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A B S T R A C T   

Deep learning based change detection has brought a significant improvement in the accuracy and efficiency 
when compared with conventional machine learning methods. However, the issues of the lack of differential 
information and the diversity of the scale features of artificial objects are crucial barriers to the application of 
building change detection algorithms. A novel deep learning based approach named the high-resolution feature 
difference attention network (HDANet) is proposed in this work to solve these issues. HDANet can handle the 
change characteristics well, due to the Siamese network structure. To tackle the loss of the spatial features of 
buildings caused by the multiple successive down-sampling operations in the current change detection algo
rithms using fully convolutional networks (FCNs), a multi-resolution parallel structure is introduced in HDANet, 
and the image information with different resolutions is comprehensively employed, without any spatial infor
mation loss. Moreover, an innovative difference attention module is elaborated for the enhancement of the 
sensitivity to difference information, to keep the building change information. The experimental results obtained 
on building change detection datasets confirm that HDANet can improve the differential feature representation 
for change detection, and the performance of the building change detection is also superior to that of the other 
advanced change detection methods.   

1. Introduction 

Remote sensing technology is capable of obtaining information 
about the Earth’s surface periodically and extracting the dynamic 
changes of the Earth’s surface rapidly. As such, remote sensing is widely 
utilized in the fields of land resource surveying (Wang, Tan et al., 2022), 
urban building extraction (Deng, Shi et al., 2021), pollution detection 
(Niu, Tan et al., 2021), and military applications (Qin, Cai et al., 2021). 
How to identify building and land surface changes accurately has 
become one of the essential issues in remote sensing. 

The difference features between images obtained by image pre
processing are utilized in the traditional change detection methods 
mainly utilize. The image preprocessing operations consist of radiation 
correction and image registration. Change vector analysis (CVA), which 
regards each band as a feature vector, is one of the traditional difference 

image feature generation approaches, and is used in many change 
detection methods (Bovolo and Bruzzone, 2006). Euclidean distance 
calculation of the feature vector can be utilized to indicate the change 
intensity of the corresponding pixel. The development of machine 
learning in many research fields has promoted the application of the 
related algorithms in change detection. Change detection can be treated 
as a classification task with binary categories, in which each pixel should 
be labeled as either “changed” or “unchanged”. Other machine learning 
methods (Volpi, Tuia et al., 2013, Wessels, Van den Bergh et al., 2016) 
have also been investigated in change detection. Du and Liu (Du and Liu, 
2012) noted that the utilization of rich features can boost the change 
detection performance. In the above-mentioned traditional approaches, 
the detection is typically divided into two processes—feature extraction 
and detection—and when the two processes cannot be combined as an 
entirety, the optimal solution will not be globally optimal. 
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Deep learning has great feature mining and feature representation 
abilities. The deep learning application in change detection has become 
one of the hotspots in the remote sensing field (Hong, Gao et al., 2020, 
Hong, Gao et al., 2020). Convolutional neural networks (CNNs) (Albawi, 
Mohammed et al., 2017) can be utilized with remote sensing data 
through the convolution operation. When a patch-based method is 
implemented in change detection, the variable characteristics or the 
combination information of the bi-temporal images is input into the 
CNN to obtain the “changed” or “unchanged” label for the given patch. 
Wang et al., (Wang, Yuan et al., 2018) utilized the fusion feature of the 
difference image as the input of the CNN and found that the spatio- 
spectral features can achieve high-accuracy detection results. Some 
advanced CNN structure have been introduced in the remote sensing 
field, such as transformer (Hong, Han et al., 2021), Graph CNN(Gao, 
Hong et al., 2020) and Siamese network (Wang, Tan et al., 2020, Deng, 
Shi et al., 2021, Hong, Han et al., 2021, Zheng, Gong et al., 2022). The 
CNN-based Siamese network structure has been shown to be appropriate 
for change detection, due to its similarity comparison ability. Lin et al., 
(Lin, Li et al., 2019) proposed a feature map fusion approach for a Sia
mese CNN by multiplying the two branches of the Siamese feature ma
trix before the fully connected layer, and the results demonstrated that 

the feature fusion can enhance the change information. Mou et al., 
(Mou, Bruzzone et al., 2018) utilized the integration of a CNN-based 
Siamese network structure and a modified recurrent neural network to 
include bi-temporal image as the sequential features in the Siamese 
discrimination process, which outperformed the other mainstream deep 
learning methods. However, the flaw of the patch-based inference pro
cess is the many repeated steps, which cause the waste of computing 
resources and the low efficiency of the algorithms. 

