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Abstract—With satellite platforms gazing at a target territory, the captured satellite videos exhibit local misalignment and local intensity

variation on some stationary objects that can be mistakenly extracted as moving objects and increase false alarm rates. Typical

approaches for mitigating the effect of moving cameras in moving object detection (MOD) follow domain transformation technique,

where the misalignment between consecutive frames is restricted to the image planar. However, such technique cannot properly handle

satellite videos, as the local misalignment on them is caused by the varying projections from the 3D objects on the Earth’s surface to 2D

image planar. In order to suppress the effect of moving satellite platform in MOD, we propose aMoving-Confidence-AssistedMatrix

Decomposition (MCMD) model, where foreground regularization is designed to promote real moving objects and ignore system

movements with the assistance of a moving-confidence score estimated from dense optical flows. For solving the convex optimization

problem in MCMD, both batch processing and online solutions are developed in this study, by adopting the alternating direction method

and the stochastic optimization strategy, respectively. Experimental results on the videos captured by SkySat and Jilin-1 show that

MCMD outperforms the state-of-the-art techniques with improved precision by suppressing effect of nonstationary satellite platforms.

Index Terms—Moving object detection, remote sensing video surveillance, satellite video, low rank matrix decomposition, moving satellite

platform
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1 INTRODUCTION

SATELLITE video surveillance has become an emerging
technology for monitoring moving vehicles at city-scale.

Since the first prototype video satellite launched by Google
in 2013, two video satellite constellations with over ten
video satellites, SkySat constellation [1] and Jilin-1 constella-
tion [2], have been in operation. Moving Object Detection
(MOD) on such videos captured from space serves as a
most fundamental technique to achieve quantitative and
automatic remote sensing surveillance. MOD methods have
been broadly investigated for ground-based surveillance
systems, where videos are commonly captured by a fixed
camera with relatively high quality. They are challenged by
the new issues in the satellite remote sensing videos –low
spatial resolution (large ground sample distance), higher
noise rate and nonstationary camera platform.

The ground sample distances of all the current satellite vid-
eos are no greater than 1meter, somost of the vehicles are cap-
tured with only 5–20 pixels spatially. Satellite videos have
limited spectral information as they are oftenmonochromatic.
Due to the lack of spectral information and the limited spatial
features, such as shape and textures, detecting vehicles from
satellite videos by deep learning-based detectors are challeng-
ing, despite of their success in natural images [3], [4], [5] or
aerial high-resolution images [6], [7], [8], [9], [10]. In this case,
the motion of moving vehicles is a more useful and important
feature, which facilitates the background subtraction-based
MOD approaches. To suppress the effect of random noise in
MOD, additional constraints, such as smoothness on the
edges [11], [12] and structured sparsity [13], [14], [15], are
enforced on the foregroundmodelling.

Most importantly, satellite videos differentiate themselves
from ground-based videos by the moving satellite platform.
With satellite platforms orbiting around Earth and gazing at a
target territory, the captured satellite videos exhibit a unique
type of local misalignment —small and uneven motions on
some stationary background objects. While themajority of the
background exhibits sub-pixel and neglectmotions [16], some
apparent local misalignment can be observed on the tall struc-
tures, such as skyscrapers, as presented in Fig. 1. Such local
misalignment is caused by the varying 2D projection from the
complex 3D objects on the Earth’s surfacewith changing cam-
era locations, and typical domain transformation technique
[17] cannot properly handle it. In addition to local misalign-
ment, due to the surface roughness of different objects on the
ground, the motion of satellite also leads to significant
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variations of the received signals, and subsequently results in
local intensity variations on stationary objects, as shown in
Fig. 1. The localmisalignment and possible local intensity var-
iations on stationary background objects make the motion of
satellite platforms another primary source of false alarms in
MOD. The dominating matrix decomposition-based MOD
methods assume that the background is static. When they are
applied to satellite video data, stationary background objects
with such pixel shifts and/or intensity variations are recog-
nised as moving objects, which negatively affects MOD per-
formance by the reduced precision. To suppress the effect of
moving camera, domain transformation [17] is introduced in
matrix decomposition-based MOD approaches, and an opti-
mal set of transformation is sought for conducting image reg-
istration, inwhich themisalignment is, however, restricted on
the image planar [11], [18], [19]. The proper techniques for
handling the 3D effect of moving satellite platform in MOD
are barely explored so far but strongly needed.

In this paper, we propose a unified MOD framework
where moving vehicles are separated from false alarms
caused by the motion of satellites in video capturing. A mov-
ing-confidence score is introduced to indicate each pixel’s
likelihood of belonging to moving vehicles, and we estimate
this score from the dense optical flows across a video. A fore-
ground regularization is designed to exclude the pixels with
small movements and promote the real object motions with
the assistance of this moving-confidence score. The proposed
low-rank matrix decomposition is named as Moving-Confi-
dence-Assisted Matrix Decomposition (MCMD). For solving
the optimization problem of MCMD, both batch and online
optimization schemes are developed in this paper. We adopt
the Alternating Direction Method of Multiplier (ADMM)
approach for batch optimization, and provide an online algo-
rithm based on stochastic optimization. To systematically
evaluate MOD performance on satellite videos, two datasets
were built from the videos captured by the two available
video satellite constellations, SkySat and Jilin-1 satellites,
respectively. Through experimental results on these datasets,
we validate the improved detection precision of MCMD by
eliminating the false alarms caused by nonstationary camera
platform, and MCMD achieves superior overall performance
when comparedwith state-of-the-art approaches.

