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Visible and near-infrared (Vis–NIR) reflectance is an effectiveway to estimate soil heavymetal content. In this study, in
order to magnify the spectral information of the soil heavy metals and solve the collinearity and redundancy of
hyperspectral datasets, we aimed to explore the potential of the fractional-order derivative (FOD) spectral pretreat-
ment method and the band combination algorithm in soil heavymetal estimation. A total of 120 soil samples were col-
lected in Xuzhou city, Jiangsu province, China, and their heavy metal contents and spectra were measured. The FOD
(intervals of 0.25, range of 0–2) and a new three-band spectral index which take into account the electronic transition
ofmetal ions in the visible region and organicmatter and clayminerals in the near-infrared regionwere utilized for the
spectral pretreatment and the selection of characteristic bands, respectively. FOD with an order of 0.75 exhibited the
best model performance for estimating Cr and Zn, yielding RP

2 values of 0.74 and 0.81, respectively. As regards Pb, the
highest estimation accuracy was achieved with the 0.5-order reflectance, yielding RP

2 values of 0.56. The three-band
spectral indices with the best performance were then combined for a better estimation. To improve the estimation ac-
curacy and generalization, partial least squares (PLS), support vectormachine (SVM), random forest (RF), ridge regres-
sion (RR), XGBoost and extreme learning machine (ELM) were used to estimate the heavy metals by incorporating
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multiple spectral indices, and it was found that ELM outperformed other counterparts (the highest RP
2 = 0.77 for Cr,

the highest RP
2 = 0.86 for Zn, the highest RP

2 = 0.63 for Pb). The main spectral absorption mechanisms and modes
of heavymetals were also analyzed. This estimationmethod combining FOD and a three-band index will provide a ref-
erence to estimate soil heavy metals using Vis–NIR spectra over a large scale.
1. Introduction

Soil, as an important part of the terrestrial ecosystem, continuously cir-
culates and transforms materials and energy with other components in the
ecosystem.With the rapid development of industry and agriculture and the
huge increase in population, environmental pollution, including soil heavy
metal pollution, is an increasingly important problem worldwide (Salazar
et al., 2012). The heavymetals in soil cannot be decomposed. Furthermore,
some heavy metals can accumulate in the human body at harmful concen-
trations through the food chain, which is a serious hazard to human health
(Li et al., 2012; Khan et al., 2008; Xia et al., 2020). For example, if a human
ingests or inhales an excessive amount of a heavy metal, this can affect the
normal function and growth of cells, and can cause a series of lesions in var-
ious organs of the body. Zinc (Zn) usually exists in a divalent form in soil,
and is an essential micronutrient element for the growth and development
of animals and plants. However, the excessive accumulation of Zn in soil
can reduce soil microbial activity and inhibit crop growth, which results
in the enrichment of Zn in crops (He et al., 2020). Zn can also further
harm human health by polluting surface and groundwater bodies. The tra-
ditional methods for obtaining soil heavy metal concentration are mainly
based on laboratory chemical analysis, which is labor-intensive, time-
consuming, environmentally unfriendly, and requires a high level of exper-
tise (Lassalle et al., 2020; Meng et al., 2020). Moreover, different analysis
and detection methods are utilized for the various types of heavy metals,
and the chemical analysis reagents can themselves be harmful to the envi-
ronment. Therefore, it is difficult to achieve large-scale, dynamic, and
rapid soil heavy metal content estimation. In recent years, the relationship
between reflectance within the visible to near-infrared (Vis–NIR) region
(380–2500 nm) and soil has been widely used as an inexpensive and
rapid estimation tool for soil water content (Zhang et al., 2020a), organic
carbon (Viscarra Rossel and Behrens, 2010), and heavy metals (Wu et al.,
2007a; Tan et al., 2020a; Tan et al., 2020b).

When obtaining sample spectral information, hyperspectral data can be
affected by the specific state of the sample (such as humidity and particle
size), as well as the experimental conditions (such as instruments and oper-
ations), which can affect the spectral quality, to varying degrees. Due to the
low content of heavy metals in soil, the spectral characteristics are not ob-
vious. Therefore, it is necessary to preprocess the spectra to obtain spectra
that can reflect the true properties of the sample and enhance the effective
spectral information of heavy metals. The common preprocessing methods
include Savitzky-Golay (SG) smoothing (Asadzadeh and de Souza Filho,
2016), derivative preprocessing, standard normal variate (SNV) prepro-
cessing (Fearn et al., 2009), multiplicative scatter correction (MSC), and
continuum removal (CR). The use of derivative spectra is an established
technique in analytical chemistry for the elimination of background signals
and for resolving overlapping spectral features. Derivative spectra also help
to eliminate the differences in reflectance caused by the differences in par-
ticle size of the material. Nevertheless, a bottleneck of the conventional
integer-order derivatives (i.e. the first- and second-order derivatives) is a
lack of sensitivity to the gradual tilts or curvatures that may contain benefi-
cial information regarding soil heavy metals (Hong et al., 2018). However,
the fractional-order derivative (FOD), as an extension of integer-order de-
rivatives, is of increasing importance in many fields (such as control sys-
tems, signal filtering, bioengineering, and image processing) (Lu and Jin,
2011; Tarasov, 2016; Baderia et al., 2015; Zhang, 2011; Hong, 2018), but
few studies have explored its potential in soil heavy metal estimation
through Vis–NIR spectroscopy. Weak overtones and combinations of
these fundamental vibrations due to the stretching and bending of NH,
OH, and CHgroups dominate theNIR (700–2500 nm) region and electronic
2

transitions dominate the Vis (400–700 nm) portion of the spectra
(Mohamed et al., 2018). The overtones and combinationmodes make qual-
itative and quantitative interpretation in the Vis–NIR region more difficult
(Rossel et al., 2006). Therefore, the FOD, with its strong ability to amplify
the feature of reflectance and remove the mixed overlapping peaks, can
be utilized to estimate soil heavy metals.