Remote sensing has entered the era of mass production, which 
significantly improves the situation of the image information lagging 
behind the spatio-temporal characteristics of ground objects (Hong, Gao 
et al., 2020). How to detect the changed areas rapidly and accurately for 
a large range of data is a hot issue. Unfortunately, it is time-consuming to 
infer pixel by pixel using a CNN with a fully connected layer. The fully 
convolutional networks (FCNs) can quickly infer the semantic segmen
tation and can label every pixel in an image concurrently, which makes 
them suitable for the change detection task. The encoder-decoder 
framework allows the FCN to be utilized in change detection in large 
scenes. Peng et al., (Peng, Zhang et al., 2019) utilized an improved FCN 
named UNet++, which employs a dense feature map shortcut link to 
promote the detection performance. Liu et al., (Liu, Jiang et al., 2020) 
replaced the traditional convolution operation with depthwise separable 
convolution and proposed a modified FCN, which improved the change 
detection accuracy and efficiency. To further boost the detection accu
racy, Zhang et al., (Liu, Jiang et al., 2020) investigated a two-branch 
architecture in an FCN to learn the deep global features in two tempo
ral images, which is followed by deeply supervised discriminating 
optimization. Ding et al., (Ding, Shao et al., 2021) proposed an FCN- 
based network with three-dimensional filters, which can effectively 
capture the spatio-spectral features of objects with different sizes. Some 
efforts have also been devoted to the construction of high-quality 
building change detection datasets (Ji, Wei et al., 2018, Chen and Shi, 
2020, Shi, Liu et al., 2022), which have been utilized for the perfor
mance assessment of the innovative approaches. Moreover, the combi
nation of Siamese and FCN have been investigated on change detection. 
Li et al., (Li, Yan et al., 2022) proposed a densely attentive refinement 
network to improve change detection, which employed the UNet enco
der–decoder architecture with the Siamese network. Zheng et al., 
(Zheng, Wei et al., 2022) proposed a deep Siamese pairwise potential 
CRFs network which utilized the conditional random field method in the 
FCN and Siamese network to improve the change detection accuracy. 

Fig. 1. Illustration of the difference attention module.  

Fig. 2. The structure of the HDANet framework.  
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Zheng et al., (Zheng, Gong et al., 2022) investigated a high frequency 
attention-guided Siamese network to enhance high frequency informa
tion of changes and detect edges of changed area. 

The above-mentioned deep learning methods can obtain high- 
precision detection results in most change detection tasks, and repre
sent a significant improvement in accuracy and efficiency over the 

Fig. 3. Scenes from the LEVIR-CD dataset (the first row denotes T1 images, the second row denotes T2 images, and the last row denotes the label images).  

Fig. 4. Scenes from the SYSU-CD dataset (the first row denotes T1 images, the second row denotes T2 images, and the last row denotes the label images).  
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conventional machine learning methods. Building changes have regular 
shapes, close arrangements, and various scales, which represent a 
challenge to the deep learning based change detection methods because 
the differential information is non-significant and the performance of 
the feature extraction in different scales is poor. In this regard, an 
innovative FCN-based change detection algorithm named the high- 
resolution feature difference attention network (HDANet) is proposed 
in this work. To handle the loss of detailed context features caused by the 

successive down-sampling operations, a multi-resolution parallel struc
ture is introduced in HDANet, in which the image information with 
different resolutions is comprehensively employed without any spatial 
information loss caused by multiple down-sampling. HDANet is carried 
out based on a Siamese network structure, which allows HDANet to 
represent the change characteristics well. Moreover, atrous spatial 
pyramid pooling (ASPP) is conducted by combining a group of convo
lution kernels in parallel with preset atrous rates, to represent the 
various features. 

