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Abstract— The highly correlated spectral features and the
limited training samples pose challenges in hyperspectral image
classification. In this article, to tackle the issues of end-to-end
feature learning and transfer learning with limited labeled sam-
ples, we propose a unified multiscale learning (UML) framework,
which is based on a fully convolutional network. A multiscale
spatial-channel attention mechanism and a multiscale shuffle
block are proposed in the UML framework to improve the
problem of land-cover map distortion. The contextual infor-
mation and the spectral feature are enhanced before the last
classification layer based on three strategies in this work: 1) the
channel shuffle operation, which was employed to learn the more
effective spectral characteristics by disordering the channels
of the feature map; 2) multiscale block, which considered the
contextual information in multiple ranges; and 3) spatiospectral
attention, which enhanced the expression of the important
characteristic among all pixels. Three hyperspectral datasets,
including two airborne hyperspectral images and one spaceborne
hyperspectral image, were used to demonstrate the performance
of the UML framework in both classification and transfer
learning. The experimental results confirmed that the proposed
method outperforms most of the state-of-the-art hyperspectral
image classification methods. The source code is released at
https://github.com/Hyper-NN/UML.

Index Terms— Fully convolutional network (FCN), hyperspec-
tral image classification, multiscale.

I. INTRODUCTION

W ITH the rapid development of imaging technology,
imaging spectrometers can now map the surface of the

Earth with hundreds of continuous and subtle spectral bands.
In hyperspectral remote sensing imagery, each pixel can be
regarded as a high-dimensional vector, which describes the
corresponding spectral characteristics of each material [1]. The
spectral characteristics contain a wealth of information that
can benefit the interpretation of the material attributes. As a
result, hyperspectral remote sensing has been widely utilized
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in the field of land-cover classification [2], quantitative moni-
toring [3], [4], target detection [5], military reconnaissance [6],
and so on.

Classification is the most primary and basic problem of
hyperspectral image analysis. Hyperspectral image classifi-
cation, which refers to assigning a certain category label to
each pixel according to its spectral and/or spatial features, has
attracted extensive attention in the field of remote sensing.
However, the issues of high data redundancy, low spatial
resolution, and small training sets are still barriers to the appli-
cation and development of hyperspectral imaging technology.
Most of the early hyperspectral image classification methods,
such as support vector machine (SVM), sparse representation,
and multiple linear regression (MLR), focused on spectral
feature extraction and were designed to find the boundaries
in the spectral feature space [7], [8]. However, the conflict
of high dimensionality of hyperspectral imagery with limited
labeled samples leads to the Hughes phenomenon. There-
fore, researchers have explored methods of effective feature
reduction for classification, such as band selection and feature
extraction. On this basis, some studies have introduced spatial
features, such as the gray-level co-occurrence matrix (GLCM)
or the neighborhood texture [9], [10], as the pursuit of more
effective spatial features for an improved classification per-
formance has continued. Recently, deep learning has made
great breakthroughs in many computers vision fields, such
as image classification, object detection, and natural language
processing. At the same time, deep learning has been intro-
duced into hyperspectral image classification and achieved
good performances. The beginning of the exploration of deep
learning-based hyperspectral image classification was focused
on the deep representation of spectral features. Methods,
such as the stacked denoising autoencoder [11] and deep
belief networks [12], have been used to extract the advanced
spectral characteristics. The utilization of spatial features is
carried out by concatenating the 1-D spatial vector with the
spectral vector. The spatial–spectral vector is then input into
the network to extract the deep features [2]. Convolutional
neural networks (CNNs) can automatically extract effective
high-dimensional context features and can be used to solve
the issues of spatiospectral feature learning in hyperspectral
learning [13]. For example, Hu et al. [14] proposed a spectral
feature learning network based on a 1-D CNN, which includes
the feature learning and classification processes in an end-
to-end model. The 2-D CNNs can not only represent the
spectral features but also the abundant spatial information [15].
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To obtain a model with a better performance, some net-
work modeling strategies have been proposed. For example,
Hao et al. [16] proposed a two-stream network, where one
stream uses a stacked denoising autoencoder to learn the spec-
tral features of a certain pixel and the other uses a 2-D CNN to
learn the spatial features surrounding the pixel. After the two
streams perform isolated learning, the high-level hierarchical
features from the two streams are ensembled for the subse-
quent operation. Yang et al. [17] employed two kinds of CNNs
for two-stream modeling. The two-stream pattern has now
become a frequently used solution in classification [16], where
it is used to balance the size of the model parameters and
the joint spatiospectral features. Moreover, the classic feature
extraction methods have been employed in the deep learning
framework. Yao et al. [18] proposed ClusterCNN, which
divided the hyperspectral image pixel into deferent clusters and
formed a material. Roy et al. [19] combined the morphological
operation and deep learning and proposed a morphological
CNN named MorphConvHyperNet, which presented powerful
nonlinear transformations for feature extraction.

Chen et al. [20] introduced a 3-D CNN for deep feature
extraction. In a 3-D CNN, the hyperspectral cube is viewed as
one-channel data with three dimensions, and the kernel con-
sists of 3-D matrices that perform the convolution operation
along the spatial and spectral dimensions at the same time.
However, the negative side of 3-D CNNs is that the expanded
convolution dimension results in an excess of parameters.
To address this issue, Howard et al. [21] proposed depthwise
separable convolution, which can be regarded as a valid solu-
tion for the overparameterized issue. Jia et al. [22] proposed
the lightweight CNN to tackle the large gap between the mas-
sive parameters and limited labeled samples. Zhang et al. [23]
proposed a 3-D lightweight CNN for the HSI classification and
the transfer application with limited labeled samples.

The above-mentioned CNN-based methods are carried out
using patches, i.e., when labeling one pixel, the data patch
surrounding this pixel is input into the network. In this case,
if all the pixels in the entire image need to be predicted,
the data patch should be obtained by sliding a window in
a one-step stride, which involves repetitive calculation. These
redundant operations not only waste computational memory
but also increase the time consumption. Some researchers have
introduced a fully convolutional network (FCN) to handle
this flaw. FCNs include both a convolution operation and
deconvolution operation and have been widely applied in
image segmentation. The main characteristics of FCNs is that
they do not incorporate any fully connected layers, which
endows the model with a multidimensional input, high robust-
ness, and a fine feature representation ability. Li et al. [24]
proposed a deep learning framework for hyperspectral image
classification based on an FCN, where the deep features of
the hyperspectral imagery are enhanced through convolutional
and deconvolutional layers. The final classification part of this
network is an optimized extreme learning machine, which
allows the FCN to obtain a good performance. Unlike the
separate feature enhancement and classification design [12],
Zheng et al. [25] proposed a fully end-to-end classification
framework named the fast patch-free global learning (FPGA)

framework. In the FPGA framework, the deconvolution part
is substituted by interpolation, which reduces the number
of model parameters. Because of the patch-free feedforward
process, the FPGA framework has a definite advantage in
inference speed.

