer gradient degradation problems 
using residual building blocks. Residual paths (also called skip connec
tions) link up low-level and high-level layers to ensure efficient gradient 
flow. Densely connected network (DenseNets) (Huang et al., 2017) ex
tends the ResNet concept by proposing dense skip connections from 
previous layers to immediate layers. By using dense blocks, low-level, 
mid-level, and high-level features are concatenated, ensuring efficient 
information sharing and gradient flow between all layers. Both ResNet 
and DenseNets have proved efficient in handling redundant information 
in spatial-spectral data (Yang et al., 2018), and have been explored in 
image classification tasks using super-resolution data (Wang et al., 
2017), and HSI data (Kang et al., 2019; Paoletti et al., 2019b). Spectral 
and spatial residual blocks have been used to discriminatively learn and 
extract rich spectral-spatial information in hyperspectral imagery where 
residual blocks connect 3-D convolutional layers through identity 
mapping to facilitate better backpropagation of gradients (Zhong et al., 
2018). Residual networks have become the predominant feature 
extraction architecture for many HSI data analysis architectures (Cao 
and Guo, 2020b; Zhong et al., 2017b). 

4.4. Attention-based networks 

The attention mechanism (Vaswani et al., 2017), inspired by the 
human cortex concept, aims at learning a weight map that represents the 
relative importance of activations within a layer or a channel. Since HSI 
data contains highly redundant information which creates bottlenecks in 
HSI classification, the attention mechanism helps the model to focus 
selectively on discriminative channels and ignore redundant informa
tion (Li et al., 2020). Moreover, attention mechanisms have shown im
provements in the network’s capability in discriminating the essential 
spatial and spectral channels and achieves better dimensionality 
reduction on HSI data than traditional pre-processing methods such as 
principal component analysis (PCA) without loss of essential informa
tion (Luo et al., 2019a). Attention mechanism intuition has been used in 
guided feature extraction on spatial-spectral data (Mei et al., 2019) 
using dual-branch spectral and spatial attention mechanisms imple
mented by combining CNNs and ResNet. Dong et al. (2019) used a 
band-attention mechanism called attention-GAN to improve feature 
learning in HSI data, while Hang et al. (2021) explored joint feature 
classification using two spectral and spatial subnets. In addition, atten
tion mechanism has been explored in change detection (Wang et al., 
2021a) using remotely sensed data and HSI image classification (Hang 
et al., 2021; Tang et al., 2021b) and have greatly improved feature 
exploitation and effective use of spectral-spatial information. 

4.5. Multi-scale based networks 

In multi-scale feature fusion, features are extracted at different 
spatial and spectral dimensions using convolution kernels of different 
sizes in a multi-layered or multi-branch structured network. Since HSIs 
exhibit a complex hierarchical distribution of spectral-spatial features, 
convolution kernels of the classical CNNs with a fixed size cannot 
effectively handle HSI feature extraction requirements. The outputs of 
the preceding layers are fed into the input of the successive layers, thus 
fusing sufficient spectral and spatial information extracted at different 
scales (Feilong and Wenhui, 2019). In this case, extraction of hierar
chical features from different spatial dimensions coupled by skip 
connection between the layers alleviates vanishing gradient and gua
rantees feature reuse (Meng et al., 2019). Besides, fusing spectral-spatial 
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features from multiple scales from all convolutional layers can extract 
more discriminative features. In addition, multiscale feature upsampling 
blocks increase the size of combined feature maps with different reso
lutions to utilize the information from different sizes and locations (Liu 
et al., 2018b). This concept has been explored in hyperspectral image 
classification (Cao et al., 2018), spectral fusion, and scene classification 
(Mu et al., 2020a; Zhang et al., 2020), using HSI data and has effectively 
improved feature extraction robustness and registered promising results. 