In summary, the main contributions of this paper are
four-fold:

1) To suppress the false alarms caused by the motion
of satellite platforms inMODon satellite videos, amov-
ing-confidence-assisted foreground regularization is

developed, where the moving confidence scores are
estimated from the dense optical flows across a satellite
video. We propose a novel low-rank and structured
sparse matrix decomposition model by integrating the
proposed moving-confidence-assisted foreground
regularization for MOD in satellite videos, namely
Moving-Confidence-Assisted Matrix Decomposition
(MCMD).

2) The proposedMCMDmodel is defined as a linear con-
strained convex optimization problem, and we adopt
the Alternating Direction Method of Multiplier
(ADMM) for solving it by batch optimization, which is
denoted by B-MCMD. For scenarioswhere online proc-
essing is required, we also propose an online algorithm
based on stochastic optimization, namelyO-MCMD.

3) Two datasets containing the videos from SkySat and
Jilin-1, the only two satellites which are currently
available, were collected and annotated. Based on
these datasets, experimental evaluation on both B-
MCMD and O-MCMD methods were conducted
against some state-of-the-art approaches. The data-
sets are valuable for remote sensing community in
general to conduct the study on MOD in satellite vid-
eos in the coming years.

The remainder of this paper is organized as follows.
Related work on matrix decomposition is first presented in
Section 2. The proposed formulation for MOD is detailed in
Section 3, which is followed by the batch and online optimi-
zation methods in Section 4. The analysis on the parameter
settings of MCMD model and the experimental results are
provided in Section 5. Finally, conclusions and suggestions
for future research are given in Section 6.

2 MATRIX DECOMPOSITION FOR MOD

In this work, we propose a novel background subtraction
model for MOD, which is tied with low-rank matrix decom-
position technique. Based on the stillness of background
across a video, low-rank matrix decomposition technique
separates the foreground matrix of encoded moving objects
by modelling background objects with a low-rank matrix
[20], [21], [22].

LetD ¼ ½d1;d2; . . . ;dn� 2 Rp�n denote an input video with
n frames, where di 2 Rp is the vectorized ith frame, and B ¼
½b1;b2; . . . ;bn� 2 Rp�n, F ¼ ½f1; f2; . . . ; fn� 2 Rp�n and E ¼
½e1; e2; . . . ; en� 2 Rp�n are the background matrix, foreground
matrix and model residual matrix, respectively. In general,
matrix decomposition methods for MOD define an

Fig. 1. Local misalignment in satellite videos can cause false alarms in MOD. (a) Local misalignment and false alarms. (b) Optical flows.
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optimization as

argmin
B;F;E

RankðBÞ þ �1VðFÞ þ �2 Ek k2F
s:t: D ¼ Bþ Fþ E;

(1)

in which the background is commonly modeled by a low-
rank matrix due to its global stillness.

The termVðFÞ refers to the regularization imposed on the
foreground. Given that the moving objects are associated
with a limited number of temporally changing pixels, the
foreground is then modeled as sparse outliers to the low
dimensional subspace, and ‘0 norm is deployed for promot-
ing element-wise sparsity on the foreground [23], [24], [25],
[26]. In practice, ‘0 sparsity foreground regularization is,
however, prone to random noises in videos. In order to
address this issue, spatial structural priors on the fore-
ground are explored in matrix decomposition. Total Varia-
tion (TV) [27], [28] and Generalized Fused Lasso (GFL) [29]
are imposed to enforce smoothness on the foreground, and
the contiguous constraint on the edge of the moving objects
is imposed on the foreground matrix by the first-order Mar-
kov Random Field (MRF) [11]. Structured sparsity-inducing
norm [30], which defines the sparsity over groups of neigh-
boring pixels, is also developed to suppress the effects of
random noise in MOD [13], [14], [18], [31], since moving
objects in a video are seldom in the form of isolate pixels.
These matrix decomposition models assume the video for
processing is well aligned. In this study, we extend them to
address the obvious apparent local misalignment on sta-
tionary objects caused by nonstationary satellite platform to
minimize false alarms in moving vehicle detection from sat-
ellite videos.

3 MOVING-CONFIDENCE-ASSISTED MATRIX

DECOMPOSITION MODEL

Fig. 2 shows the proposed Moving-Confidence-Assisted
Matrix Decomposition Model (MCMD) which decomposes
a data matrix to three matrices, corresponding to stationary
background, moving objects and model residuals, respec-
tively. Aside with the structured sparse regularization

imposed on the foreground, the foreground is regularized
by a moving-confidence matrix to consider each pixel’s like-
lihood of belonging to moving objects. In this paper, we esti-
mate the moving confidence scores from the dense optical
flows across the video. In this way, the low-rank and struc-
tured sparse matrix decomposition model is enhanced to
prevent the local misalignment from appearing in the fore-
ground component.

3.1 Moving-Confidence Matrix Estimation

Dense optical flow measures pixel-wise displacement
between a pair of frames [32], [33]. In satellite videos, mov-
ing satellite platform can cause small pixel displacements
on stationary objects, whereas moving objects generally
exhibit large displacements on their associated pixels, as
illustrated in Fig. 1. This contrast implies that the pixels
with larger optical flows are more likely to belong to mov-
ing objects, which is the rationale behind the generation of a
moving confidence matrix in this paper.