Due to the numerous bands of hyperspectral reflectance, it is necessary
to select characteristic bands to simplify the model, shorten the running
time, and improve the generalization ability of the model in soil heavy
metal estimation. However, soil and soil spectra are rather complex phe-
nomena, which prevents the straightforward prediction of reflectance prop-
erties by physical theories or models. Furthermore, the characteristic bands
have usually been selected with statistical methods in most of the previous
studies, and it is difficult to analyze how these bands influence the soil
heavy metals (Tan et al., 2018; Yuan et al., 2020). Band combination algo-
rithm (i.e. spectral index) is a explainable and effective way to analyze soil
properties, and have been widely utilized in the development of
hyperspectral techniques (Bao et al., 2017; Bartholomeus et al., 2008).
Spectral indices can be obtained bymathematically transforming the reflec-
tance values of two or more characteristic bands. Spectral indices can ex-
press the hyperspectral response characteristics of heavy metals from two-
dimensional or even multi-dimensional spectral spaces, reducing the im-
pact of other soil composition information on the estimation. They also
have the ability to amplify the weak correlation between bands, reduce
the complexity of the model, and remove redundant information variables.
Therefore, using spectral indices to quantitatively express the interaction
relationship between the characteristic bands of heavy metals can effec-
tively improve the accuracy of heavy metal estimation models. Spectral in-
dices of the optimal band combination algorithm, including different
combinations (e.g. sum, difference, and ratio), have been utilized to explore
the relationship between soil reflectance and soil components with
hyperspectral data (Hong et al., 2020; Wang et al., 2018). Compared to
two-band spectral indices, three-band spectral indices contain an additional
band in a specific area through mathematical operations, which are more
robust and stable for soil components estimation (Zhang et al., 2019). How-
ever, three-band spectral indices, as an improvement of two-band spectral
indices, have been less studied. In this paper, we introduce a new three-
band spectral index with band combination algorithm and compare the es-
timation ability with that of traditional two-band spectral index.

According to several studies about the mechanism for the estimation of
heavy metal concentrations in soil by Vis–NIR reflectance spectroscopy,
there are two aspects playing important roles in the estimation: (i) the ab-
sorption of soil over the Vis–NIR spectral region (350–2500 nm) is primar-
ily associated with Fe-oxides, clay minerals, water, and organic matter, as a
consequence of the vibrational energy transitions of these dominant molec-
ular bonds (Shi et al., 2014). Metal cations (M2+) adsorbed onto hydroxyl-
ated surface sites (ROH, in which R can be Al, Fe,Mn, Si, etc. upon mineral
surfaces) are generally described as follows:ROH+M2+=RO-M++H+.
Consequently, an increase in the metal cations results in a decrease in ROH
and an increase in RO (e.g. FeO) on the surfaces of clay and oxide minerals
(Choe et al., 2008). Moreover, heavy metals can be bound to soil organic
matter due to the metal complexation resulting from the overtones and
combination bands of the NH, CH, and CO groups (Wu et al., 2019). (ii)
Some transition metals, such as Ni, Cr, and Co, have an unfilled d shell.
The energy levels of d-orbitals split when the atom of a transition element
is located in a crystal field. Electromagnetic energy is absorbed when an
electron moves from a lower level into a higher one (Wu et al., 2007a),
which causes the absorption features of heavy metals in spectral reflec-
tance.
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However, to the best of our knowledge, few studies have explored the
potential of soil heavymetal estimation directly with characteristic spectral
indices. Therefore, the objectives of the present study were: (1) to analyze
the influence of FODon soil spectra; (2) to introduce a new three-band spec-
tral indexwith the band combination algorithm and investigate the optimal
band combination with different fractional orders; (3) to study the absorp-
tionmechanism and characteristic bands of soil heavymetals; and (4) to in-
vestigate the estimation results for heavymetals using both a single spectral
index and multiple spectral indices.

2. Study area and materials preparation

2.1. Study area and experimental design

The study area is the remote sensing experimental site (34°13′N,
117°08′E) near the north gate of Nanhu Campus of the China University
of Mining and Technology, Xuzhou city, Jiangsu province, China (Fig. 1).
The soil type in the study area is cinnamon soil. The climate of Xuzhou is
a warm temperate semi-humid monsoon climate, with four distinct seasons
and abundant sunshine. The experimental site has average annual temper-
ature and precipitation of 14 °C and 847 mm, respectively. The precipita-
tion of the rainy season accounts for 56% of the whole year.

This experiment focused on analyzing the impact of heavy metals on
soil, so the small experimentfield was selected to ensure that soil properties
including soil spectra were mainly affected by heavy metal concentration
added. Four plots were studied in the experimental site, three of which
were artificially enriched with Cr, Pb and Zn, and the last plot had nothing
added. The plots were approximately 12.0× 11.8 m2. The sampling points
at the control plot and Cr addition plot adopted the plum blossom pattern.
There were two closed dry wells located at the Pb addition plot and Zn ad-
dition plot, respectively. In order to reduce the influence of closed dry
Fig. 1. Location of the study a
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wells, the sampling points at these two plots were arranged in a chessboard
pattern and in a S shaped path, respectively. A plexiglass column with a di-
ameter of 20 cm and a height of 20 cm (bottom sealed) was vertically
inserted into each soil point.Meanwhile, the upper end of the plexiglass col-
umn was set flush with the surface soil. The heavy metal compounds con-
centrations added were based on the second level standard (level II) of
the national environmental quality standards for soils (GB15618-1995)
(Agency, 1995), in which level II is used to the threshold values for
protecting human health. In October 2013, 30.8 g of chromium (III) chlo-
ride hexahydrate, 8.3 g of lead acetate trihydrate and 16.5 g of zinc sulfate
heptahydrate in nylon bags (size: 10 × 15 cm2; density: 100 mesh; mate-
rial: polyethylene) were added to the plexiglass column bottoms of the
plots. After this date, no further heavymetals were artificially added. In Oc-
tober of 2013, 2015, and 2016, 13–15 winter wheat seeds of the same type
were sown in each plexiglass column. In July of 2014, 2016, and 2017, after
the wheat had matured, about 1 kg of surface soil was collected from each
plexiglass column. In total, 40 samples were collected each year and 120
samples were collected over the three years. The soil samples were sealed,
marked, and brought back to the laboratory.