Although these approaches are able to handle change detection tasks 
with higher efficiency and accuracy, there still exist two main draw
backs that hinder the performance to be further improved, which can be 
described as follows:  

(1) In the existing encoding–decoding change detection methods, 
fine-resolution features with successive down-sampling operation 
are lost when encoding high-level features and the lost spatial 
information cannot be effectively restored in the up-sampling 
process. As a result, the edge and interior area of the changes 
may be mistaken which leads to great loss in performance.  

(2) The recently change detection methods are tended to lose the 
change information such as the diversity of the scale features and 
the difference characteristics which will cause the low change 
detection accuracy. 

To deal with the aforementioned problems, a novel deep learning 
based approach named the high-resolution feature difference attention 
network (HDANet) is proposed for change detection using bi-temporal 
remote sensing images. The main contributions of this work are given 
as follows.  

(1) We investigate a novel HDANet for the change detection in an 
encoder-decoder manner. The network employs a Siamese 

Fig. 5. Scenes from the WHU building dataset (the first row denotes the T1 images, the second row denotes the T2 images, and the last row denotes the label images).  

Table 1 
The accuracy of the different approaches for the LEVIR-CD dataset.  

Method Precision Recall F1-score Kappa 

FC  0.9016  0.7255  0.8040  0.7947 
FC_S_C  0.9394  0.7597  0.8401  0.8324 
FC_S_D  0.8911  0.7756  0.8293  0.8209 
SegNet  0.9247  0.7094  0.8029  0.7938 
DeepLabV3  0.9003  0.8251  0.8611  0.8539 
DSIFN  0.9278  0.8211  0.8712  0.8647 
STANet  0.9201  0.8333  0.8746  0.8682 
UNet++ 0.9144  0.8524  0.8823  0.8762 
Siam_HRNet  0.9108  0.8479  0.8782  0.8719 
HDANet  0.9226  0.8761  0.8987  0.8934  

Fig. 6. The first change scene in the LEVIR-CD dataset.  
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feature discriminant structure with shared weights to extract the 
difference features with two period remote sensing image.  

(2) We integrate the feature representation with different resolutions 
and scales in parallel, and the detailed change information is well 
kept for the final detection.  

(3) We devise a differential attention module (DAM) based on change 
intensity, which can extract the differential features of two 
different temporal images effectively.  

(4) From comprehensive comparisons among the recent CNN-based 
change detection approaches, our proposed method is able to 
achieve state-of-the-art performance. 

2. Previous works 

2.1. Conventional CNNs and FCNs 

In the conventional CNNs the inference model utilizes the patches of 
the whole image as the input. The change results can be obtained by 
repetitive iterations though all the pixels, one after another. However, 
there will be a lot of overlapping areas between the patches of adjacent 
pixels, so that the efficiency of the convolution operation per pixel is 
relatively low. The convolutional layer can only extract the features of 
local areas, resulting in a poor detection performance. The output of a 
single layer in a CNN is followed by the fully connected layer and after 
the transformation of the fully connected layer, the softmax is employed. 

lgt = zfc (1)  

Fig. 7. The results obtained by the different methods with the first change scene in the LEVIR-CD dataset.  

Fig. 8. The second change scene in the LEVIR-CD dataset.  

Fig. 9. The results obtained by the different methods with the second change scene in the LEVIR-CD dataset.  
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Ci = elgti/
∑

j
elgtj (2)  

where fc represents the transformation of the fully connected layer; and 
lgt = (0, 1) indicates the logit, which describes the confidence toward 
“changed” and “unchanged”.Ci denotes the output from the softmax 
layer. 