For each frame fi, we utilize Farneback’s algorithm [34]
for extracting the dense optical flows between current frame
and its next frame, and denote the magnitudes of the
extracted optical flows by oi 2 p. A moving-confidence
matrix M is introduced and its corresponding component
mi is obtained by converting the optical flows oi using the
following function

mi;j ¼ 1

1þ e�aðoi;j�bÞ ; (2)

where mi;j and oi;j refer to the jth elements in mi and oi,
respectively. By doing this, the optical flows are mapped to
confidence scores in the range of ½0; 1:0�. The other propriety
of the introduced confidence scores is that they are not line-
arly related to the optical flow, instead, more sensitive to the
presumedminimum speed of real moving objects, and insen-
sitive to the speed lower or higher than that, by selecting the
parameter a and b properly. b can be selected as the pre-
sumed minimum speed of real moving objects, which can be
obtained from training video sequences or empirically. We
propose to select a reasonable large a, such as a ¼ 10, so that
the moving confidence emphasises the difference between

Fig. 2. Flowchart of the proposed MCMDmodel.
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real moving objects and the movements due to the camera
problem. As shown in Fig. 3, it promotes the first case by
assigning the moving confidence toward 1, and suppresses
the second case by assigning itsmoving confidence toward 0.

For preventing duplicated computation on consecutive
and similar frames, a set of anchor frames can be selected
from a video with a temporal stride, and the dense optical
flows used in Eq. (2) are computed from each pair of conse-
cutive anchor frames. The temporal stride for anchor frame
selection is decided based on the frame rate of the video
data and the understanding of the speed of moving objects.
For videos with high frame rate, a large temporal stride is
appropriate to adequately separate local misalignment from
moving vehicles.

3.2 Problem Formulation

On top of this matrix decomposition model in Eq. (1), we
impose a moving-confidence-assisted foreground regulari-
zation for suppressing the effect of nonstationary satellite
platforms. The proposed model is called Moving-Confi-
dence-Assisted Matrix Decomposition (MCMD) model. It
defines an optimization problem as

argmin
B;F;E

RankðBÞ þ �1VðFÞ þ �2CðFÞ þ �3 Ek k2F
s:t: D ¼ Bþ Fþ E;

(3)

in which VðFÞ andCðFÞ denote the spatial foreground regu-
larization term and the moving confidence-assisted fore-
ground regularization term, respectively. The squared
penalty term Ek k2F handles the model residuals that do not
fit either the background or the foreground. �1, �2 and �3

are the corresponding weights assigned to these regulariza-
tion terms.

Spatial Foreground Regularization: To penalize the false
alarms caused by random noises, we utilize the structured
sparsity-inducing norm as spatial foreground regularization
[13], [14], [15], [31], which is defined on the sparsity of the
foreground over the spatial groups of neighboring pixels
other than that over the individual pixels,

VðFÞ ¼
X
f2F

fk k‘1=‘1¼
X
f2F

X
g2G

fjg
�� ��

1; (4)

where G is the set of spatial groups of neighboring pixels of
the foreground. fjg 2 Rp refers to a sparse vector with non-
zero elements at the indices represented in a group g 2 G. In
this paper, the set of spatial groups G is defined by the
image patches extracted using a sliding window approach.

Moving-Confidence-Assisted ForegroundRegularization:
The moving-confidence-assisted foreground regularization
penalizes those foregroundpixelswith lowmoving confidence
scores. Given that M 2 Rp�n is the moving-confidence scores
obtained by Section 3.1, this regularization is defined by

CðFÞ ¼ ð1�MÞ � Fk k2F¼ M � F�� ��2
F
; (5)

where M 2 Rp�n is the complementary confidence matrix to
M, M ¼ 1�M, and M � F refers to the Hadamard product
of M and F. Minimizing CðFÞ penalizes the occurrence of
non-zero elements at the locations with low confidence in
M, by which the false alarms caused by local misalignment
on stationary objects can be reduced.

Tomake the optimization problem in Eq. (3)more tractable,
we relax the rank operator by its convex surrogate function,
which is the nuclear norm Bk k�. The relaxed optimization
problem is then rewritten as

argmin
B;F;E

Bk k�þ�1

X
f2F

fk k‘1=‘1þ�2 M � F�� ��2
F
þ�3 Ek k2F

s:t: D ¼ Bþ Fþ E;

(6)

in which the scalar �2 controls the contribution of moving-
confidence-assisted foreground regularization to the objec-
tive function in Eq. (6). As �2 increases from a minimal posi-
tive value, those foreground elements with low moving-
confidence scores make more contribution to the objective
function, and they are penalized more significantly when
the foreground is updated. The next challenge is how to
solve the formulated optimization problem. We develop
two algorithms as presented in the following section, which
give a batch optimization method (B-MCMD) and an online
optimization method (O-MCMD) in Sections 4.1 and 4.2,
respectively.

4 OPTIMIZATION METHOD

4.1 Batch Optimization (B-MCMD)

The optimization problem defined in Eq. (6) couples two
regularization term on F, which makes it difficult to solve
efficiently. To tackle this, we introduce an auxiliary variable
Z 2 Rp�n, and define an equivalent optimization problem to
Eq. (6) as

argmin
B;F;Z;E

Bk k� þ �1

X
f2F

fk k‘1=‘1 þ �2 M � Z�� ��2
F
þ �3 Ek k2F

s:t: D ¼ Bþ Fþ E;

F ¼ Z:

(7)

We propose a batch optimization for solving this reformu-
lated problem, named by B-MCMD. First, the linear con-
straints in Eq. (7) are removed using the Augmented
Lagrangian Method (ALM) [35],

Fig. 3. Mapping from optical flow oi;j to confidencemi;j using difference a.
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argmin
B;F;Z;E;Y

Bk k� þ �1

X
f2F

fk k‘1=‘1 þ �2 M � Z�� ��2
F

þ �3 Ek k2Fþ < Y1;D� B� F� E >

þ m1

2
D� B� F� Ek k2F

þ < Y2; F� Z > þm2

2
F� Zk k2F ;

(8)

where m1 and m2 are positive scalars, and Y1 and Y2 are
Lagrangian multipliers. In B-MCMD, we adopt the ADMM
approach for minimizing the augmented Lagrangian func-
tion. The variables are updated alternatingly by solving
their corresponding sub-problem in each iteration.