4.6. Multi-level feature aggregation networks 

The multi-level fusion concept is inspired by the understanding that 
shallow layers are sensitive to low-level features while deeper features 
can capture high-level semantics (Zeiler and Fergus, 2014). To effi
ciently strengthen feature propagation and improve the accuracy of 
downstream tasks, extracting and fusing multi-layer features from 
different CNN layers is necessary, rather than stacking the layers to form 
deeper complex networks with large-scale parameters that are harder to 
train and easier for overfitting (Chen et al., 2021). Moreover, fusing 
features from different levels (multi-branch feature fusion) enables the 
network to learn more discriminative information for HSI classification, 
which extensively requires low-level, mid-level, and high-level features 
(Jiao et al., 2017). Multi-branch fusion is notably an efficient method for 
obtaining finer features and combining features from different layers in 
feature extraction of HSI classification (Fang et al., 2019; Ge et al., 2020) 
and significantly reduces the network complexity and computational 
cost in complex and deep networks. This method has been proposed for 
HSI classification (Sun et al., 2020). Shen et al. (2019) extracted spectral 
and spatial information from hyperspectral data using a two-branch 
CNN network where compelling results were achieved. For example, 
(Li et al., 2020) developed a 2-D CNN to capture and fuse spatial-spectral 
features based on squeeze and excitation network, while Zhou et al. 
(2019) exploited spatial and spectral long-short term memory (LSTM) 
coupled with decision fusion mechanism to capture rich representation 
from HSI data. Multi-level and multi-path fusion have been combined 
with attention mechanisms to carry out change detection (Wang et al., 
2021a) where a deep supervision network with different branches is 
used to reconstruct the change map producing superior results. 

4.7. Ensemble networks 

To better optimize feature learning, ensemble models with different 
structures have been explored to combine the benefits of different ar
chitectures and harness their strengths. Using this intuition, several 
methods have been combined and have made significant improvements 
in HSI classification. Siamese-GAN (Bashmal et al., 2018) combines Si
amese network and adversarial network for aerial image classification. 
Wang et al. (2019b) combined GAN and attention mechanisms to 
approximate real HSI images’ distribution using collaborative learning, 
while (Li et al., 2020) combined two different CNNs with cascaded 
attention mechanisms to extract HSI discriminate features. In other 
related works, Chen et al. (2017) and Minetto et al. (2018) combined 
ResNet and DenseNet architectures to form an ensemble CNN network 
for image classification, while Chen et al. (2019) performed transfer 
learning using an ensemble of ResNet and CNNs. Whereas some 
ensemble networks can work with a small training set, complex 
ensemble networks have demonstrated poor performance in HSI clas
sification due to small training data (Roy et al., 2020). Recently 
ensemble networks have also been explored for HSI classification (Chen 
et al., 2019; Zheng et al., 2020). Its worth noting that merging networks 
to form complex ensemble networks may not guarantee superior per
formance, and thus the need to perform models’ combination evalua
tion. Performance comparison on deep ensemble methods (snapshot and 
model combination) is available (Dede et al., 2019). 

4.8. Summary 

The challenge of dealing with abstract, complex, multidimensional, 
high-resolution spectral-spatial data, coupled with the limited avail
ability of training samples, continues to draw attention to the hyper
spectral community. More effort is dedicated to developing superior and 
robust DCNNs that can adequately learn both spectral and spatial rep
resentation to meet hyperspectral-data analysis needs. Several obser
vations can be drawn from the discussed methods:  

▪ Feature reuse methods have significantly enabled the design of 
deeper networks that can learn complex and non-linear re
lationships from the complex HSI data through residual 
connections. 

▪ Attention-based networks address the issue of handled redun
dant data, which offers great challenges in processing HSI data 
by guiding extraction of relevant spectral-spatial information 
and has gained increased attention.  

▪ Multi-branch / multi-layered methods learn abstract and high- 
level spectral-spatial representation using different branches 
and later fusing the features. Moreover, branching helps to 
scale the network’s depth, thus reducing the computation 
burden associated with very deep networks.  

▪ Most HSI data have a low spatial resolution making deep 
learning techniques designed for computer vision perform 
poorly since the spectral dimension prevails over the spatial 
neighborhood features in most cases. More approaches are 
required to improve the representation of spatial structure in
formation. (Such as superpixel Correlation Coefficient)  

▪ More experiments on ensemble methods (such as combining 
band adaptive spectral-spatial networks with existing DCNNs) 
need further exploration. 

5. Performance of various methods 

In this section, we present the performance of various methods on the 
3 most popular HSI datasets, namely: Salinas Valley (SV), University of 
Pavia (UP), and Indian Pines (IP) as reported in the source publications. 
The three datasets can be obtained from the website (http://www.ehu. 
eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes). 