Compared with the traditional CNN, the FCN abandons the following 

fully connected layer and replaces it with a convolutional layer, which 
forms an encoder-decoder framework. The input of the FCN does not 
need to be of a fixed image size. After the processing by the softmax 
function, the value of each channel represents the probability of the 
label. 

2.2. Siamese neural networks 

A Siamese neural network is a special network structure used to 
compare the similarity of input samples, where the characteristics of the 
different input data are obtained through a set of weight-sharing net
works (Wu, Wang et al., 2018). 

The main characteristic of a Siamese network is that it is composed of 
two sub-networks whose weights and structures are identical. According 
to the requirement of the task, a Siamese network can be made up of any 
basic neural network model, such as a CNN or an FCN. In a Siamese 
network, the backbone network contains two sub-networks, which can 
be regarded as two branches to process two sets of different data. The 
two network branches encode the input data to generate high-level 
features of the original data, where the aim is to represent the feature 
similarity of the bi-temporal data. The input data are generally the im
ages of two periods in change detection. In the conventional change 
detection methods, the input is the fusion feature of bi-temporal images, 
which is called early fusion. The disadvantage of early fusion is that it is 
hard to keep the independence of the detailed features because of the 
mutual interference between each band of the two periods. Meanwhile, 
in a Siamese network, the images of the two periods are utilized as in
dependent inputs, so that the network can retain the independence of 
the features through the shallow and deep layers from the two periods, 
without causing the two images to affect each other. 

Table 2 
The accuracy of the different approaches for the SYSU-CD dataset.  

Method Precision Recall F1-score Kappa 

FC_EF  0.8269  0.6308  0.7156  0.6427 
FC_Siam_conc  0.7792  0.7208  0.7488  0.6752 
FC_Siam_diff  0.8492  0.6430  0.7319  0.6635 
SegNet  0.8235  0.6629  0.7345  0.6638 
DeepLab v3  0.8099  0.7065  0.7547  0.6856 
DSIFN  0.7932  0.7285  0.7595  0.6894 
STANet  0.8038  0.7475  0.7746  0.7084 
UNet++ 0.8144  0.7466  0.7790  0.7146 
Siam_HRNet  0.8095  0.7391  0.7727  0.7066 
HDANet  0.7853  0.7988  0.7920  0.7271  

Method Precision Recall F1-score Kappa 

FC 0.8269 0.6308 0.7156 0.6427 
FC_S_C 0.7792 0.7208 0.7488 0.6752 
FC_S_D 0.8492 0.6430 0.7319 0.6635 
SegNet 0.8235 0.6629 0.7345 0.6638 
DeepLabV3 0.8099 0.7065 0.7547 0.6856 
DSIFN 0.7932 0.7285 0.7595 0.6894 
STANet 0.8038 0.7475 0.7746 0.7084 
UNet++ 0.8144 0.7466 0.7790 0.7146 
Siam_HRNet 0.8095 0.7391 0.7727 0.7066 
HDANet 0.7853 0.7988 0.7920 0.7271  

Fig. 10. The first change scene in the SYSU-CD dataset.  

Fig. 11. The results obtained by the different methods with the first change scene in the SYSU-CD dataset.  

Fig. 12. The second change scene in the SYSU-CD dataset.  
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2.3. Accuracy evaluation 

In change detection, the result is to label each pixel into a changed or 
unchanged category, which is a pixel-level binary classification task. 
Therefore, the common accuracy evaluation indicators used in classifi
cation can be used to assess the detection performance, i.e., kappa co
efficient, F1-score, recall, and precision. These indicators are calculated 
as follows: 

Precision =
PC

PC + PM
(3)  

Recall =
PC

PC + NM
(4)  

F1 =
2 × Precision × Recall

Precision + Recall
(5)  

OA =
PC + NC

PC + NC + PM + NC
(6)  

P =
(PC + PM)(PC + NM) + (NM + NC)(PF + NC)

(PC + NC + PM + NC)
2 (7)  

kappa =
OA − P
1 − P

(8)  

where PC represents the number of correctly classified “changed” labels. 
PM denotes the count of misclassified “changed” classes. NC is the count 
of classified “unchanged” labels correctly, which represents the pixels 
that have not changed and are classified as unchanged. NM denotes the 
number of misclassified “unchanged” classes. 