FCNs need a large labeled dataset, and each training iter-
ation needs at least one whole image for the loss calcu-
lation, which is the main obstacle in hyperspectral image
classification. Zheng et al. [25] proposed a global sampling
strategy, in which all the training samples are transformed
into a stochastic sequence of stratified samples. The stochastic
combination enlarges the training dataset volume effectively,
which helps with the fine optimization of the model.

The other defect of CNN-based hyperspectral image classi-
fication is that the obtained land-cover map can be distorted,
and the bigger the convolution kernel, the worse the distortion.
In patch-based CNN classification, the label of the center pixel
in the hyperspectral remote sensing image is determined by all
the pixels in this patch. In this case, the center pixel will be
endowed a wrong label when the pixels in the patch belong
to different categories, which are of common occurrence at
the boundaries of ground objects. To address this issue, some
researchers have introduced postclassification optimization.
For example, Zhong et al. [26] used the conditional ran-
dom field method to modify the classification map based on
the posterior probability and the spatial information, which
improved the misclassification problem. Moreover, the multi-
scale features can be taken into consideration to improve the
classification accuracy effectively [27]. Xu et al. [28] proposed
spectral–spatial unified networks (SSUNs), which included a
multiscale CNN as the spectral and spatial feature extrac-
tors. The SSUN combines both local information and global
information for the classification and can yield a competitive
performance. Gao et al. [29] designed a multiscale residual
network by replacing the convolutional layer in an ordinary
residual block with the mixed depthwise convolution, and the
experimental results showed that the spatiospectral feature rep-
resentation ability had been enhanced. Roy et al. [30] proposed
a 3-D CNN and amplified the multiscale information using
adaptive spectral–spatial kernel improved residual network for
HSI classification, which proved to capture the discriminative
features.

In conclusion, there are two defects in CNN-based methods:
1) the patch-based methods include redundant operations,
which involve repetitive calculation and increase the running
time, and 2) the obtained land-cover map can be distorted. The
bigger the convolution kernel is, the worse the distortion is,
which means that the boundary of the ground object is inac-
curacy in the classification map. Detailed information related
to object boundaries is missing due to the downsampling or
convolutions with striding or pooling operations, which will
lead to distortion in the classification map. To address these
problems, the contextual information and the spectral feature
are enhanced before the last classification layer based on
three strategies in this work: 1) the channel shuffle operation,
which was employed to learn the more effective spectral
characteristics by disordering the channels of the feature
map; 2) multiscale block, which considered the contextual
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Fig. 1. Different attention modules. (a) SEM. (b) CBAM. (c) BAM.

information in multiple ranges; and 3) spatiospectral attention,
which enhanced the expression of the important characteristic
among all pixels. Moreover, the decoder in unified multiscale
learning (UML) can also recover the detailed knowledge in
the upsampling process.

The main contribution of the UML framework is to tackle
the issues of redundant operation and land-cover map dis-
tortion in the hyperspectral image classification. The UML,
which is based on the FCN model, does not incorporate any
fully connected layers and endows the model with a multidi-
mensional input and a faster inference. Moreover, a series of
modules, such as multiscale learning, shuffle block, and spa-
tiospectral attention, have been introduced in UML to improve
the category discrimination accuracy effectively. The network
workload and the training samples are balanced by introducing
separated convolution, which reduces the model complexity.
To enhance the features in each layer, the channels are shuffled
by a cascade hierarchy. Moreover, each intermediate layer is
concatenated with its corresponding upsampling feature, which
ensures fine-grained feature representation.

The rest of this article is organized as follows. Section II
describes the basic hyperspectral image classification methods.
Section III details the proposed UML framework. Section IV
introduces the three real hyperspectral images used in the
experiments and the experimental results and also provides
a comparison with other methods. Finally, our conclusions are
drawn in Section V.

II. PREVIOUS WORK

A. Convolutional Neural Networks and Fully Convolutional
Networks

CNNs extract the correlation among spatial blocks by
enhancing the neural network connections between adjacent
neurons and realize spatial authenticity through block neurons.
A CNN can be regarded as a surface-oriented model, which
is different from the autoencoder. The pioneering work on
CNNs is generally considered to be the LeNet architecture,
as proposed in [16], which consists of the basic network

composition of a CNN, including a local connection layer,
a pooling layer, and a fully connected layer.

When predicting the label of a certain pixel, the input patch
of the CNN is the data patch surrounding this pixel, which has
some drawbacks. First, the patch size has a direct impact on the
network performance, in which a larger patch size brings more
rich neighborhood characteristics. Unfortunately, no matter
how large the patch size is set, the patch-based calculation
still causes a limited receptive field. Meanwhile, a large patch
size results in worse distortion, which means that the patch
size should be considered as a hyperparameter. Moreover, the
patch-based feedforward operation by sliding a window in a
one-step stride means repetitive calculation, which has a great
impact on storage and computing consumption.

The networks used for classification usually connect several
layers of fully connected layers following the convolutional
feature learning part, which flattens the original multidimen-
sional feature tensor (image) into a 1-D vector. The 1-D vector
can be regarded as a numerical description (probability) of
the entire input image. Thus, spatial information is lost in the
flattening process. The FCN was proposed for image semantic
segmentation [31], in which the fully connected layer in the
conventional CNN is replaced with a convolutional layer,
so that the network output is no longer a category but instead a
heatmap. Unlike CNNs, FCNs are appropriate for any size of
input and can generate a prediction for each pixel concurrently.
The advantages of FCNs lie in three aspects: 1) the lack
of fully connected layers allows the FCN to accept input
images with different sizes; 2) the deconvolution operation
in the upsampling process can enhance the feature size, which
ensures a fine-grained output; and 3) each encoder layer has a
lateral connection (which is named the skip connection) with
the corresponding decoder layer, and the skip connection fuses
the feature map and heatmap to better restore the features
of the image, which guarantee the robustness and accuracy.

B. Attention Mechanism
An attention mechanism is proposed to solve the bottleneck

problem of information loss caused by the transformation
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from a long sequence to a fixed-length vector. An attention
mechanism, imitating the human attention mechanism, can
quickly screen the highest value information from a large
amount of information. Attention mechanisms are widely used
in the field of Seq2Seq models and are mainly used to solve
the problem of it being difficult to obtain a final reasonable
vector representation with a long input sequence in long
short-term memory (LSTM)/recurrent neural network (RNN)
models. The attention mechanism is a technique that enables
models to focus on important information and fully learn
it. The importance is valued by the final loss function
and is used to weight the midlevel features, by which the
learned features are specialized on the partial features. Atten-
tion mechanisms have already been introduced in the image
classification and segmentation tasks, such as the squeeze
and excitation module (SEM) [32], the bottleneck attention
module (BAM) [33], and the convolutional block attention
module (CBAM) [34], which are illustrated in Fig. 1.