Algorithm 1. Proposed B-MCMD Method for MOD

Input: D 2 Rp�n, M 2 Rp�n, �1 > 0, �2 > 0, �3 > 0, m1 > 0,
m2 > 0, r > 0, �m1 ¼ m1 � 105 and �m2 ¼ m2 � 105.

Output: B, F, Z and E.
1: B ¼ 0, F ¼ 0, E ¼ 0, X ¼ 0 Y1 ¼ 0 and Y2 ¼ 0.
2: k ¼ 0
3: while not converged do
4: Update Bkþ1 by Eq. (12).
5: Update Fkþ1 by Eq. (18).
6: Update Zkþ1 by Eq. (20).
7: Update Ekþ1 by Eq. (21).
8: Update the Lagrangian multipliers by

Ykþ1
1 ¼ Yk

1 þ m1ðD� Bkþ1 � Fkþ1 � Ekþ1Þ
Ykþ1
2 ¼ Yk

2 þ m2ðFkþ1 � Xkþ1Þ
�

: (9)

9: (Optionally) Update m1 and m2 by

m1 ¼ minfrm1; �m1g
m2 ¼ minfrm2; �m2g

�
: (10)

10: Break if the termination conditions is satisfied.
11: k ¼ kþ 1.
12: end while
13: return Bkþ1, Fkþ1, Xkþ1 and Ekþ1.

Update B: Updating B in each iteration is achieved by
solving the augmented optimization problem while fixing
F, Z, Y1 and Y2:

argmin
B

1

m1

Bk k�þ
1

2
B� ðD� Fk � Ek þ Yk

1

m1

Þ
����

����
2

F

: (11)

Let G ¼ D� Fk � Ek þ 1
m1

Yk
1 and USUT denote the Singular

Value Decomposition (SVD) of G, the optimal solution to

Eq. (11) is obtained by

Bkþ1 ¼ U S� 1

m1

I

� �
þ
VT ; (12)

where S� 1
m1

I
� �

þ
is the element-wise soft-shrinking operator,

S� 1
m1

I
� �

þ
¼ max S� 1

m1
I; 0

� �
, and I is the identitymatrix.

Update F: After obtaining Bkþ1, the foreground F is esti-

mated by solving a structured sparse encoding problem,

argmin
F

�1

m1 þ m2

X
f2F

fk k‘1=‘1þ 1

2
F�Hk k2F ; (13)

with

H ¼ m1G1þm2G2
m1þm2

G1 ¼ D� Bkþ1 � Ek þ Yk
1

m1

G2 ¼ Zk � Yk
2

m2

8>>><
>>>:

: (14)

As the spatial regularization term is frame-wise separable,
this encoding problem can be solved by a series of frame-
wise sub-problems. For the ith frame, the foreground com-
ponent fi is obtained as

fi ¼ argmin
f

1

2
hi � fk k22þ�0 X

g2G
fjg

�� ��
1; (15)

where �0 ¼ �1=ðm1 þ m2Þ, and the optimal solution is
obtained from the dual problem of Eq. (15) according to the
following lemma.

Lemma 4.1 (Dual of the structured sparsity encoding
problem from [30], [36], [37]). Given h 2 Rp and x 2 Rp,
a structured sparsity encoding problem on x with provided set
of structured variables G is defined as

argmin
x

1

2
h� xk k22þ�

X
g2G

xjg
�� ��

1; (16)

whose dual problem is provided as

�� ¼ argmin
�

1

2
h�

X
g2G

�g

�����
�����
2

2

s:t: 8g 2 G; �gk k1� � and �gj ¼ 0 if j =2 g;

(17)

where � 2 Rp� Gj j is the dual variable. The dual problem defines
a Quadratic Min-cost Network Flow problem, from whom the
dual optimal �� can be obtained. Then the primal optimal x� is
derived by

x ¼ h�
X
g2G

��g: (18)

Update Z: With other variables in Eq. (8) fixed, the the
auxiliary variable Z is updated by solving the following
problem,

argmin
Z

�2 M � Z�� ��2
F
þm2

2
Z� ðFkþ1 þ Yk

2

m2

Þ
����

����
2

F

; (19)

and its closed-form solution is derived from its first-order
derivative,

Zkþ1 ¼ m2ðFkþ1 þ Yk
2

m2

Þ�ð2�2M �Mþ m2Þ; (20)

where � refers to the element-wise divide operator.
Update E: The closed-form solution of E is derived by the

first-order derivative of the objective function in Eq. (8)
while fixing other variables:

Ekþ1 ¼ m1

2�2 þ m1

D� Bkþ1 � Fkþ1 þ 1

m1

Yk

� �
: (21)
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After updating all variables in each iteration, the relative
termination criterion is examined by

D� Bkþ1 � Fkþ1 � Ekþ1
�� ��

F

Dk kF
� t;

&
Fkþ1 � Xkþ1

�� ��
F

Dk kF
� t;

(22)

where t ¼ 10�7. The iteration continues till it reach the
above termination criterion, and the entire procedure of B-
MCMD is summarized in Algorithm 1.

4.2 Online Optimization (O-MCMD)

Like most canonical low-rank matrix decomposition
approaches, the batch optimization B-MCAM relies on SVD
over the entire video data D, so it is not suitable for online
processing systems. For a large satellite video, B-MCMD
will also incur an extremely high computational cost. To
overcome this problem, an online optimization method for
solving MCMD is desired. In this paper, an online optimiza-
tion method is developed by adopting the stochastic optimi-
zation techniques, and we denote the proposed online
algorithm by O-MCMD.