2.2. Soil sample analysis and reflectance measurements

In the laboratory, the sundries in the soil samples, such as stones, leaves,
and roots, were removed. The soil samples were then dried, ground, and
passed through a 100-mesh nylon sieve. After drying, grinding, and sieving,
each sample was divided into two subsamples. One sample was used for the
spectralmeasurements and the otherwas analyzed for the heavymetal con-
centrations.

The reflectance was measured by an Analytical Spectral Devices (ASD)
spectrometer that covers the Vis–NIR spectral region (350–2500 nm).
This was conducted in a dark room to avoid any interference by stray
rea and sampling points.



Table 2
Band absorption of the soil components and their overtones and combinations in the
Vis–NIR reflectance region (ν represents stretching vibration and δ represents bend-
ing vibration).

Band
(nm)

Soil component Mode

404 Hematite (Viscarra Rossel and Behrens, 2010) Electronic
transition409 Ferrihydrite, goethite (Scheinost, 1998)

427, 434 Goethite (Viscarra Rossel and Behrens, 2010; Scheinost,
1998)

444 Hematite (Viscarra Rossel and Behrens, 2010)
470 Fe3+, ferric oxide (Wickersheim and Lefever, 1962)
480 Goethite (Sherman and Waite, 1985)
490 Goethite, hematite (Viscarra Rossel and Behrens, 2010;

Sherman and Waite, 1985)
484–499 Ferrihydrite (Scheinost, 1998)
510, 529,
531

Hematite (Viscarra Rossel and Behrens, 2010; Sherman
and Waite, 1985)

620 Goethite, hematite (Stenberg et al., 2010)
570–700 Organic matter (Galvão and Vitorello, 1998) ν
716 Ferrihydrite (Stenberg et al., 2010) Electronic

transition
751 Amine (NH) (Clark, 1999; Clark et al., 1990a) ν
825 CH (Clark, 1999; Clark et al., 1990a) ν
1400 Molecular H2O, OH, AlOH, or MgOH (Hunt, 1977) ν
1900 OH, molecular H2O (Srasra et al., 1994) ν
2200 ALOH and OH, organic matter (Clark et al., 1990b) ν+δ
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light. The sampling interval of the spectrometer in the 350–1000 nm range
is 1.4 nm, and in the range of 1000–2500 nm, the sampling interval is 2 nm.
The resampling interval in the full-band range is 1 nm. The sensor probe
was positioned perpendicular to the sample surface at a distance of
20 cm. For each sample, 10 spectral measurements were taken, the anoma-
lous spectra were removed, and the results were averaged to present the
spectral characteristic of the sample. Because of the low signal-to-noise
levels near 350 nm and 2500 nm, only the 400–2400 nm wavelength
range was used. To reduce the noise, the spectra were smoothed using an
SG smoothing algorithm.

The heavy metal of the soil samples was detected by inductively
coupled plasma-mass spectrometry (ICP-MS). Soil samples were added to
a precleaned digestion flask. A solution of HNO3 and HCL with a ratio of
1:1 was then poured onto the samples. The soil samples were then heated
using an oven, before the samples were removed and left to cool down to
room temperature. After cooling down, the samples were diluted using
pure deionized water and were placed on a hot plate until they evaporated
to nearly a dry state. The samples were then left to cool down and were di-
luted again using deionized water. Finally, after filtering, the heavy metal
concentrations of the soil samples were measured by ICP-MS. A basic statis-
tical analysis of the soil heavy metal contents in three years is provided in
Table 1. The CV can reflect the degree of dispersion of the data. This
table shows that the three heavy metals have the similar CV.

In three years, the soil pH values of the experimental sites were 7.83,
7.79 and 7.61. The soil pH was higher than 7.5.

3. Methods

3.1. Fractional-order derivative (FOD)

The FOD extends the concept of integer-order derivatives, and is a field
devoted to the study of the properties and applications of arbitrary-order
derivatives. During the last few decades, the FOD has increasingly attracted
the attention of researchers in many different fields. There are three main
types of FOD algorithms: Riemann-Liouville (R-L), Grünwald-Letnikov (G-
L), and Caputo (Benkhettou et al., 2015). The definition of G-L is relatively
simple, and was applied in our research (Hong et al., 2018).

Generally, the first derivative of function f(x) is defined as:

f 0 xð Þ ¼ lim
h!0

f xþ hð Þ−f xð Þ
h

(1)

where h is the increment of the independent variable x. The second deriva-
tive of function f(x) can then be defined as:

f 00 xð Þ ¼ lim
h!0

f xþ 2hð Þ−2f xþ hð Þ þ f xð Þ
h2

(2)

If the integer order is increased to a higher order (v) and simultaneously
extended to a non-integer order, we can obtain the v-order fractional deriv-
ative formula in the interval of [a, b] (G-L):

dvf xð Þ ¼ lim
h!0

1
hv
∑ b−að Þ=h½ �

m¼0 −1ð Þm Γ vþ 1ð Þ
m!Γ v−mþ 1ð Þ f ðx� mhÞ (3)
Table 1
Statistical results for the soil heavy metal contents in three years.

Heavy metal Max (mg/kg) Min (mg/kg) Mean (mg/kg) Std. (mg/kg) CV. (%)

Cr 125.50 5.90 40.70 26.31 64.64
Zn 78.73 6.30 30.82 17.08 55.42
Pb 44.82 1.60 12.74 7.90 62.01

4

where h is the step length, which is set to 1, and [(b − a)/h] is the integer
part of (b− a)/h. The Gamma function is characterized by:

Γ zð Þ ¼
Z ∞

0
exp −uð Þuz−1du ¼ z−1ð Þ! ð4Þ

Eq. (3) can then be converted to:

dvf xð Þ
dxv

≈ f xð Þ þ −vð Þf x−1ð Þ þ −vð Þ −vþ 1ð Þ
2

f x−2ð Þ þ⋯

þ Γ −vþ 1ð Þ
m!Γ �vþ mþ 1ð Þ f x−mð Þ (5)

In this study, vwas allowed to vary from 0 to 2 (incremented by 0.25 at
each step).
Fig. 2. Average spectra for 2014, 2016, and 2017 after continuum removal.
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3.2. Band combination strategy

3.2.1. Absorption mechanism analysis
In the visible range, themain process bywhichmolecules absorb energy

is electronic transitions in atoms from the ground to higher energy states. In
the NIR region, the absorption characteristics of the soil spectra are mainly
generated by the stretching vibration and bending vibration of the func-
tional groups. Table 2 presents a summary of the important fundamental
absorptions in the Vis–NIR region and the occurrence of their overtones
and combinations, which can be used to assist the interpretation (Viscarra
Rossel and Behrens, 2010; Knadel et al., 2013; Nayak and Singh, 2007).