The SEM emphasizes the channel information and is effec-
tive in solving the loss caused by the different weights of
different channels in the feature map. In the traditional convo-
lution processes, the importance of each channel in the feature
map is equal. However, different channels are of different
importance in practical problems and should be considered on
a case-by-case basis. In the SEM, the feature map is squeezed
into a 1-D map by global average pooling and bottom-up full
connection follows, which has the advantage of adding more
nonlinear information in the learning processing and fitting
the complex correlations between channels. The CBAM and
the BAM pay more attention to both the channel and spatial
dimensions, but the difference is that the CBAM employs the
2-D convolution with a fixed kernel size, whereas the kernel
size differs in the BAM.

III. PROPOSED METHOD

A. Problem of Conventional CNNs
In patch-based CNN classification, the label of the center

pixel in the hyperspectral remote sensing image is deter-
mined by all the pixels in this patch. When the convolution
window moves to the boundary of different categories, the
center pixel will be endowed a label in accordance with the
domain category in the pixel with the highest probability.
In this case, the interpretation results obtained by the CNN
cannot reflect the real distribution of the objects. Meanwhile,
there is a valid case for the center pixel being labeled
by its spectral features and the nearest pixels. The greater
the distance of the pixel from the center, the less effect it
should have on the label determination. This misclassification
is not significant on training and test datasets because the
prior knowledge constricts the discrimination of the network.
Meanwhile, at the boundaries of ground objects that are
unlabeled, misjudgments are more common. Moreover, in the
production process of standard datasets, the purity of the
labeled samples is generally considered, and researchers often
do not keep the pixels at the junction of different categories,
preferring to choose more pure internal pixels for labeling.
Therefore, when the convolution operation is carried out for
hyperspectral image classification, although the performance

on the test dataset will be good, ground object boundaries
will appear on a large number of the unlabeled pixels, and this
phenomenon will become more significant with larger patch
sizes.

To further explain the distortion arising from a CNN,
the features that determine the characteristics of a certain
category can be extracted and the relationship between the
network weights and the contribution of the weights can be
explored. In this case, the gradient information flowing into
the last convolutional layer of the CNN can be extracted
to establish the importance of the convolution kernel for a
decision of interest. After the training process, the output of
the convolution operation is

am,n,s = F(zl
) = F

(
Cl−1∑
c=1

al−1,t ∗ W l,s,c + bl,s

)
(1)

F(z) =
{

z, if z > 0

0, if z < 0
(2)

where am,n,s represents the features (m × n matrix) from the
sth channel in layer l, al−1,t denotes the features from the tth
channel, Cl−1 is the count of all the input channels, W l,s,c is
the weight matrix, and bl,s is the bias. ∗ and F() denote the
convolution operation and the activation function, respectively.
After the convolution phase, a fully connected layer follows
to output the logit into the softmax layer, which is formulized
as

lgt = zlfc (3)

Si = elgti /
∑

j

elgt j (4)

where lfc denotes the fully connected layer; lgt is the output
vector before the softmax layer, which describes the confi-
dence for each class, lgt = (n1, n2, . . . , ncls); and Si is the
output from the softmax layer.

Convolutional features naturally retain the spatial infor-
mation, which is lost in the fully connected layers [35],
so the final convolutional layer is used to detail the relation-
ship between the high-level semantic features and the class
information. The gradient information flowing into the last
convolutional layer of the CNN is calculated to establish the
importance of each neuron for a decision. The gradient on
the features at the last convolutional layer is the sum of each
kernel

α j
s = 1

Z

∑
m

∑
n

∂ lgt j

am,n,s
(5)

where Z is the normalized parameter, α j
s represents the impor-

tance of the feature map on the sth channel for target class j ,
and am,n,s is the output of the activation function on the sth
channel of the last convolutional layer. The partial derivative
is then shrunk through its spatial dimensions m × n. The
weighted combination of the forward feature maps is carried
out by [34]

heat_map = Relu

(∑
s

α j
s am,n,s

)
. (6)
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TABLE I

HEATMAPS FOR DIFFERENT PATCH SIZES

To explore the heatmaps of CNNs based on different patch
sizes, the patch size was divided into seven grades from small
to large. The CNN was then trained based on the patch-based
model using the seven different patch sizes. The output labels
and the corresponding heatmaps are shown in Table I.

Two different scenes were chosen. One of the scenes is
at the junction of bare soil and tree, and the true label of the
center pixel is tree. The other scene is at the junction of asphalt
and tree, and the true label of the center pixel is asphalt. From
Table I, the heatmaps with a small patch size illustrate that the
information for the category discrimination is localized in the
center region, while the heatmap highlights the bare soil region
when the patch size is larger than 6, which causes a wrong
label. In the asphalt-tree scene, the highlighted area spreads
to the edge of the patch as the patch size increases. In this
regard, multiscale features or differentiated attention should
be considered.

B. Channel Shuffle Operation and Multiscale Block

The bigger the kernel is, the more features are learned, but
the error at the boundaries of different ground objects follows.
To handle this problem, there should be a tradeoff between
the convolutional features and the kernel size. On the one
hand, the spatial–spectral features should be learned effec-
tively. On the other hand, the receptive field should be even
larger. In the proposed network, to enhance the receptive
field, a multiscale block is employed. The multiscale theory is
widely used in remote sensing interpretation [36], and it refers
to pixels in multiple ranges being included for the calculation.

In this work, convolution operations with different kernel
sizes are used for the multiscale feature learning on the same
patch. Dilated convolution is applied for the different kernel
sizes to solve the problem of excessive training parameters
with large convolution kernels [37]. The multiple kernels are
performed in both cascade and parallel patterns. The features
are exported as

Vcascade = conv2(W3, (conv2(W2, conv2(W1, X)+b1))+b2))

+ b3 (7)

Vparallel = (conv2(W1, X) + b1) + (conv2(W2, X) + b2)

+ (conv2(W3, X) + b3) (8)

Fig. 2. Illustration of multiscale feature learning. (a) Parallel pattern.
(b) Cascade pattern.

where the weight matrix has different kernel sizes and dilation
rates to represent the different scale features. The difference
between cascade and parallel patterns is shown in Fig. 2.

The output of the convolution operation should be of the
same size after the different dilation rates. In this regard,
padding is included around the input feature block to maintain
the same size. The output size is calculated as follows:

Sout = Sin − k + (k − 1) × (dilation − 1) + 2pd

std
+ 1 (9)

where Sin is the width of the input features, k and std denote
the kernel size and stride, respectively, and pd is the number
of padding pixels. In this work, Sout is equal to Sin, so pd
should be set to

pd = Sin × (std − 1) + (k − 1)(2 − dilation)

2
(10)

i.e., the number of zero pixels that should be added around the
input matrix is calculated to ensure that the postconvolution
matrix is as big as the input matrix.