5.1. Evaluation metrics 

Various evaluation metrics are used to determine the quality of the 
classification results. Precision, Recall, mean intersection over union 
(mIoU), confusion metrics, pixel accuracy (PA), Overall accuracy (AO), 
Average Accuracy (AA), and Kappa Coefficiency (Kappa) are the most 
preferred performance metrics. (The highlighted metrics could not be 
discussed in detail for space considerations). More details on these 
evaluation metrics used can be accessed in (Lv and Wang, 2020). We use 
OA and Kappa as the performance evaluation metric in our report. 

5.2. Performance of various methods on the 3 most popular datasets 

The performance of various network architectures based on the 
discussed categories is presented in Table 2. The reported performance is 
ordered based on the year the methods were proposed. 

Since HSI feature learning requires relatively deep networks to learn 
complex spectral information, integrating residual-based networks to 
other DCNNs can be powerful in mitigating gradient degradation 
problems that result from deeper networks. 3D-2D SSHDR, a residual 
learning-based network, attained OA 99.46% and Kappa of 99.38% on 
IP dataset and OA of 99.81%, and Kappa of 99.74% in UP datasets, 
respectively. Fully convolutional spatial propagation network (FCSPN) 
attained an OA of 99.63% and 99.61% on SV and IP datasets respec
tively. The results show that 3D-FCN can effectively capture spatial 
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information from raw HSI data and refine spatial features using an 
attention mechanism. 

As observed from Table 2, SSFFSC-AL and SSAE networks based on 
active learning and active transfer learning attained OA performance of 
100% and 99.85% on the IP dataset and UP dataset, respectively. This 
demonstrates that the IP dataset may not be complex enough to test the 
full robustness and efficiency of the network. Siamese network that uses 
limited training samples to train the network attained an OA of 99.04% 
and 99.68% on the IP and UP datasets, respectively. Since HSI data 
contains immense redundant information, some objects on the HSI im
ages do not belong to any class membership and are unnecessary during 
the classification process. Attention mechanisms and gated networks can 
be used to filter redundant information and help in projecting salient 
and discriminative spectral channels and spatial features required for 
HSI data classification. This can improve the convergence time and the 
classification accuracy scores while solving the redundancy data issue. 
Spectral-Spatial Attention Networks (SSAN) belonging to the category of 
guided networks attained an OA of 99.67% and 99.24% on IP and UP 
datasets, respectively. Through the use of the attention mechanism, the 
feature learning process has been optimized, and more critical infor
mation is obtained while discarding irrelevant information. 

Multi-level-based networks optimize the feature learning process by 
striking a balance between network depth and width. While deeper 
networks learn more complex features, efficient HSI classification re
quires leverage between low-level, mid-level, and high-level features. 
This method significantly reduces the computation burden of deeper 
networks and still yields acceptable performance. 2D–3D multi-level- 
based CNN attained a competitive OA score of 99.94%, and 99.52%, 
and Kappa of 99.93%, and 99.41% in the SV and UP dataset, respec
tively. Besides, by fusing features extracted at different scales using 
different kernel sizes, multi-scale methods can extract and fuse sufficient 
spectral-spatial information necessary for HSI classification. Using this 
method, Dual-Scale Crossover Network (DSCN) achieved an OA score of 

99.62% and 99.57%; and Kappa of 99.84%, and 99.78%; on IP and UP 
datasets, respectively. Multi-scale networks improve feature learning 
robustness by utilizing features obtained from different scales. 

Additionally, given that spectral-spatial features from HSI data are 
complex, highly non-linear, and greatly challenging, combining 
different deep learning networks to form ensemble networks can be 
effective in exploiting the salient spectral features from HSI data as 
observed in the results. HybridSN network based on the ensemble 
method posted an OA of 99.98% and Kappa of 99.98% on the SV dataset. 
In this case, ensemble networks seek to harness performance improve
ments from different architectures. 

Notably, since the experimental setup and environment for various 
methods are dissimilar, comparing the performance of various methods 
based on results posted in the source papers is impossible. Our work 
reported the performance of various methods without comparing them 
against each other. Future research can compare and evaluate various 
discussed methods under similar experimental conditions to provide 
precise performance comparison for various methods. 

6. Conclusion 

HSI image classification continues to draw interest in the blooming 
field of hyperspectral remote sensing due to its accrued benefits in many 
applications. Labeled data insufficiency has been reported as a signifi
cant bottleneck in training superior supervised DCNNs and has 
hampered the practical application of supervised DCNNs. 