3.2.2. Band combination algorithm
In recent years, many researchers have devoted themselves to estimat-

ing the soil components with spectral indices based on the correlation coef-
ficient (Zhang et al., 2019; Wang et al., 2018). The two-band spectral index
is beneficial for visualizing the external response and internal meaning of
spectra (Zhang et al., 2020b; Wang et al., 2019). The ratio index can also
amplify the weak correlation between bands, as shown in Eq. (6).

RSI ¼ Rλ1

Rλ2
(6)

where Rλ1 and Rλ2 represent spectral bands λ1 and λ2, respectively, in the
range of 400–780 nm.

In addition, we attempt to propose a three-band spectral index to im-
prove the estimation accuracy of the spectral index and enhance the anti-
interference ability. When selecting the characteristic bands, we adopted
Fig. 3. Histograms, box-plots, and statistical data of heavy metals: (a) the calibration da
validation dataset of Cr; (e) the validation dataset of Zn; (f) the validation dataset of Pb. M
N: the number of soil samples.

5

the following strategies. First of all, the soil samples spectra for the three
years were processed by continuum removal (CR), as shown in Fig. 2,
where it can be seen that there are several obvious absorption bands,
namely, 480, 730, 1400, 1900 and 2200 nm. Except for the deepest water
absorption bands of 1400 and 1900 nm, the 2200 nmbandwas the clearest.
Meanwhile, in the NIR range, the absorption characteristics of soil spectra
are mainly due to the stretching vibration and bending vibration of the
functional groups of organic matter and clay minerals (Minasny et al.,
2011; Wang et al., 2020). The band of 2200 nm has been proved to be
the feature band which is associated with organic matter and clay minerals
in the NIR range (Viscarra Rossel and Behrens, 2010; Choe et al., 2008;
Chittleborough et al., 2011). It has demonstrated the feasibility of estimat-
ing heavy metal concentrations with hyperspectral imageries from spectral
absorption features parameters of 2200 nm, so 2200 nm can also be used in
remote sensing data estimation (Choe et al., 2008). The band of 2200 nm
was selected as one band of the three-band spectral index.

A lot of studies have demonstrated that, in the Vis range, the soil absorp-
tion characteristics are primarily on account of the electronic transition of
metal ions from the ground to higher energy states. Therefore, the other
two bands were selected in the Vis range by correlation coefficients. In
this study, we established a new three-band spectral index (TSI), which
had a specific sensitive third band. The spectral index is shown as:

TSI ¼ Rλ1

Rλ2 þ Rλ3
(7)

where Rλ1 and Rλ2 represent spectra of bands λ1 and λ2, respectively, in the
range of 400–780 nm. Rλ3 is the spectrum of 2200 nm.
taset of Cr; (b) the calibration dataset of Zn; (c) the calibration dataset of Pb; (d) the
in: minimum,Max: maximum, SD: standard deviation, CV: coefficient of variation,



Fig. 4. FOD spectra (0 to 2, with an increment of 0.25 per step). The pink areas represent the whole scope of the spectra. The blue lines represent the mean spectra.
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3.3. Modeling and model evaluation methods

3.3.1. Partial least squares (PLS)
PLS uses principal component analysis to condense multiple X and mul-

tiple Y into components (X corresponds to the principal component U, Y
corresponds to the principal component V) (Leone et al., 2012), and then
with the help of the canonical correlation principle, the relationship be-
tween X/U and Y/V can be analyzed. Combined with the principle of mul-
tiple linear regression analysis, the relationship between X and Y is studied
through analyzing the relationship between X and V.

3.3.2. Support vector machine (SVM)
The SVMmodel is a kernel-based method that was proposed by Vapnik

(1999). It is a nonlinear modeling method based on statistical learning the-
ory. SVM can use support vectors in the training samples to design an opti-
mal decision boundary. It can handle both linear and nonlinear problems,
and can solve regression modeling problems. SVM performs well in dealing
with high-dimensional and small sample data.

3.3.3. Ridge regression (RR)
RR (Mcdonald, 2010) is a biased estimation model for collinear data

analysis. It improves the singularity of the coefficient matrix of the normal
equations, which least square method unable to dispose when estimating
the regression coefficients. At the cost of the partial precision of the least
squares regression equation, a regression equation with a strong tolerance
to ill-conditioned data is obtained, which can better solve the problem of
the collinearity of hyperspectral data.

3.3.4. Random forest (RF)
RF is a kind of regression set algorithm that was proposed by Breiman

(2004). The essence of the RF algorithm is an improvement of the decision
tree (DT) algorithm. RF can handle a large number of input variables. By
6

the bootstrap resampling technique, random sampling is repeated K times
to generate a fixed number of subset training samples from all the samples
(where K is the number of trees in the forest). Meanwhile, for each sample,
only a fixed number of sub-attributes are selected. Each randomly selected
subsample with its corresponding sub-attributes can then be used to gener-
ate a regression tree, and all the trees make up the forest. Finally, the results
are obtained according to the scores of the class voting from all the trees. RF
is a good way to estimate missing data, and it can maintain the accuracy in
the case of missing data. These properties of RFmake it suitable for process-
ing hyperspectral data.

3.3.5. XGBoost
XGBoost (Zheng et al., 2017) is an improvement of the gradient

boosting algorithm. It realizes the generation of weak learners by optimiz-
ing the structured loss function (the loss function with the regular term is
added, which can reduce the risk of overfitting). XGBoost directly uses
the first and second derivative values of the loss function, and greatly im-
proves the performance of the algorithm through techniques such as pre-
sorting and weighted quantiles.