In addition to multiscale feature learning, a channel shuffle
operation [38] is included in the proposed network for feature
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Fig. 3. Illustration of the shuffle phase.

enhancement, where it disorders the original channels of the
feature map and helps to establish the connections between dif-
ferent channels. The shuffle process is divided into “reshape–
transpose–reshape” operations. After the full iterative shuffle
process, the channel is fully disordered. The information
flow between features is considered for different groupings to
improve the network performance. Moreover, the dimensional
rearrangement operation in the shuffle process is supported
by many built-in library functions on universal computing
platforms, which benefits the computational acceleration.

In the proposed network, the multiscale learning is exe-
cuted by convolutional operations with different dilation rates,
which are embedded in the shuffle block. The channel shuffle
operation iterates twice, and the channel is divided into two
branches in each iteration, as shown in Fig. 3. The multiscale
shuffle block is divided into two branches, and the multiscale
branch is used for the multiscale feature extraction. These
multiple kernels are performed in a parallel pattern. After
the channel learning by 1 × 1 convolution operation, these
three convolution layers with different dilation rates are carried
out for the multiscale features extraction. These features are
obtained by the elementwise addition of parallel output and
the dilation rates are set to 1, 3, and 5.

C. Spatiospectral Attention

A CNN consists of a series of convolutional layers, non-
linear layers, and subsampling layers so that enhanced image
features can be captured from the global receptive field for
the image description. As an essential part of a CNN, the
convolution operation is used to learn the spatial informa-
tion, but not the information between channels. However, the
channel information is important information in hyperspectral
remote sensing classification, and the internal relationship
among the channel features should be accessed directly and
explicitly. The importance degree of each feature channel
is automatically obtained by representative feature learning.
The information that is conducive for the classification is
then promoted according to the learning degree, and the
trivial features that are not useful for the current task are
suppressed.

An attention mechanism not only indicates where we should
focus but also enhances the expression of this. Therefore,
both spatial attention and spectral attention should be consid-
ered simultaneously. The three kinds of attention mechanisms
mentioned in Section II differ in their focus. The SEM aims

to tackle the issue of exploiting channel dependencies so
that the squeeze process for the global spatial information
and excitation of the specific input weight are included. The
CBAM, which differs from the SEM that considers the channel
attention only, engages the spatial and channel information in
a cascade pattern. In the proposed network, deep spatiospectral
coupling is introduced for attention information learning.
Inspired by the depthwise convolution approach [39], which
proposes tradeoffs between the size of the model parameters
and the model performance, flexible attention learning is
performed. The spatiospectral coupling uses a two-branch
learning pattern. First, the input features are replicated into
two branches, each of which aims to learn the spatiochannel
attention. After the branch learning, the channelwise impor-
tance is wrapped with the spatial attention. The channel
branch resembles the SEM and is performed by squeeze and
excitation.

First, the global information in a certain channel is embed-
ded by global average pooling to generate channelwise
statistics

Ses = 1

Z

∑
m

∑
n

am,n,s (11)

where Z is the normalized parameter and am,n,s is the output
of the activation function on the sth channel. The global
pooling is used to shrink the 3-D feature matrix through
its spatial dimensions. Ses can be regarded as a descriptor
for the whole image characteristics, which is widely used in
computer vision tasks. The local descriptor then follows with a
sequential operation to learn the channel importance. A simple
gating mechanism with a sigmoid activation function is used
to capture the channelwise dependencies

Exts = Sigmoid(W2Relu(W2Se)) (12)

where W2 and W1 are performed by two fully connected
layers, which ensures that the attention weights are learnable,
and Se is the global information after the generation of the
channelwise statistics.

The spatial attention mechanism is applied on the other
branch. In this branch, the spatial context descriptor is applied
first. The spatial context consists of the “average context”
and the “max context.” The former selects the spatial features
with better classification identification, and the latter is more
reflected in the dimension of the complete transmission of the
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Fig. 4. Illustration of the multiscale shuffle block.

spatial information

Des =
[

1

Z

∑
s

am,n,s, Maxs(a
m,n)

]
(13)

Sa = Sigmoid(Conv

([
1

Z

∑
s

am,n,s, Maxs
(
am,n

)])
(14)

where Des is the descriptor of the joint spatial context. The
former part is the average through the channel dimensions,
and the second part is the maximum value through the
channel dimensions. After the matrix coupling, an additional
convolution operation follows, and a nonlinear continuous
output is achieved by the sigmoid activation function. The
final attention descriptor is the cross product of Sa and Ext,
which extends the spatial attention weight to three dimensions
with different channel attention weights. After the spatial and
channel attention coupling phase, the original input multiplies
Ext and Sa to obtain the attention-applied features.

D. Unified Multiscale Learning
The UML network consists of an initial block, shuffle

blocks 1 and 2, upsampling blocks 1 and 2, and a classification
block. The initial block is used for the preliminary feature
extraction, and each of the two shuffle blocks carries out two
iterations of convolutional learning to take the information
flow between features into account, which improves the net-
work performance. In the shuffle blocks, multiscale learning
with different dilation rates is applied, and the stride is set to
2 to downsample the data size.

The 2-D convolution with multiple channels is performed
in some works [40] as depthwise convolution and pointwise
convolution, which is a tradeoff between the size of the model
parameters and the model performance. The depthwise convo-
lution and pointwise convolution are integrated as depthwise
separable convolution. The depthwise spatial convolution is a
convolution performed independently over each channel of an
input, which is carried out using group convolution, and the
pointwise convolution is a 1 × 1 convolution, which projects
the channels’ output by the depthwise convolution onto a
new channel space. However, an excess of group convolution
will result in a massive memory access cost. The number of
convolution operations is related to the channels in the group
convolution, which means high-frequency memory access.
In some cases, the execution speed of a certain algorithm is

mainly affected by the input or output of the memory in terms
of the parallel computing framework [38] because the simple
instruction set prefers whole shared memory with intensive
computing, rather than scattered memory with small floating-
point operations (FLOPs).

In this regard, an advanced shuffle mechanism is used,
where the equal channel width minimizes the memory access
cost. Each shuffle block in the UML network is performed,
as shown in Fig. 4.

The multiscale shuffle block consists of branchwise multi-
scale convolution and channel shuffle operations. The channel
shuffle operation is carried out, as shown in Fig. 3. The
branchwise convolution divides the two branches, and the
multiscale branch is used for the multiscale feature extraction.
The 1 × 1 convolution and depthwise convolution are used
to downscale the training parameters. The output features
are concatenated along the channel, and the channel shuffle
operation follows to disrupt the channel order. After this, the
other shuffle block is carried out for the next shuffle step. The
UML framework is performed, as shown in Fig. 5.