First, the optimization problem of MCMD in Eq. (6) is
rewritten to its unconstrained form as

argmin
B;F;E

1

2
D� B� Fk k2F þ �1 Bk k�þ�2

X
f2F

fk k‘1=‘1

þ �3 M � F�� ��2
F
;

(23)

We can see minimizing Bk k� prohibits online processing, as
it depends on SVD and couples all the frames in each itera-
tion. This is addressed in the following.

We adopt the matrix factorization approximation of the
nuclear norm by the sum of square penalties of its factoriza-
tion [38], [39],

Bk k�¼ inf
L2Rp�r;R2Rr�n

1

2
Lk k2Fþ

1

2
Rk k2F : B ¼ LR

� �
; (24)

where L is treated as the basis of a low-dimensional sub-
space, and R denotes the corresponding reconstruction coef-
ficients with regards to L. By substituting the nuclear norm
in Eq. (23), the optimization problem is reformulated as

argmin
L;R;F

1

2
D� LR� Fk k2Fþ

�1

2
Lk k2Fþ

�1

2
Rk k2F

þ �2

X
f2F

fk k‘1=‘1þ�3 M � F�� ��2
F
;

(25)

and this optimization problem is then rewritten in a frame-
wise separable form as

argmin
L;R;F

Xn
t¼1

�
1

2
dt � Lrt � ftk k22þ

�1

2
rtk k22

þ �2

X
g2G

ftjg
�� ��

1þ�3 mt � ftk k22
�

þ �1

2
Lk k2F ;

(26)

where dt andmt denote the video frame and its correspond-
ing motion confidence at a time instance t, respectively. rt
and ft are the estimated coefficient and foreground for
tth frame.

In Eq. (26), the basis L is shared across frames, which
prevent it from being updated online. In order to achieve
online process, we adopt the Stochastic Optimization
(SA) for optimizing L in an online manner. For each new
frame dt, the pair of rt and ft are estimated with the sub-
space basis Lt�1 obtained from previous time instance t�
1, then the basis Lt is updated by all existing pairs of
ðri; fiÞ; 8i 2 f1; 2; . . . ; tg. We summarize this online proc-
essing procedure in Algorithm 2.

Algorithm 2. Proposed O-MCMD Algorithm for MOD

Input: dt 2 Rp,mt 2 Rp, Lt�1 2 Rp�r, At�1 and Bt�1,
Output: bt, rt, st and Lt

1: r0t ¼ rt�1, s
0
t ¼ st�1 (with r0 ¼ 0 and s0 ¼ 0).

2: k = 0
3: while not converged do
4: Update rkþ1

t by Eq. (29).

5: Update fkþ1
t by Algorithm 3.

6: ifmax
rkþ1
t �rktk k2

p ;
fkþ1
t �fktk k2

p

� �
� t then

7: break
8: end if
9: k = k + 1.
10: end while
11: bt ¼ Lt�1r

kþ1
t .

12: Update At and Bt by Eq. (33).
13: Update Lt by Eq. (32).
14: return bt, rt, st and Lt.

Estimate rt and ft: With fixed Lt�1, the reconstruction
coefficient rt and the foreground ft are encoded by

ðrt; ftÞ ¼ argmin
r;f

1

2
dt � Lt�1r� fk k22 þ

�1

2
rk k22

þ�2

X
g2GðfÞ

fjg
�� ��

1 þ �3 mt � fk k22:

(27)

We solve this encoding problem by the Block Coordinate
Descent (BCD) method [40], in which rt and ft are updated
alternatingly.

For the ðkþ 1Þ-th iteration in BCD, rkþ1
t is obtained by

rkþ1
t ¼ argmin

r

1

2
dt � Lt�1r� fkt

�� ��2
2
þ�1

2
rk k22; (28)

whose closed-form solution is provided as

rkþ1
t ¼ LT

t�1Lt�1 þ �1I
	 
�1

LT
t�1 dt � fkt

� �
: (29)

The update of fkþ1
t is achieved by solving Eq. (27) with

fixed rkþ1
t by

fkþ1
t ¼ argmin

f

1

2
h� fk k22 þ �2

X
g2GðfÞ

fjg
�� ��

1

þ �3 mt � fk k22;
(30)
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where h ¼ dt � Lt�1r
kþ1
t . As there is no closed-form solution

available to Eq. (30), we introduce an auxiliary variable z 2
Rp:

fkþ1
t ¼ argmin

f

1

2
h� fk k22þ�2

X
g2GðfÞ

fjg
�� ��

1

þ �3 mt � zk k22
s:t: f ¼ z;

(31)

which is solved by an ADMM method, as described in
Algorithm 3.

Algorithm 3. Proposed ADMM Method for Encoding
Foreground in O-MCMD

Input: dt 2 Pp, mt 2 Rp, h 2 Rp, �2 > 0, �3 > 0, m > 0, r > 0
and �m ¼ m � 105.

Output: f.

1: f0 ¼ 0, z0 ¼ 0 and y0 ¼ 0.
2: k ¼ 0.
3: while not converged do
4: Update fkþ1:

fkþ1 ¼ argmin
f

�2

1þ m

X
g2GðfÞ

fjg
�� ��

1

þ 1

2
f� hþ mzk � yk

1þ m

����
����
2

2

;

which is solved by Lemma 4.1.
5: zkþ1 ¼ mðfkþ1 þ 1

m
ykÞ�ð2�3mt �mt þ mÞ.

6: ykþ1 ¼ yk þ mðfkþ1 � zkþ1Þ.
7: (Optionally) m1 ¼ minfrm; �mg.

8: if
fkþ1�zkþ1k k2

dtk k2 � t then

9: break
10: end if
11: k ¼ kþ 1.
12: end while
13: return fkþ1.