3.3.6. Extreme learning machine (ELM)
ELM (Chen and Wu, 2017) is a novel training algorithm for single-

hidden-layer feedforward networks (SLFNs), which only needs setting the
number of hidden layer nodes. Since it functions without extra adjustion
of the input weight of the network and the offset of hidden elements,
ELM maintains faster training speeds No parameters need to be manually
tuned, and the output layer weights are estimated by the least-squares
method.

3.3.7. Model evaluation method
The model evaluation was conducted with five determinant indicators:

the coefficient of determination (R2), the root-mean-square error (RMSE),



Fig. 5. Correlation between Cr and the two-band spectral index.
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the mean absolute error (MAE), the residual prediction deviation (RPD),
and the ratio of prediction performance to interquartile range (RPIQ),
which are defined as follows:

R2 ¼ 1−
PN

i¼1 yi−ŷið Þ2PN
i¼1 yi−yð Þ2 ð8Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 yi−ŷið Þ2
N

s
ð9Þ

MAE ¼ 1
N
∑
N

i¼1
yi−byij j (10)
Table 3
The maximum absolute correlation coefficients (MACC) between heavy metals and
the two-band spectral index.

Element Order

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Cr 0.696 0.716 0.727 0.734 0.638 0.628 0.611 0.549 0.458
Zn 0.773 0.751 0.805 0.783 0.675 0.630 0.657 0.628 0.495
Pb 0.609 0.611 0.627 0.650 0.596 0.554 0.578 0.575 0.458

7

RPD ¼ SD
RMSEP

(11)

RPIQ ¼ IQ
RMSEP

(12)

where yi is the measured value, byi is the predicted value, y is the average of
the measured value, N is the number of samples, SD is the standard devia-
tion of the validation set, and IQ is the interquartile distance of the vali-
dation set (IQ = Q3 − Q1). RC

2, RMSEC, and MAEC represent the
calibration dataset evaluation, in order to evaluate the fitting ability
of the model. Meanwhile, RP

2, RMSEP, MAEP, RPD, and RPIQ represent
the validation dataset evaluation, to evaluate the generalization ability,
respectively. Overall, higher RP

2, RPD, and RPIQ values combined with
lower RMSEP and MAEP values are considered as good predictions,
respectively.

4. Results and discussion

4.1. The content and spectra analysis

The heavy metal contents of the 120 soil samples were ranked in as-
cending order (from the lowest to the highest). These samples were further
divided into 40 stratums. In each stratum, the middle sample and the
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remaining two samples were assigned to validation and calibration sets, re-
spectively. Finally, there were 80 samples in the calibration set, and the re-
maining 40 samples formed the validation set. The statistical data for the
calibration dataset and validation dataset are shown in Fig. 3.

It can be seen from Fig. 3 that the mean, standard deviation (SD), and
coefficient of variation (CV) of the two datasets are relatively close, that
is, the data partition can be considered to be reasonable.

The FOD spectra with different orders are shown in Fig. 4.
From the original reflectance (order = 0) in Fig. 4, the reflectance

shows a steep slope at 400–700 nm. After that, the rate of increase slows
down. There are three major water absorption bands (at approximately
1400 nm, 1900 nm, and 2200 nm), especially the 2200 nm absorption fea-
ture, which is also characteristic of clays and soil organic matter (Zhang
et al., 2019). When the FOD increases from 0 to 0.5, the reflection peak
of water becomes sharper, and some small reflection peaks gradually be-
came prominent. When the FOD increases from 0.5 to 1, the reflection
peaks and absorption valleys become sharper. There are two reflection
peaks at 420 nm and 560 nm (related to goethite and iron oxide, respec-
tively), and two absorption valleys at 480 nm (associated with goethite
and the spectral absorption feature of iron/manganese oxide) and
2200 nm (OH stretching vibration and ALOH bending vibration directly re-
lated to organic matter). When the FOD increases from 1 to 1.5, the differ-
ences between the spectra are small (almost zero), but the noise increases
with the further increase in derivative order. The reflection peaks at
1400 nm, 1900 nm, and 2200 nmgradually become sharp positive and neg-
ative peaks. When the FOD increases from 1.5 to 2, the soil reflectance ap-
pears stable in the region of −0.002 to 0.002, which indicates that the
baseline offsets and overlapping peaks are gradually removed (Zhang
et al., 2019). The reflectance intensity gradually stabilizes, but numerous
tiny peaks begin to appear and grow.
Table 4
The characteristic bands and estimation results for heavy metals with the two-band spe

Element Order Characteristic bands Rc
2 RMSEc

Cr 0 526,779 0.71 13.18
0.25 504,725 0.64 14.71
0.5 486,723 0.67 14.13
0.75 705,706 0.78 11.33
1 607,455 0.42 18.82
1.25 510,423 0.13 23.06
1.5 504,506 0.44 18.54
1.75 706,574 0.57 16.18
2 702,573 0.32 20.28

Zn 0 519,777 0.53 11.22
0.25 504,723 0.58 10.64
0.5 486,657 0.70 8.89
0.75 444,570 0.69 9.01
1 606,455 0.20 14.71
1.25 453,552 0.32 13.52
1.5 504,506 0.26 14.07
1.75 706,572 0.54 11.03
2 706,572 0.31 13.64

Pb 0 422,406 0.44 5.76
0.25 457,456 0.44 5.80
0.5 736,504 0.45 5.71
0.75 404,582 0.46 5.67
1 707,618 0.20 6.93
1.25 484,476 0.27 6.63
1.5 579,552 0.36 6.17
1.75 518,449 0.19 6.96
2 533,449 0.01 7.71

Note: RC
2, RMSEC, and MAEC represent the coefficient of determination, the root-mean-s

RMSEP,MAEP, RPD, and RPIQ represent the coefficient of determination, the root-mean-
of prediction performance to interquartile range of the validation dataset, respectively.
order and Rp

2 with the best perfomance.
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4.2. Spectral indices estimation

4.2.1. Modeling using a single two-band spectral index
The correlation coefficients between the two-band spectral index and

the heavy metal contents using different FOD orders are shown in Fig. 5,
Figs. S1 and S2. The horizontal and vertical axes denote the spectral
bands. The maximum absolute correlation coefficients (i.e. the maximum
between the positive maximum correlation coefficient and the negative
maximum correlation coefficient) are listed in Table 3.