3. Proposed method 

To improve the detection performance and allow the model to 
handle high-precision change detection with various complex artificial 
objects, a new method based on high-resolution feature representation 
and a difference attention module is proposed. The HRNet architecture 
(Sun, Xiao et al., 2019) with a Siamese network structure is introduced 
as the basic skeleton of the network, where the difference features for 
the bi-temporal images are enhanced through the difference attention 
module, based on the intensity of the changes. 

3.1. Difference attention module 

The aim of an attention module is to filter out the important infor
mation and ignore the unimportant background information from the 
redundant features. It is often utilized to enhance the feature informa
tion. A spatial attention is utilized to highlight the information in 
different positions of the feature map, and the purpose of a channel 
attention module is to enhance the characteristics in the different 
channels, giving different weights to each channel (Hu, Shen et al., 

Fig. 13. The results obtained by the different methods with the second change scene in the SYSU-CD dataset.  

Table 3 
The accuracy of the different approaches for the WHU building dataset.  

Method Precision Recall F1-score Kappa 

FC_EF 0.7623 0.7765 0.7693 0.7603 
FC_Siam_conc 0.8831 0.7261 0.7969 0.7899 
FC_Siam_diff 0.8020 0.7631 0.7821 0.7739 
SegNet 0.7813 0.6878 0.7316 0.7219 
DeepLab v3 0.8256 0.8197 0.8226 0.8158 
DSIFN 0.8686 0.8093 0.8379 0.8319 
STANet 0.8601 0.8340 0.8468 0.8410 
UNet++ 0.8906 0.7898 0.8372 0.8313 
Siam_HRNet 0.8806 0.8098 0.8437 0.8380 
HDANet 0.8987 0.8255 0.8605 0.8554 
Method Precision Recall F1-score Kappa 
FC 0.7623 0.7765 0.7693 0.7603 
FC_S_C 0.8831 0.7261 0.7969 0.7899 
FC_S_D 0.8020 0.7631 0.7821 0.7739 
SegNet 0.7813 0.6878 0.7316 0.7219 
DeepLabV3 0.8256 0.8197 0.8226 0.8158 
DSIFN 0.8686 0.8093 0.8379 0.8319 
STANet 0.8601 0.8340 0.8468 0.8410 
UNet++ 0.8906 0.7898 0.8372 0.8313 
Siam_HRNet 0.8806 0.8098 0.8437 0.8380 
HDANet 0.8987 0.8255 0.8605 0.8554  

Fig. 14. The first change scene in the WHU building dataset.  
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2018). The two modules can be represented by: 

Ac = σ(MLP(Maxpool(F) ) + MLP(Avgpool(F) )) (9)  

As = σ(Conv7×7(Concat(Maxpool(F),Avgpool(F)))) (10)  

where Ac denotes the channel and As is the spatial attention module. F 
represents the input features,Concat() represents the concatenation 
operation, and σ is the activation function. 

In a change detection algorithm using a Siamese network structure, a 

difference feature map is also constructed when extracting the image 
features of the two periods, so as to enhance the ability to discriminate 
the difference information. The characteristics of the difference map can 
be indicated by the magnitude of the change intensity of the bi-temporal 
images. Regions with a higher intensity have larger values in the dif
ference map and should be given larger weights as these regions are 
more likely to change. However, the spatial attention module only in
tegrates the feature map on the channel dimension, and cannot reflect 
the difference strength well. In this regard, a difference attention module 
(DAM) is proposed, which is illustrated in Fig. 1. The Euclidean distance 
between the feature map from the bi-temporal data in a pixel-wise 
manner is calculated to represent the change intensity map (CIM). The 
channel number of the change intensity map is 1. Each pixel in the 
change intensity map denotes the change intensity of the corresponding 
location in the bi-temporal images. Convolution with a 3 × 3 kernel is 
implemented on the change intensity map and is followed with a sig
moid function, which can generate the difference attention weights. 
After this, the channel attention is integrated with the difference 
attention weight to obtain the output attention, which can emphasize 
the intensity of the difference of each pixel in the spatial dimension and 
assign greater weights to the positions with larger differences and 

Fig. 15. The results obtained by the different methods with the first change scene in the WHU building dataset.  