This review reported various methods of generating new training 
samples, discussed methods working with limited training samples, and 
highlighted the current methods advancing feature learning in DCNNs 
using joint spectral-spatial features. Additionally, we have reported the 
performance of some select methods on three popular HSI datasets and 
shared intuitive summaries. While researchers continue to dedicate 
more work to develop robust architectures for HSI applications, the lack 

Table 2 
OA and Kappa (%) performance of various methods on the SV, IP, and UP datasets.  

Method Year Datasets    

SV IP UP    

OA Kappa ×
100 

OA Kappa ×
100 

OA Kappa ×
100 

Fully Convolutional 
Networks 

CNN (Lee and Kwon, 2017) 2017 95.42 – 94.24 – 96.73 – 
Spectral–spatial 3-D fully convolutional network (SS3FCN) (Zou 
et al., 2020) 

2020 81.32 – 71.47 – 79.89 – 

Fully convolutional spatial propagation network (FCSPN) (Jiang 
et al., 2021) 

2021 99.63 99.78 99.61 99.56 – – 

Residual based Networks Dual-Channel Densenet (Yang et al., 2018) 2018 98.89 – 98.28 – – – 
Spatial Residual Network (SSRN) (Zhong et al., 2018) 2018 – – 99.19 99.07 99.79 99.72 
3D-2D SSHDR (Cao and Guo, 2020b) 2020 – – 99.46 99.38 99.81 99.74 

Multi-scale based fusion Fully dense multiscale fusion network (FDMFN) (Meng et al., 
2019) 

2019 96.72 96.25 – – – – 

Multiscale Spectral-Spatial Unified Networks (MSSN) (Wu et al., 
2019) 

2019 90.89 89.11 – – 89.52 86.62 

Dual-scale crossover network (DSCN) (Cao and Guo, 2020a) 2020 – – 99.62 99.57 99.84 99.78 
Multi-branch based network Deep multilayer fusion dense network. (MFDN) (Li et al., 2020) 2020 – – 96.08 95.26 98.89 98.1 

2D–3D CNN (Ge et al., 2020) 2020 99.94 99.93 96.07 95.51 99.52 99.41 
Features adaptive fusion network (FAFNet) (Sun et al., 2020) 2020 – – 99.24 – 99.54 – 

Attention-based networks Spectral-Spatial Attention Networks (SSAN) (Mei et al., 2019) 2019 – – 99.67 98.37 99.24 98.17 
Double branch dual attention (DBDA) (Li et al., 2020) 2020 97.51 97.23 95.38 94.74 96.00 94.67 
Center attention module (CAM) (Hang et al., 2021) 2021 98.18 97.97 98.10 97.84 98.97 98.64 

Bass, Siamese, and Capsule 
Networks 

BassNet (Santara et al., 2017) 2017 95.36 94.80 96.77 96.12 97.48 96.62 
Siamese-CNN (Liu et al., 2018a) 2018   99.04 98.87 99.68 99.55 
Conv-Capsule (Zhu et al., 2019) 2019 99.17 99.07 – – – – 

Ensemble Networks Deep CNN Ensemble (Chen et al., 2019) 2019 96.05 95.97 92.54 91.36 93.19 91.26 
HybridSN (Roy et al., 2020) 2019 99.98 99.98 98.39 98.16 99.72 99.64 
Stacked sparse autoencoder (SSAE) (Deng et al., 2019) 2019 99.26 99.18 – – 99.85 99.79 

Active Learning methods Fast Patch-Free Global Learning Framework (Zheng et al., 2020) 2020 99.92 99.91 – – 99.81 99.74 
HT-CNN-Attention (He et al., 2020) 2020 94.70 93.62 90.86 89.05 94.25 92.36 
Spectral-Spatial Feature Fusion using Spatial Coordinates 
(SSFFSC-AL) (Mu et al., 2020b) 

2020 – – 100 100 98.43 97.90  
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of largescale HSI benchmark datasets with larger classes and wider 
spectral coverage remains a major bottleneck. Current methods have 
attained very high classification accuracy on popular datasets, making 
the real comparison of new and superior approaches almost impossible. 
The promising path presented by new samples creation through artificial 
synthesis can be exploited further to support new methods and unlock 
the full potential of deep learning in the hyperspectral domain. 
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