In the range of 0 to 2 fractional order, the maximum absolute correla-
tion coefficient show first increasing and then decreasing, which reaches
the maximum value (MACC = 0.734) when the order is 0.75 for Cr. The
maximum absolute correlation coefficient presents fluctuating in the
whole range and reaches the maximum value (MACC = 0.805) when the
order is 0.5 for Zn. Similar to the case of Cr, it reaches the maximum
value (MACC= 0.650) when the order is 0.75 for Pb. Then, the character-
istic bands with the maximum absolute correlation coefficient for different
fractional orders are used to estimate the contents of heavy metals. The
characteristic bands and estimation results are listed in Table 4.

Table 4 shows that the best RP
2 of Cr, Zn and Pb are 0.61 (order= 0.25),

0.65 (order= 0.25) and 0.47 (order= 0.5). Meanwhile, the highest values
combined with lowest RMSEP and lowerMAEP values are good predictions
to these three heavymetals. The estimation results perform betterwith 0- to
0.75-order than with 1- to 2-order for these three heavy metals, which
states noise signals generate gradually and performances become unstable
with the derivative order further increasing. These characteristic bands
are related to the presence of hematite, goethite, organic matter and ferri-
hydrite.
4.2.2. Modeling using a single three-band spectral index
The correlation coefficients between the three-band spectral index and

the heavy metals contents with different FOD orders are shown in Fig. 6,
Figs. S3 and S4. The horizontal and vertical axes denote the spectral
bands. The maximum absolute correlation coefficients (i.e. the maximum
ctral index by linear regression.

MAEc RP
2 RMSEP MAEP RPD RPIQ

10.01 0.55 19.33 13.16 1.01 1.70
11.35 0.61 17.95 12.26 1.26 2.26
10.10 0.54 19.54 13.38 1.05 1.62
8.34 0.59 18.39 11.85 1.13 1.95

13.14 0.36 20.91 14.76 0.66 0.89
19.29 0.48 25.71 20.43 0.19 0.30
14.83 0.43 23.21 17.23 0.49 0.55
12.18 0.38 23.33 15.60 0.99 1.04
15.57 0.21 25.71 19.84 0.48 0.43
8.64 0.58 12.19 9.31 0.85 1.14
8.53 0.65 10.72 8.69 1.27 2.08
7.15 0.62 11.21 8.40 1.33 1.66
6.67 0.62 11.51 8.62 0.99 1.03

11.57 0.38 15.18 12.43 0.40 0.26
10.45 0.29 15.36 11.89 0.46 0. 41
10.89 0.48 13.98 11.11 0.57 0.80
8.57 0.13 33.48 15.16 1.06 0.39

10.04 0.16 23.46 14.49 1.00 0.32
4.20 0.43 6.11 4.28 0.75 0.89
4.02 0.38 6.36 4.61 0.67 0.77
4.08 0.47 5.97 4.14 0.74 1.08
3.87 0.38 6.34 4.47 0.76 0.92
2.16 0.16 7.41 5.41 0.40 0.61
5.06 0.33 6.45 4.76 0.60 0.82
4.53 0.31 6.65 4.68 0.72 0.78
5.45 0.33 6.87 5.57 0.47 0.50
6.22 0.13 7.96 6.33 0.04 0.03

quare error and the mean absolute error of the calibration dataset, respectively. RP
2,

square error, themean absolute error, the residual prediction deviation and the ratio
The unit of RMSEC, MAEC, RMSEP and MAEP is mg/kg. The boldfaces represent the



Fig. 6. Correlation between Cr and the three-band spectral index.
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between the positive maximum correlation coefficient and the negative
maximum correlation coefficient) are also listed in Table 5.

The maximum absolute correlation coefficient of Cr increases as the
fractional order increases from 0 to 0.5. It then reaches a maximum value
(MACC = 0.792) when the order is 0.5, before beginning to descend. The
maximum absolute correlation coefficient reaches the minimum value
(MACC = 0.416) when the order is 1, and it fluctuates with the order
from 1 to 2. In the range of 0 to 1 fractional order, there is a trend of first
increasing and then decreasing for the correlation coefficient of Zn, which
reaches the maximum value (MACC = 0.835) when the order is 0.25.
The maximum absolute correlation coefficient reaches the minimum
value (MACC = 0.460) when the order is 1, and it also goes up and then
down when the order is from 1 to 2. Similar to the case of Cr, it reaches
the maximum value (MACC = 0.741) when the order is 0.5 and the
Table 5
The maximum absolute correlation coefficients (MACC) between heavy metals and
the three-band spectral index.

Element Order

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Cr 0.767 0.787 0.792 0.769 0.416 0.646 0.644 0.535 0.538
Zn 0.810 0.835 0.828 0.832 0.460 0.712 0.717 0.600 0.553
Pb 0.678 0.713 0.741 0.651 0.485 0.577 0.611 0.501 0.588
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minimumvalue (MACC=0.485)when the order is 1 for Pb. The band com-
binations with the maximum correlation coefficients are defined as λ1 and
λ2, respectively. These two bands and the band of 2200 nm are then com-
bined as the three-band spectral index to establish heavy metal concentra-
tion by linear regression. The characteristic bands and estimation results
are listed in Table 6.

Themodels obtain different estimation performances, depending on the
combination bands and the fractional orders. For Cr, the estimation accu-
racy improves with RP

2 increasing, RMSEP and MAEP decreasing when the
order is from 0 to 0.75, and the best result is obtained using 0.75-order re-
flectance (RP

2 = 0.74, RMSEP = 13.17, and RPD = 1.78), indicating that
the model with 0.75-order reflectance is stable and predictive. It is clear
that the estimation performance decreases since the 1-order reflectance.
When the order is 1.25, although RP

2 reaches 0.52, Rc
2 is only 0.18, which

demonstrates that the estimation ability is poor. For the 1.5-order reflec-
tance, Rc

2 and RP
2 are 0.62 and 0.55, respectively, and the estimation result

for the 1.5-order reflectance is better than the other estimation results
when the order is from 1 to 2. The accuracy from 0- to 0.75-order reflec-
tance is superior to that of 1- to 2-order reflectance, because the spectra in-
troduce external noise and may be subject to intense peak deformations
when the order is from 1 to 2. The FOD with 0.25-order, 0.5-order, and
0.75-order reflectance can reveal the masked soil heavy metal information
with a better estimation performance than the original spectra and the 1-
and 2-order derivatives. This result shows the capability of FOD in



Table 6
The characteristic bands and estimation results for heavy metals with the three-band spectral index by linear regression.