Update Lt: The update of the basis Lt is achieved by min-
imizing a cost function based the estimated pairs of
ðri; fiÞ; 8i 2 f1; . . . ; tg,

Lt ¼ argmin
L

1

t

Xt

i¼1

�
1

2
di � Lri � sik k22þ

�1

2
rik k22

þ �2

X
g2GðfÞ

fijg
�� ��

1þ�3 mi � fik k22
�
þ �1

2t
Lk k2F

¼ argmin
L

TrðLð�1IþAtÞLT Þ � 2TrðLTBtÞ;

(32)

where Trð	Þ is the trace of a matrix. Two auxiliary accumula-
tion matrices, At 2 Rp�r and Bt 2 Rr�r, are introduced to
remove duplicated calculations at each time instance:

At ¼ At�1 þ rtr
T
t

Bt ¼ Bt�1 þ ðdt � stÞrTt

�
: (33)

Similar to [12], [39], [41], the optimization problem defined
in Eq. (32) is solved by a Block Coordinate Descent Method
for avoiding matrix inverse of large matrix.

Prior to starting O-MCMD, we initialize L0 by random
values, and for O-MCMD t is set by a very small number,
such as 1� 10�5.

5 EXPERIMENTS AND RESULTS

The MOD performance of the proposed MCMD model was
inclusively validated on nine satellite videos as listed in
Table 1, where the first six (No. 0 to No.5) were captured by
SkySat and the rest three (No. 6 to No. 8) were obtained from
Jilin-1. These satellites are the only two video satellite constel-
lations in operation. The SkySat dataset has ground sample
distances of around 1.0 meter. These videos are in gray-scale,
and their frame rate is 30 frames per second. For Jilin-1 data-
set, the ground sample distance is also around 1.0 meter, and
their frame rate is 10 frames per second. Gray-scale was used
in the experiments tomatch the video type of SkySat. The raw
video data captured by both satellites is geometrically cor-
rected by using the Rational Polynomial Coefficient (RPC)
transformation that is derived from the sensor model and the
corresponding terrain information. A boundary box was
manually annotated for eachmoving vehicles in both datasets
as groundtruth. In this paper, we used Video No.0 in SkySat
dataset for discussion on parameter settings, and the remain-
ing videos were utilized for performance evaluation against
existing state-of-the-art methods.1

The detection performance of MOD on satellite videos
was evaluated on recall, precision and F1 scores given by

Rcll ¼ TP=ðTP þ FNÞ
Prec ¼ TP=ðTP þ FP Þ
F1 ¼ 2� Rcll� Prec

Rcllþ Prec
;

(34)

where TP denotes the number of correct detections, FN and
FP are the numbers of missed detections and false alarms,
respectively. In this paper, we define a correct detection
with maximum Intersection over Union (IoU) against the
groundtruth greater than a threshold. To complement the
vehicles in small size in satellite videos, the threshold of IoU
is set as 0.3.2

TABLE 1
Information on the Evaluation Datasets

1. The annotation is public available through https://github.com/
zhangjunpeng9354/satellite_video_mod_groundtruth.git.

2. The estimated foreground is built by contiguous values rather
than binary value, so we deploy threshold segmentation as post-proc-
essing for extracting the foreground mask and the moving objects [42].
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5.1 Effect of Moving-Confidence-Assisted
Foreground Regularization

In theMCMDmodel, themoving-confidence-assisted regular-
ization is imposed on the foreground, and its contribution to
objective function in Eq. (6) is controlled by the weight �2. To
experimentally examine the effectiveness of the proposed
foreground regularization CðFÞ, we gradually increase �2

from 10�6 to 1 in B-MCAM while fixing �1 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfp; ngp

and �3 ¼ �1=5, to make the moving-confidence foreground
regularization contribute more to the objective function. As
presented in Fig. 4, as �2 increases from 10�6 to 10�3 , the preci-
sion by B-MCMD is improved by about 3 percent, while there
is a drop less than 1.0 percent in term of the recall rate. The
improved precision can be attributed to the reduced false
alarms caused by moving satellite platform. As highlighted in
the red regions in Fig. 5, while �2 is increased, less foreground
objects are mistakenly extracted on the stationary background
objects with local misalignment. Further increase of �2 may
lead to a limited gain on precisionwhile it would cause a small
drop in term of recall, which should be owning to over-penal-
izing slow moving objects with low moving-confident scores.
Therefore, thanks to the proposed foreground regularization,
B-MCMD can achieve better precision than E-LSD with little
loss on the recall ratewith awide range of selection of �2.

As observed in Figs. 4 and 5, when �2 decreases toward
zero, like �2 ¼ 10�6, the same outputs are generated by B-
MCMD and E-LSD. This is because MCMD is degenerated
to E-LSD [14] when �2 ¼ 0, and in this case the confidence-
assisted regularization no longer makes contribution to the
objective function in Eq. (6).

5.2 Performance Evaluation

To verify the superior performance by MCMD, four batch-
based state-of-the-art approaches, which are RPCA [24],

DECOLOR [11], LSD [13] and E-LSD [14], and four state-of-
the-art online approaches, GRASTA [43], OR-PCA [41],
GOSUS [31] and O-LSD [15], were selected for comparison.