Fig. 5 shows the UML framework, which is composed of
an encoding phase and a decoding phase. The initial block,
shuffle block 1, and shuffle block 2 are used for the hyper-
spectral image feature encoding. The spatial-channel attention
mechanism is applied after each block. Deconvolution and
interpolation are commonly used for upsampling. The output
channel number for the initial block is 80. In shuffle block 1,
the input is divided into two branches and the stride is set
to 2. Forty channels are used for the shuffle group. After
two shuffle iterations, the output channels of shuffle block 1
number 160. The following shuffle block 2 has the same
branches and stride as shuffle block 1. The shuffle group
number is 80, which is in accordance with half the output size
of the last block. The output channels after the two shuffle
blocks’ number 320. In the proposed network, interpolation
with convolution is employed in the decoder phase, which can
avoid the checkerboard artifacts caused by deconvolution [41].
Moreover, when the result after the encoding phase is directly
deconvolved, the result is often relatively rough because the
sequential convolution causes a loss of fine features, and at
the end of the downsampling, the size is a quarter of the
original size. In this regard, a skip connection is used to couple
the features from the encoder and decoder that are under the
same scale. The features from the encoder are concatenated
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Fig. 5. Structure of the UML framework for hyperspectral image classification.

with the features from the decoder. The classification block
is responsible for the labeling task, and the output of the
classification block is the classification map that labels every
pixel. The loss of the UML framework is the summation of
each pixel’s cross entropy.

E. Cross-Scene Classification Based on UML
The transfer learning for cross-scene classification should

have the same patch size in the patch-based method, which
restricts the application condition. The optimal patch size
depends on the hyperspectral image [24]. UML includes
both a convolution operation and an upsampling operation,
which allows the input hyperspectral image to have different
samples and lines. This characteristic endows the UML with
an effective cross-scene classification ability.

The encoder–decoder framework of UML can learn the
advanced spatiospectral features of the hyperspectral imagery,

which is generally effective for the classification of other
scenes. As shown in Fig. 5, when performing transfer learning,
the initial block and the classification block are replaced
by the particular block corresponding to the target domain,
while the other blocks are preserved from the source domain.
The first convolution layer in the initial block is used to
transform the spectral features S from the target domain
to the intermediate dimension C1. The convolution layer
before the softmax in the classification block is used to
transform the category space to the target domain. After
fine-tuning these two layers by few priori knowledge in the
target scene, the UML is capable of handling the cross-scene
classification.

In this way, the UML framework can achieve a high clas-
sification accuracy in a case of limited labeled samples in the
target domain, which solves the problem of poor classification
performance in the case of limited labeled samples.
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Fig. 6. Pseudo-color composite image and the corresponding ground truth for the Pavia University ROSIS dataset.

IV. EXPERIMENTS

In the following, to report the accuracy and efficiency of
the UML framework, the classification accuracy and kappa
coefficient are used. The training dataset was obtained with
a fixed number in each category. Conventional classifiers,
such as SVM and the mainstream deep learning algorithms
based on CNNs, were chosen as the baseline methods. The
CNN was carried out as a patch-based method, and the patch
size was set to 4 and 8. The channel shuffle operation and
multiscale feature learning were appended to the conventional
patch-based CNN to obtain MSNet. FPGA [25] was used
as a counterpart of an FCN. SVM used a Gaussian radial
basis function (RBF) kernel, and the gamma and C of SVM
were optimized by grid search. The SVM classifier then used
the optimal values of C and gamma. Because the compute
unified device architecture (CUDA) is commonly used as a
deep learning arithmetic accelerator, all the inference parts
were carried out on an NVIDIA GeForce RTX 2080 graphics
processing unit (GPU) with CUDA. In each batch, the patch-
based networks consist of sliding window sampling with
a fixed step, memory mapping to the GPU, and inference
with CUDA.

In summary, the comparative methods consisted of SVM
with RBF kernel, CNN-4 (with a patch size of 4), CNN-8
(with a patch size of 8), MSNet-4 (with a patch size of 4),
MSNet-8 (with a patch size of 8), and FPGA. In order to assess
the performance of the proposed approach, three indicators
are adopted by comparing the classification results with the
ground truth: 1) precision, denoting the ratio of the number of
correctly classified samples to the total number of samples
in a certain category; 2) overall accuracy (OA), referring
to the ratio of the number of correctly classified pixels to
the total number of test pixels; and 3) kappa coefficient,
representing whether the model prediction results are consis-
tent with the actual classification results. In order to demon-
strate the performance of the proposed technique, three real
hyperspectral images were utilized—the Indian Pines dataset,
the Pavia University dataset, and the Kansas dataset—which
were, respectively, captured by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS), the Reflective Optics System
Imaging Spectrometer (ROSIS), and the visible-shortwave

infrared (SWIR) Advanced Hyperspectral Imager (AHSI) of
Gaofen 5 (GF-5).

A. Dataset Description
1) Pavia University ROSIS Dataset: The Pavia University

dataset was acquired by the ROSIS sensor over the Engi-
neering School of the University of Pavia, Italy. This dataset
consists of 610 × 340 pixels, with a spatial resolution of
1.3 m/pixel. The number of spectral bands is 115, ranging
from 430 to 860 nm, and 12 noisy bands were removed
because of the absorption of water vapor. The remaining 103
spectral bands were used in the experiments. The dataset
contains nine categories of interest. Because of the high
spatial resolution, the scattered objects, such as the trees and
the footpath, bring a great difficulty to CNN-based feature
learning. The pseudo-color composite image and the labeled
categories are shown in Fig. 6.

2) Kansas AHSI Dataset: The Kansas AHSI dataset was
collected by the visible-SWIR AHSI designed by the Shanghai
Institute of Technical Physics, Chinese Academy of Sciences,
which was one of the main payloads onboard the GF-5 satel-
lite. The Kansas AHSI dataset covers 330 spectral bands to
characterize the solar reflective regime from 400 to 2500 nm.
The spectral resolution is about 5 nm for the visible and near-
infrared (VNIR) region from 400 to 1000 nm, and 10 nm
for the SWIR region from 1000 to 2500 nm. The spatial
resolution is around 30 m. The dataset was acquired over
Kansas in USA in November 2018. The dataset size is 650 ×
340 pixels. After geometric correction, radiometric correction,
and other preprocessing, the interior objects in the study area
were divided into seven categories by referring to Google
Earth images of the same period and place. This dataset
contains many crossroads and regular town districts, which
can be used to demonstrate the visual performance of the
different classification models. The specific ground features
of the Kansas AHSI dataset are shown in Fig. 7.