Element Order Characteristic bands Rc
2 RMSEc MAEc RP

2 RMSEP MAEP RPD RPIQ

Cr 0 779,607 0.54 18.07 13.43 0.65 15.77 12.36 1.02 1.48
0.25 779,604 0.61 16.75 12.38 0.69 14.79 11.90 1.18 2.10
0.5 778,525 0.62 12.28 12.30 0.69 14.45 11.25 1.31 2.43
0.75 448,563 0.74 13.59 9.81 0.74 13.17 10.15 1.78 2.55
1 406,615 0.06 25.76 20.84 0.16 24.09 20.04 0.17 0.05
1.25 706,458 0.18 24.09 18.33 0.52 19.61 15.42 0.51 0.47
1.5 706,547 0.62 15.18 10.78 0.55 19.69 13.36 0.93 1.65
1.75 408,447 0.02 24.58 21.18 0.02 29.14 23.88 0.33 0.07
2 410,447 0.02 26.34 21.74 0.11 24.61 20.63 0.14 0.07

Zn 0 779,607 0.65 9.61 8.10 0.68 10.84 8.20 1.02 1.48
0.25 779,604 0.69 9.06 7.63 0.74 9.99 7.78 1.17 2.08
0.5 776,525 0.69 9.53 7.51 0.73 8.66 7.20 1.68 2.43
0.75 400,432 0.70 9.49 6.94 0.81 7.12 5.67 2.15 3.94
1 400,483 0.14 15.23 12.48 0.10 18.62 14.94 0.63 0.18
1.25 641,585 0.25 14.82 11.11 0.33 13.65 10.89 0.60 0.74
1.5 706,458 0.44 12.87 9.44 0.41 12.75 10.47 0.84 0.67
1.75 409,457 0.04 16.81 14.41 0.02 16.49 14.28 0.10 0.05
2 641,431 0.07 16.56 14.13 0.01 17.26 14.67 0.20 0.11

Pb 0 779,608 0.46 5.68 3.87 0.46 6.03 3.90 0.75 1.17
0.25 779,595 0.54 5.22 3.47 0.46 6.02 4.11 1.01 1.37
0.5 745,533 0.55 5.17 3.51 0.56 5.41 3.47 0.93 1.76
0.75 400,515 0.41 5.95 4.05 0.46 5.98 3.92 0.78 0.83
1 407,443 0.15 7.13 5.74 0.05 11.83 7.17 0.91 0.17
1.25 457,470 0.07 7.48 5.99 0.14 7.66 5.86 0.18 0.17
1.5 706,458 0.30 6.48 4.65 0.40 6.60 4.64 0.45 0.50
1.75 407,467 0.24 6.74 5.00 0.25 6.98 5.12 0.64 0.51
2 747,447 0.08 7.44 5.97 0.07 7.75 6.12 0.31 0.14

Note: RC
2, RMSEC, and MAEC represent the coefficient of determination, the root-mean-square error and the mean absolute error of the calibration dataset, respectively. RP

2,
RMSEP,MAEP, RPD, and RPIQ represent the coefficient of determination, the root-mean-square error, themean absolute error, the residual prediction deviation and the ratio
of prediction performance to interquartile range of the validation dataset, respectively. The unit of RMSEC, MAEC, RMSEP and MAEP is mg/kg. The boldfaces represent the
order and Rp

2 with the best perfomance.
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processing reflectance spectra. Thewavelengths at 406(408,410), 447, 604
(607), and 779(776) nm are selected multiple times, and are thus particu-
larly important for the spectral estimation of Cr. These bands may be linked
to the presence of ferrihydrite, goethite, hematite, ferric oxide, and CH. The
estimation accuracy generally improves and then decreases from 0- to 1-
order reflectance, and the change trend of 1- to 2-order is similar to that
of 0- to 1-order of Zn. The estimation model with 0.75-order reflectance is
superior to the other orders in the estimation accuracy. Based on this
Table 7
The estimation results with multiple spectral indices for heavy metals.

Element Model Rc
2 RMSEc MAEc RP

2 RMSEP MAEP RPD RPIQ

Cr PLS 0.65 15.62 26.82 0.72 13.75 25.35 1.38 2.58
SVM 0.64 19.88 15.34 0.72 18.95 15.66 0.44 0.82
RR 0.64 19.72 15.45 0.73 18.96 15.84 0.44 0.82
RF 0.75 13.23 8.03 0.77 13.72 9.89 1.89 3.72
XGBoost 0.97 4.58 3.09 0.69 13.83 8.67 1.72 3.73
ELM 0.79 12.21 7.48 0.77 13.40 10.24 1.88 4.09

Zn PLS 0.78 7.63 17.63 0.73 9.50 17.59 1.41 2.54
SVM 0.72 9.27 7.35 0.66 11.64 8.25 1.02 1.51
RR 0.79 7.77 18.10 0.81 7.03 18.27 2.31 4.21
RF 0.81 7.61 5.46 0.82 7.07 5.42 2.09 4.42
XGBoost 0.98 1.75 1.21 0.77 7.98 6.21 2.01 4.15
ELM 0.90 5.51 3.74 0.86 6.61 5.33 2.50 4.89

Pb PLS 0.57 5.07 7.51 0.59 5.21 7.23 1.00 1.90
SVM 0.54 5.39 3.40 0.55 5.70 3.50 0.80 1.28
RR 0.48 5.61 3.77 0.51 5.81 3.74 0.77 1.04
RF 0.63 10.25 8.25 0.52 11.57 7.92 1.23 1.89
XGBoost 0.96 1.57 1.15 0.51 12.84 8.16 2.11 3.24
ELM 0.62 9.89 7.57 0.63 10.19 7.75 1.28 2.60