For B-MCMD, we set �1 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfp; ngp

, �2 ¼ 0:001 and
�3 ¼ �1=5, and for O-MCMD, we set �1 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxfp; ngp

,
�2 ¼ 10� �1 and �3 ¼ 103. When computing the dense opti-
cal flows, we empirically selected the temporal stride for
extracting the anchor frames as 10 and 3 for SkySat dataset
and Jilin-1 dataset, respectively, based on their frame rates.
We set a ¼ 10, and bwas selected as 1.87 and 1.67 for SkySat
dataset and Jilin-1 dataset, respectively, which roughly cor-
respond to a ground speed of 20 km=h.3

SkySat Dataset: Compared with the state-of-the-art MOD
algorithms, the proposed B-MCMD and O-MCMD methods
both achieve improved performance with reduced false
alarm rates. As presented in Fig. 6, the detection results by
existingmethods exhibit a high rate of false alarms on station-
ary background objects. By introducing the moving-confi-
dence-assisted foreground regularization by B-MCMD and
O-MCMD few false alarms are generated on background
objects. Quantitatively, B-MCMD and O-MCMD achieve the
highest overall performance with F1 ¼ 79:54% and F1 ¼
73:79% among the batch methods and online methods,
respectively, as presented in Table 2. Compared with the
existing best performer E-LSD, B-MCMD has a small reduc-
tion in terms of recall, which should be owing to the overlap-
ping in optical flow between the real slow moving objects
and the localmisalignment on stationary background objects.
For O-MCMD, the introduced regularization helps improve
the online estimation of the low-rank subspace, which leads
to improved recall rates. Compared with the batch methods,

Fig. 4. MOD performance by B-MCMD with varying �2 with fixed �1 and �3 on Video No.0 in Skysat dataset. (a) Recall. (b) Precision. (c) F1.

Fig. 5. Visualization on the foreground mask of Video No.0 in SkySat dataset by B-MCMD with increasing �2.

3. It is worth noting that fine-tuning on these parameters may
improve the MOD performance further.
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O-MCMD even outperforms the batch method LSD by about
10 percent in term ofF1.

Jilin-1 Dataset: B-MCMD andO-MCMDachieve superior
MOD performance against the state-of-the-art batch and
online methods on Jilin-1 dataset in term of precision and F1.
As illustrated in Fig. 7, false alarms are generated by the
existing methods on stationary background objects, which
is owing to the local misalignment caused by moving satel-
lite platform. With proposed moving-confidence-assisted
regularization on the foreground, B-MCMD and O-MCMD
are able to suppress these false alarms. Quantitatively, as
shown in Table 3, B-MCMD achieves the highest F1 score of
71.57 percent, and it boosts theMODperformance by around
10 percent from E-LSD, which achieves the second highest
F1. O-MCMD achieves the highest F1 among the online
approaches, and its performance is close to the current best
batch performer, E-LSD.

In summary, the proposed MCMD model with the mov-
ing-confidence-assisted foreground regularization boosts
the MOD performance by both batch and online optimiza-
tion algorithms presented in this paper.

5.3 An Ablation Study

The proposed MCMD model is built upon two foreground
regularizations —a structured sparse foreground regulari-
zation and a moving-confidence-assisted foreground regu-
larization. An ablation study is performed to validate the
effectiveness of each part. The sparse foreground regulari-
zation can be element-wised or structure-based. Both ver-
sions are tested, so five different combinations are formed.

The ablation study results are given in Table 4. Model
(A), Model (B) and Model (C) are three baseline models
where only the element-wise sparse foreground regulariza-
tion or the moving-confidence-assisted foreground regulari-
zation is adopted, or both are adopted, respectively. The
proposed MCMD model adopts the structured sparse fore-
ground regularization and the moving-confidence-assisted
foreground regularization jointly. We can see the structured
sparse regularization improves the MOD performance than
element-wised, as it can address the noise issue in MOD bet-
ter. Together with the moving-confidence-assisted fore-
ground regularization, the proposed MCMD achieves the
highest F1 scores for both datasets.

Fig. 6. Optical flow results and the detection results obtained by the proposed B-MCMD, O-MCMD and eight existing state-of-the-art methods on
selected videos from SkySat dataset.
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5.4 Compute Complexity and Running Time

For processing a video with n frames, the computation com-
plexity for each iteration in B-MCMD is Oðnðp2 þ pþ

P
g2G jgjÞÞ, where jgj is the number of elements in g. If B-

MCMD takes k iterations to converge, the overall computa-
tion complexity sums up to Oðk½nðp2 þ pþP

g2G jgjÞ�Þ. In

Fig. 7. Optical flow results and the detection results obtained by the proposed B-MCMD, O-MCMD and eight existing state-of-the-art methods on
selected videos from Jilin-1 dataset.

TABLE 3
Detection Performance Comparison Against the State-of-the-Art Algorithms on Jilin-1 Dataset

Method No. 6 No. 7 No. 8 Avg

Rcll Prec F1 Rcll Prec F1 Rcll Prec F1 Rcll Prec F1

RPCA 82.40% 10.08% 17.97% 90.17% 17.57% 29.41% 88.45% 15.45% 26.31% 87.01% 13.37% 24.56%

DECOLOR 60.73% 27.50% 37.86% 75.51% 47.39% 58.24% 73.18% 69.96% 71.54% 69.81% 48.28% 55.88%

LSD 73.53% 36.49% 48.78% 80.97% 47.24% 59.67% 79.13% 55.19% 65.03% 77.88% 46.31% 57.83%

E-LSD 71.86% 45.40% 55.65% 76.31% 50.15% 65.26% 71.99% 62.32% 66.81% 73.39% 52.62% 62.57%

B-MCMD 57.21% 69.46% 62.74% 71.33% 80.18% 75.50% 68.45% 86.59% 76.46% 65.66% 78.74% 71.57%

GRASTA 58.72% 8.68% 15.12% 70.87% 14.84% 24.55% 73.22% 23.08% 35.10% 67.60% 15.53% 24.92%

OR-PCA 67.99% 10.45% 18.12% 86.30% 21.25% 34.10% 86.15% 13.62% 23.52% 80.15% 15.11% 25.25%

GUSOS 60.79% 21.55% 31.82% 65.39% 59.29% 62.19% 60.83% 49.78% 54.75% 62.34% 43.54% 49.59%

O-LSD 53.25% 33.95% 41.47% 56.79% 66.25% 61.16% 56.85& 65.98% 61.08% 55.63% 55.39% 54.57%

O-MCMD 48.54% 54.44% 51.32% 57.10% 77.00% 65.57% 55.86% 73.16% 63.34% 53.83% 68.20% 60.08%

TABLE 2
Detection Performance Comparison Against the State-of-the-Art Algorithms on SkySat Dataset
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TABLE 4
Ablation Study in Terms of the F1 Score for MOD on the SkySat and Jilin-1 Datasets