3) Indian Pines AVIRIS Dataset: The Indian Pines dataset
was collected by the AVIRIS sensor over the northwestern
Indiana agricultural test site. The dataset size is 145 ×
145 pixels, with a spatial resolution of 17 m/pixel. A total
of 200 bands ranging from 400 to 2500 nm were used in
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Fig. 7. Pseudo-color composite image and the corresponding ground truth
for the Kansas AHSI dataset.

TABLE II

NUMBER OF LABELED PIXELS IN EACH CLASS IN THE ROSIS DATASET

the experiments, and 24 bands near 1400 and 1900 nm that
were affected by the absorption of water vapor were removed.
The available training samples cover 16 categories of interest,
which are mostly different types of vegetation. The boundaries
of the vegetation types are not clear, which brings great
difficulty to the sliding convolution operation. Moreover, the
vegetation, farm tracks, and boundaries in this dataset cannot
be mapped precisely, on account of the insufficient training
dataset. The pseudo-color composite image and the labeled
categories are shown in Fig. 8.

B. Experiments With the Pavia University ROSIS Dataset
One hundred labeled samples were sampled in each cat-

egory for the Pavia University ROSIS dataset training data,
as shown in Table II.

For the optimized phase of SVM, the validation dataset
was 5% of the whole training data. The batch size of the
deep learning methods was set to 30. FPGA and UML were
trained using the random selection strategy proposed in [13].
After the model training, all the pixels were predicted and the
evaluation indicators were calculated. The experiments were
in fact repeated ten times over the randomly split training
and test data. In this dataset, a large number of trees are
found, including both rows of trees and scattered single trees.
Meanwhile, the ground objects are varied and include both

circular buildings and square buildings. With the high spatial
resolution, this dataset is suitable for verifying the mapping
authenticity and ground object deformation of the different
methods.

The precision of the different approaches for the Pavia
University ROSIS dataset is shown in Table III, where the best
results are marked in bold. UML and FPGA obtain the best and
second best results of 99.75% and 99.51%, respectively, on the
Pavia University ROSIS dataset. The CNN-8 method and all
the MSNet methods obtain a higher OA than SVM with the
optimal parameter settings. It can also be seen that the bigger
the patch size, the higher the accuracy of the CNN-based
methods. The precision of all the classes for CNN-8 is higher
than that for CNN-4, except for the “Shadows” class. UML
obtains a precision of more than 99% for all the classes.
However, as mentioned above, the performance on the test
dataset cannot be used to fully assess the performance of a
classification method. Although the performance on the test
dataset will be good, ground object boundaries will appear on
a large number of unlabeled pixels. The mapping results of
each method are shown in Fig. 9.

Fig. 9 shows that the salt-and-pepper noise is very serious
in the result of SVM. The surfaces obtained by CNN-8 and
FPGA are smooth, but the scattered objects are missed and
the boundaries between two different land-cover types are
misclassified. For example, there is a flower bed in the top-
right corner, which is highlighted by the red box in Fig. 9.
However, the flower bed is missed in the results of FPGA and
CNN-8, which is caused by the spatial information being lost
during the CNN downsampling. The introduction of multiscale
learning allows MSNet-8 to retain the flower bed, but its
accuracy is low. The OA of A2S2RN is lower than that
of the FCN-based methods and higher than that of other
patch-based methods. The result of MSRN shows oversmooth
phenomenon, which may be caused by its biggest patch size.
Moreover, many trees without labels are missing in the results
of CNN-8 and FPGA. FPGA has oversmooth phenomenon,
while the proposed UML can solve this problem better. In the
UML, spatial–spectral attention has enhanced the importance
of the center pixel. Furthermore, the shuffle and multiscale
learning improve the diversity and separability of the extracted
features, which can handle the distortion. The results of UML
show that the scattered objects such as a single tree are fully
preserved and the salt-and-pepper noise is well restrained,
and the results are closer to the real land-cover distribution
map. From Fig. 9 and Table III, it can be seen that UML
obtains the best performance on the Pavia University ROSIS
dataset.

C. Experiments With the Kansas AHSI Dataset
One hundred labeled samples were sampled in each cat-

egory for the Kansas AHSI dataset training data, as shown
in Table IV. For the optimized phase of SVM, the validation
dataset was 5% of the whole training data. The batch size
of the deep learning methods was set to 30. After the model
training, all the pixels were predicted and the evaluation indi-
cators were calculated. The experiments were again repeated
ten times over the randomly split training and test data.
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Fig. 8. Pseudo-color composite image and the corresponding ground truth for the Indian Pines AVIRIS dataset.

TABLE III

PRECISION OF THE DIFFERENT APPROACHES FOR THE PAVIA UNIVERSITY ROSIS DATASET

TABLE IV

NUMBER OF LABELED PIXELS IN EACH CLASS IN

THE KANSAS AHSI DATASET

Because this dataset was collected by satellite, the spatial
resolution is low and the phenomenon of mixed pixels is seri-
ous. Moreover, the shapes of the ground objects are complex,
including regular crossroads, irregular roads, rivers, areas of
cultivated land and bare soil in various shapes, and many round
or square plots, which poses a challenge for many classifiers.

The precision of the different approaches for the Kansas
AHSI dataset is shown in Table V, where the best results are
marked in bold.

Table V shows that UML and FPGA obtain the best
and second best result of 95.57% and 94.50%, respectively,
on the Kansas AHSI dataset. SVM with the optimal parameter
settings obtains the worst accuracy. The OA of UML is higher

than that of SVM by over 10%. The precision for the “Road”
class in all the methods is below 85%, which can be ascribed
to the fact that a pixel of “Road” is just one pixel in a
hyperspectral image with only a 30-m spatial resolution. In this
scene, the accuracy of the CNN and MSNet methods with a
patch size of 8 is better than that with a patch size of 4, and all
the patch-based methods have an accuracy of less than 90%.

Fig. 10 shows that the salt-and-pepper noise is again very
serious in the result of SVM. Although the results of CNN-8
and FPGA contain very little salt-and-pepper noise, which
suggests that the convolution operation can restrain the salt-
and-pepper noise, the pixels belonging to the “Road” category
are misclassified. Moreover, the farm track in the result of
FPGA is merged with the “Crop” category. The result of
A2S2RN and MSRN cannot obtain the best performance in
patch-based methods, and the “Road” pixel cannot be classi-
fied by the MSRN correctly. With the increase of the patch
size, the phenomenon of merged classes is less significant
in the results of MSNet, and the trivial characteristics are
retained well, which proves that the multiscale shuffle block
can tackle the loss of spatial information. The missing trivial
objects in the results of UML are clearly improved when
compared with FPGA and CNN-8, but there are still more
missing trivial objects than in the results of MSNet and SVM.
Therefore, a tradeoff should be made between restraining the
salt-and-pepper noise and keeping the trivial characteristics.
From Fig. 10 and Table V, it can be seen that a good tradeoff
is achieved by UML, compared with the other counterpart
methods.
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Fig. 9. Results obtained by the different approaches with the Pavia University ROSIS dataset. (a) SVM. (b) CNN-4. (c) CNN-8. (d) MSNet-4. (e) MSNet-8.
(f) MSRN. (g) A2S2RN. (h) FPGA. (i) UML.