Note: RC
2, RMSEC, and MAEC represent the coefficient of determination, the root-

mean-square error and the mean absolute error of the calibration dataset, respec-
tively. RP

2, RMSEP,MAEP, RPD, and RPIQ represent the coefficient of determination,
the root-mean-square error, the mean absolute error, the residual prediction devia-
tion and the ratio of prediction performance to interquartile range of the validation
dataset, respectively. The unit of RMSEC, MAEC, RMSEP and MAEP is mg/kg. The
boldfaces represent the order and Rp

2 with the best perfomance.
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model, the RP
2 is 0.81, the RMSEP is 7.12, and the RPD is 2.15. The model

performs the worst when the order is 2. The wavelengths at 400, 431
(432), 457(458), and 779(776) nm are selected multiple times, and are
thus particularly important for the spectral estimation of Zn. These bands
may be linked to the presence of hematite, goethite, hematite, and CH.
With regards to Pb, there are the same phenomena. The best result is ob-
tained using 0.5-order reflectance (RP

2 = 0.56, RMSEP = 5.41, and
RPD = 0.93). The wavelengths at 407, 457(458), 467(470), 745(747)
and 779 nm are selected multiple times. These bands may be linked to
the presence of ferrihydrite, goethite, hematite, ferric oxide, NH and CH.

Tables 4 and 6 show that the best RP
2, RMSEP and MAEP of three heavy

metals using two-band index are worse than using three-band index. The
best RP

2 of Cr, Zn and Pb are 0.74 (order = 0.75), 0.81 (order = 0.75)
and 0.56 (order = 0.5) using three-band index. This result proved that
using three-band index form could promote the sensitivity and estimation
ability to the heavy metals.

4.2.3. Modeling using multiple spectral indices
In order to improve the fitting and generalization ability, the regression

models of PLS, SVM, RF, RR, XGBoost, and ELM were used to conduct a
comprehensive analysis of the spectral indices with a high accuracy. The
models obtain different degrees of accuracy depending on the spectral esti-
mation models applied and the FODs used. For these three heavy metals,
the original spectra, 0.25-order, 0.5-order, and 0.75-order spectral indices
are better than those with other FOD intervals in terms of improving the
spectral response to heavy metals and mining potential information,
which provides a potential to establish a more robust heavy metals estima-
tion model. Therefore, these spectral indices are combined for the further
multiple estimation. The estimation results are listed in Table 7.

ForCr and Zn, it can be seen that the estimation accuracy is improved by
combining the multiple spectral indices with RF and ELM. In contrast, the
estimation performance of PLS and SVM is not as good as that of linear re-
gression by one spectral index. For Cr, the other evaluation indicators of the
ELM model are better than those of the RF model, while the RP

2 values of
these two methods are the same. Therefore, the ELM model outperforms



Fig. 7. Scatter plots of ELM model in the calibration and validation datasets: (a) Calibration for Cr; (b) Calibration for Zn; (c) Calibration for Pb (d) Validation for Cr;
(e) Validation for Zn; (f) Validation for Pb.

L. Chen et al. Science of the Total Environment 813 (2022) 151882
other counterparts in estimating Cr. For Zn, the ELMmodel performs better
than the other three models, with the RP

2, RPD, and RPIQ values being the
highest, while the RMSEP and MAEP are the lowest. The estimation results
of ELM are better than other methods for Pb. To these three heavy metals,
the RC

2 of XGBoost exceeds 0.95, which appears in the accuracy evaluation
of the training set, and the testing set accuracy is lower. In contrast, ELMhas
the best performance on the testing set compared with other court parts,
which reflects its strong generalization performance. Therefore, ELM is
stable and robust under the limited training set and can be competed for
the practical applications. The scatter plots of ELM model are shown in
Fig. 7.

The measured-predicted points are distributed well around the 1:1 line
forCr and Zn, which indicates that themodel has a stable performance. And
the accuracy for the validation set is lower than that for the calibration set.
As regard Pb, it performs better in low values but distributes dispersedly in
high values, which is also the reason for the higher RMSE, but with accept-
able limits. The results show that the use of themost appropriate FOD order
and band combination algorithm can be used to estimate the three heavy
metals effectively.

In the study of soil heavy metals estimation, R2 of the PLS model
from Vis/NIR spectroscopy for the monitoring toxic elements of Pb in
the agricultural soils of the Changjiang River reaches 0.68 (Song et al.,
2012). Sun et al. (2017) applied GA-PLS to predict Pb, and their result
was slightly lower (R2 = 0.44) with spectral angle. Based on soil spectra
mechanism, Wu et al. estimated Zn using spectra absorption features,
yielding R2 values of 0.56 (Wu et al., 2007b). It could be observed that
the ELM model yielded superior model performance comparing with
the above research.

5. Conclusions

In this study, the potential of the FOD pretreatmentmethodwith different
orders and the new three-band spectral index based on the band combination
algorithm to estimate soil heavy metal was investigated. The main
11
conclusions can be summarized as follows. The FOD can attenuate the base-
line drift and separate the overlapping peaks while detecting more detailed
spectral characteristics, but it does introduce intense peak deformations and
spectral noise with further increases in the derivative order. For the three
heavy metals, the highest estimation accuracy is achieved with the 0.75-
order reflectance (i.e. the highest RP

2 = 0.74 for Cr, the highest RP
2 = 0.81

for Zn) and 0.5-order reflectance (i.e. the highest RP
2 = 0.56 for Pb). In addi-

tion, the ELM model combining several spectral indices with better perfor-
mance can improve the estimation results (i.e. the highest RP

2 = 0.77 for Cr,
the highest RP

2 = 0.86 for Zn, the highest RP
2 = 0.63 for Pb). In this paper,

the experiment was conducted in an experiment field, and it has been proved
that the comprehensive use of the FOD and the band combination algorithm
can obtain fine spectral features, low data redundancy, and a high prediction
accuracy, which will provide an important reference to estimate soil heavy
metals using Vis–NIR spectra over a large scale.
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