Model Configuration Dataset

Sparse Foreground
Regularization

Moving-Confidence-Assisted
Foreground Regularization

SkySat Jilin-1

(A) @ (Element-wise) - 55.91% 24.83%
(B) - @ 60.89% 46.73%
(C) @ (Element-wise) @ 76.56% 60.75%

(D) @ (Structured) - 77.14% 62.57%
B-MCMD @ (Structured) @ 79.54% 71.57%

Fig. 8. Optical flow results and the detection results obtained by the proposed B-MCMD method and four existing state-of-the-art methods on
selected videos from CLIF 2006 dataset.
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terms of the processing time, in our experiments, B-MCMD
took 3600 seconds to process a video with 500 frames in size
of 400� 400, whereas E-LSD and LSD took 2736 seconds
and 13030 seconds for processing the same video, respec-
tively. As the computation complexity of B-MCMD grows
quadratic with respect to p, B-MCMD is suitable for off-
board processing for frames in moderate size.

For O-MCMD, the computation complexity is deter-
mined by the iterative optimization in Algorithm 2. For
each iteration in Algorithm 3, the complexity for estimating
foreground and background by Eq. (27) is Oðk1½r3 þ k2ðpþP

g2GÞ jgj�Þ, where k1 is the number of iterations in BCD for
solving Eq. (27) and k2 is the number of iterations for Algo-
rithm 3 to converge. The complexity for updating the sub-
space basis is Oðr2 þ prþ pr2Þ. This sums up to Oðr2 þ prþ
pr2 þ k1½r3 þ k2ðpþ

P
g2GÞ� jgjÞÞ for processing a frame

in Algorithm 2. In practice, k1 usually takes a number
smaller than 5, thus encoding the foreground by Eq. (30)
occupies the majority of computation complexity in O-
MCMD. For O-MCMD, it took 33 seconds on average for
processing a frame in the size of 400� 400, and the iterative
optimization contributes the majority of the time for solving
Eq. (30). O-MCMD is more suitable for online applications
and large frames.

5.5 Experiments on Wide Area Surveillance Videos

In this paper, the proposed MCMD model was also tested
on the challenging CLIF 2006 dataset that is captured by
Wide Area Surveillance (WAS) system. In WAS, the videos
are collected from a high-altitude aerial platform and
exhibit global platform motion. Detecting moving objects
from them is severely affected by the local misalignment on
stationary background objects.

The CLIF 2006 dataset4 is collected at the rate of 2 frames
per second. The frames are pre-processed through intensity
adjustment, mosaic and frame-to-frame alignment [44], [45].
From the pre-processed videos of CLIF 2006, two videos in
size of 650� 800 and 700� 650 are selected for performance
evaluation. They contain 40 and 35 frames, respectively.5

The boundary boxes for moving vehicles on them are manu-
ally annotated.

As presented in Fig. 8, the non-zero optical flow on sta-
tionary background objects indicates the occurrence of local
misalignment between frames, and false alarms are gener-
ated on them by RPCA, DECOLOR, LSD and LSD methods.
With the introduced moving-confidence-assisted fore-
ground regularization, the proposed B-MCMD method suc-
ceeds in suppressing those false alarms due to their low
moving-confidence scores. Quantitatively, MCMD achieves
improved MOD performance when compared with state-of-
the-art approaches. As shown in Table 5, the precision by B-
MCMD is over 50 and 40 percent higher than the existing
best performer E-LSD on both videos, and the F1 scores are
greatly improved by B-MCMD. This improvement should
be attributed to the introduced moving-confidence-assisted
regularization on the foreground.

6 CONCLUSION

In satellite videos, MOD performance of matrix decomposi-
tionmethods is severely challenged by themotion of satellite
platforms, in particular. In this paper, we cope with the
unaddressed false alarm issue caused by the motion of satel-
lites. To achieve such goal, we introduce a moving-confi-
dence matrix using dense optical flow and develop a
moving-confidence-assisted foreground regularization, by
which the foreground elements with low moving confiden-
ces are penalized. By imposing such regularization on the
foreground, a novel low-rank decomposition model, which
is named asMoving Confidence-AssistedMatrixDecompo-
sition (MCMD), is established. Two optimization solutions
are developed to the proposed model for batch handling
(B-MCMD) and online processing (O-MCMD), respectively.
B-MCMD can produce better detection performance as
expected. The online implementation, O-MCMD, can meet
the requirement for on-board processing and online process-
ing, to save data storage and transmission cost. O-MCMD
can also be applied offline for large satellite videos, when
batch optimization scheme exceeds the capacity of current
computation systems. Compared with the dominating
supervised object detectors, the proposed MCMD model in
this paper does not require for manual annotations. The
results fromMCMD have the potential to be used as training
samples for training a powerful Deep Convolutional Neural
Network-based object detector, which may alleviate the bur-
den ofmanually annotating training samples.
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