TABLE V

PRECISION OF THE DIFFERENT APPROACHES FOR THE KANSAS AHSI DATASET

D. Experiments With the Indian Pines AVIRIS Dataset
The Indian Pines AVIRIS dataset has much fewer labeled

samples and more classes than the other two datasets. The
labeled sample number for “Alfalfa,” “Grass-Pasture-Mowed,”
and “Oats” is less than 50. In this case, all the labeled samples
in the classes of “Alfalfa,” “Grass-Pasture-Mowed,” and “Oats”
were used as training data. As shown in Table VI, 50 labeled
samples of the other categories were sampled as the training
data.

For the optimized phase of SVM, the validation dataset was
5% of the whole training data. The batch size of the deep
learning methods was set to 30. After the model training,

all the pixels were predicted and the evaluation indicators
were calculated. The experiments were again repeated ten
times over the randomly split training and test data. This
dataset is composed of various types of crop fields. The
spectral differences between the different vegetation types are
also slight. The crop fields are in many kinds of regular
shape, among which some small blocks of artificial objects
are distributed. There are two large roads running from left to
right in the whole scene, and there are many paths between
the different crop fields.

The precision of the different approaches for the Indian
Pines AVIRIS dataset is shown in Table VII, where the best
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Fig. 10. Results obtained by the different approaches for the Kansas AHSI dataset. (a) SVM. (b) CNN-4. (c) CNN-8. (d) MSNet-4. (e) MSNet-8. (f) MSRN.
(g) A2S2RN. (h) FPGA. (i) UML.

TABLE VI

NUMBER OF LABELED PIXELS IN EACH CLASS IN

THE INDIAN PINES AVIRIS DATASET

results are marked in bold. UML and FPGA obtain the best and
second best results of 96.44% and 96.18%, respectively, on the
Indian Pines AVIRIS dataset. SVM with the optimal parameter
settings obtains the worst accuracy. The OA of UML is higher
than that of SVM by over 20%. There are six categories
where UML achieves a 100% accuracy. There are significant
gaps in the OA and kappa coefficient between the patch-based
CNN and the FCN-based methods. MSNet obtains a worse
performance than the conventional CNN for both patch sizes.

Because of the additional block, the trainable parameters in
MSNet are more than in the CNN. Moreover, the result of
A2S2RN obtains the best performance of 93.34% in patch-
based methods. The classification map of MSRN presents the
sawtooth phenomenon on some categories. The 50 samples per
category may be insufficient for the MSNet training, which
may be the reason why it obtained a poor performance.

Fig. 11 shows that the results of SVM and MSNet-4 contain
heavy salt-and-pepper noise. FPGA obtains the smoothest
results among the seven methods. The two roads running
through the scene can be recognized in the results of SVM,
CNN-4, MSNet-4, MSNet-8, and UML, while in the results of
CNN-8 and FPGA, the road boundaries are obscured and the
road is classified as the neighboring crop types. The red box
marks a square cropland area without any label information.
The results of UML and MSNet present this cropland area as
having a very clear square border, while the boundary does not
appear as a square in the results of CNN-8 and FPGA. Fig. 11
and Table VII show the superiority of the UML framework
over the other counterpart methods.

E. Experiments on Different Training and Test Samples

To explore the performance of the proposed method on
different datasets, two kinds of training scenarios have been
included in this section: 1) using the raining dataset with
different sizes per class and 2) using the spatially disjoint
training and test samples, which provided by the IEEE GRSS
DASE (http://dase.grss-ieee.org/) [42].

In the first kind of training scenario, the training size is
set to 10, 30, 50, 70, and 100 for different court parts. The
OAs have been reported in Fig. 12. The OA of UML is not
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Fig. 11. Results obtained by the different approaches for the Indian Pines AVIRIS dataset. (a) SVM. (b) CNN-4. (c) CNN-8. (d) MSNet-4. (e) MSNet-8.
(f) MSRN. (g) A2S2RN. (h) FPGA. (i) UML.

TABLE VII

PRECISION OF THE DIFFERENT APPROACHES FOR THE INDIAN PINES AVIRIS DATASET

the highest with ten samples per class, and when the training
size becomes bigger, the UML has higher OA than others.
The reason is that UML contains more modules than other
methods which need a sufficient labeled sample to train.

In the second kind of scenario, the classification perfor-
mance of different methods with spatially disjoint training
and test samples is compared among different methods on the
Indian Pines AVIRIS dataset and the Pavia University ROSIS
dataset. The experimental setting of each method is the same
as the previous experiments, while the training samples, the
test samples, and the evaluation standards are provided by
the IEEE GRSS DASE. The experimental results are reported
in Table VIII. The performance for all methods is degraded
compared with previous classification results. It can be noticed
that the OAs of CNN-4, CNN-8, and MSnet-4 are lower

than 80% on the two datasets, which reveals that the random
selection strategy for samples will lead to an overestimation
of classification performance. The location of training and
test samples is adjacent and the adjacent samples are easily
classified.

Despite the performance degradation phenomenon, the
UML still achieves the highest OA of 83.07 and 90.24 and
kappa of 0.79 and 0.88 on the Pavia University ROSIS dataset
and the Indian Pines AVIRIS dataset, respectively. The results
have been demonstrated that the proposed method has the
effective spatiospectral feature learning ability.

F. Experiments in Transfer Learning on the Three Datasets
These experiments were carried out to investigate the perfor-

mance of the UML framework in transfer learning. The UML
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Fig. 12. OAs of the different approaches on different training sizes.

TABLE VIII

PRECISION OF THE DIFFERENT APPROACHES ON

THE DISJOINT TRAIN TEST

framework was first trained on the source image to a sufficient
degree. When performing classification in the other scenes, the
initial block and the classification block of UML were replaced
by the particular block corresponding to the target scene,
which had a different input dimension and softmax dimension.
The input dimension was consistent with the number of spec-
tral bands in the other sensor, and the softmax dimension was
set according to the category numbers in different tasks. The
other blocks of UML were preserved from the source domain.
After this, the labeled samples in the target hyperspectral
image were extracted for fine-tuning. Ten labeled samples
were selected in each category for the target domain training
data. For the comparative experimental setting, an additional
UML framework was trained with only ten labeled samples

TABLE IX

PRECISION OF THE TRANSFER LEARNING EXPERIMENTS

FOR THE KANSAS AHSI DATASET

in each category in the target domain scene, which can be
regarded as an experiment without any transfer information.
The experiments included nine transfer learning cases, i.e.,
training on the ROSIS dataset and transferring to the AVIRIS
dataset, training on the AHSI dataset and transferring to the
AVIRIS dataset, training on the AVIRIS dataset, training on the
AVIRIS dataset and transferring to the ROSIS dataset, training
on the AHSI dataset and transferring to the ROSIS dataset,
training on the ROSIS dataset, training on the AVIRIS dataset
and transferring to the AHSI dataset, training on the ROSIS
dataset and transferring to the AHSI dataset, and training on
the AHSI dataset. The results of the different transfer learning
experiments are shown in Tables IX–XI and Fig. 13.
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TABLE X

PRECISION OF THE TRANSFER LEARNING EXPERIMENTS FOR THE PAVIA
UNIVERSITY ROSIS DATASET

Table IX presents the results of the transfer learning exper-
iments from the ROSIS and AVIRIS datasets to the AHSI
dataset, which shows that the OA is improved by 10% by
the transfer learning, which is the biggest among the three
datasets. The source domain ROSIS and AVIRIS images
are aerial images and have a high spatial resolution at 1.3
and 17 m/pixel, respectively, and thus contain more plentiful
information than the target domain at 30 m/pixel. The trained
UML framework is able to learn the abundant spatiospectral
features in the aerial imagery, which is very helpful for
the target domain fine-tuning. Moreover, the ROSIS dataset
contains more labeled samples, resulting in higher accuracy
than that of the AVIRIS dataset.

Table X lists the results for the transfer learning from the
AHSI and AVIRIS datasets to the ROSIS dataset. The OA
is improved by nearly 5% by the transfer learning, which is
lower than in the previous scene. The reason for this may come
down to the fact that the target domain has the highest spatial
resolution, which limits the accuracy improvement. The AHSI
dataset has more labeled samples, while the AVIRIS dataset
has a higher resolution, which causes the difference between
these two results to be only slight.

From Table XI, it can be seen that the results for the AVIRIS
dataset have lower OAs than the results for the other two
datasets, which may have been caused by the target domain
AVIRIS dataset containing the most categories, i.e., the limited
labeled data in the target domain are the biggest limitation for
the performance. The UML framework trained from the AHSI
dataset with a spectral range from 400 to 2500 nm has a better
performance than when trained from the ROSIS dataset with a
spectral range from 400 to 1000 nm. In terms of the AVIRIS
dataset, a source domain with a consistent spectral range is
more helpful for fine-tuning.

G. Complexity Analysis of the Methods
In this section, the FLOPs and running time are utilized

for the complexity analysis of each method. The calcula-
tion of FLOPs is conducted on the whole image for the

TABLE XI

PRECISION OF THE TRANSFER LEARNING EXPERIMENTS
FOR THE INDIAN PINES AVIRIS DATASET

patch-based methods, such as CNN-4, CNN-8, MSnet-4,
MSnet-8, A2S2RN, and MSRN. Each patch is utilized for the
center pixel label prediction and the stride of prediction is
set to 1. Therefore, the total FLOPs is a summation of all
layers in the network for input hyperspectral patch times the
pixel number. The running time of all methods is calculated
on RTX 2080. Table XII reports the FLOPs and the running
time of different methods on three datasets. The A2S2RN has
the longest running time and biggest FLOPS, compared with
all network-based methods. The UML is the second faster
and is longer than FPGA within 1 s. The inference speed of
FCN-based methods is faster than patch-based because the
data patch should be obtained by sliding a window in a one-
step stride, which involves many repetitive calculations. These
redundant operations not only waste computational memory
but also increase time consumption.

H. Ablation Analysis of the UML

The proposed UML contains many modules, such as shuffle
block, upsampling, and multiscale strategy. To further demon-
strate the contribution of different modules of the proposed
UML, we carry out the ablation study on the three hyperspec-
tral datasets. In this context, the UML has been designed upon
the same network architecture of original UML but without
each module individually. “Ablation_shuffle” indicates that the
shuffle block is discarded in the UML. “Ablation_upsample”
indicates that neither the deconvolution nor the interpolation is
utilized in the decoder process of UML. “Ablation_attention”
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TABLE XII

COMPLEXITY ANALYSIS OF THE DIFFERENT APPROACHES ON THREE HYPERSPECTRAL DATASETS

Fig. 13. Results obtained in the different transfer learning experiments for the three datasets. (a) ROSIS_to_ AVIRIS. (b) AHSI _to_ AVIRIS. (c) AVIRIS.
(d) AHSI _to_ROSIS. (e) AVIRIS_to_ ROSIS. (f) ROSIS. (g) ROSIS_to_AHSI. (h) AVIRIS_to_AHSI. (i) AHSI.

TABLE XIII

ABLATION STUDY ON THE THREE HSI DATASETS

means each CNN operation in the UML without spatiospectral
attention. “Ablation_mutiscale” means that the convolution has
one fixed kernel in the shuffle block. The OA and kappa of

the experiments are listed in Table XIII. The UML without
multiscale obtained the worst OA and kappa on the ROSIS
and AVIRIS datasets, which demonstrated that the multiscale
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module can improve spatial feature learning and yield the
better performance. The result achieved by the original UML
is the best, which proved that each module is beneficial for
the proposed network.

V. CONCLUSION

In this article, to tackle the issues of redundant operation
and land-cover map distortion in hyperspectral image classifi-
cation, we propose an innovative FCN named the UML frame-
work, which combines both an encoding phase and a decoding
phase. The multiscale spatiochannel attention mechanism and
a multiscale shuffle block are included to obtain a more pow-
erful classification performance so that the UML framework
can not only perform classification but can also be used in
transfer learning applications. From the results obtained with
three hyperspectral datasets, including two airborne hyperspec-
tral images and one spaceborne hyperspectral image, it was
confirmed that the UML framework can outperform the other
state-of-the-art hyperspectral image classification methods and
can obtain a good tradeoff between restraining salt-and-pepper
noise and keeping trivial characteristics. Moreover, the transfer
learning ability of the UML framework was also confirmed in
the transfer learning experiments. When the source domain is
an aerial hyperspectral image and the target domain is a space-
borne hyperspectral image, the UML framework can obtain a
superior performance. However, there are two limitations to
the UML framework: 1) the information from a large amount
of unlabeled pixels cannot be made full use of in the encoding
and decoding framework and 2) the promotion of the transfer
learning is limited.

In our future work, semisupervised learning will be consid-
ered in the UML framework. In addition, domain adaptation
will also be considered in the UML framework during the
transfer learning process.
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