Fig. 16. The second change scene in the WHU building dataset.  

Fig. 17. The results obtained by the different methods with the second change scene in the WHU building dataset.  
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smaller weights to the positions with smaller differences. The proposed 
DAM can help to keep the building change information and the calcu
lation is: 

CIM =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

c=1
(T1c − T2c)

2

√

(11)  

ACIM = σ(Conv3×3(CIM)) (12)  

where T1c and T1c represent the features in the c th channel for the two 
periods, respectively. n is the channels count. ACIM represents the dif
ference attention weight map, and σ denotes the sigmoid function, 
which can make the range of ACIM be 0–1. The final attention map is then 
obtained by weighting the influence from all the channels: 

DI = |T1 − T2| (13)  

FCIM = ACIM ⊗ DI (14)  

where DI is the difference on each channel after the Siamese network, 
and the size of DI is kept the same as T1 or T2. 

3.2. Multi-scale feature learning 

Building changes have regular shapes, close arrangements, and 
various scales, and the features should be represented under different 
scales to support the change discrimination. In a vanilla CNN, the kernel 
size is 3 × 3, and a larger kernel can increase the receptive field. The 
GoogLeNet Inception module (Szegedy, Liu et al., 2015) uses 

convolution kernels with different sizes. Larger convolution kernels (7 
× 7 or larger) improve the parameter amount of the model, and can be 
replaced with a cascade of smaller-size convolution kernels. Dilated 
convolution has the bigger receptive field without additional parame
ters. With the same receptive field, the 3 × 3 dilated convolution re
quires significantly less computation than the 5 × 5 convolution with 25 
parameters and the 7 × 7 convolution with 49 parameters. 

The ASPP module of the DeepLab series of networks (Chen, Papan
dreou et al., 2017) is included for the multi-scale feature extraction. The 
convolution process includes three convolutional layers with kernel size 
of 3 × 3 and dilation rates of 1, 6, and 12, respectively, and one 1 × 1 
convolutional layer. In order to generate multi-scale features after the 
Siamese network, the features of different scales are concatenated 
together. 

3.3. The proposed HDANet framework 

HDANet consists of a fully convolutional part, a multi-scale differ
ence feature learning part, and a detection part. The majority of the 
existing FCN-based approaches utilize convolution and pooling for the 
feature extraction and down-sampling, and then employ interpolation or 
transposed convolution to carry out the up-sampling, to restore the high 
resolution. Different-resolution features are connected in cascade, and 
the feature maps go through the feature extraction without losing the 
spatial information, which can be achieved by including skip 
connections. 

HDANet utilizes the high-resolution HRNet architecture to learn the 
feature maps, which connects four different resolutions in parallel. 

Fig. 18. The results obtained on the first change scene in the LEVIR-CD dataset with the different data noise.  
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Differing from the traditional FCN, the feature map resolution is main
tained on the same branch in HRNet and, in this way, some feature 
branches always keep the high resolution, which is beneficial for the 
detailed information learning. There are many stages to learn the 
different-level features. At the end of a stage, the feature is down- 
sampled and the resolution is reduced to half of the original with 
doubled channels. The feature fusion is then implemented among the 
different resolutions, in which down-sampling is performed when the 
high resolution is fused to a low resolution and up-sampling is per
formed when the low resolution is fused to a high resolution. Fig. 2 il
lustrates the HDANet framework. 

In HDANet, HRNet is included as the basic skeleton of the Siamese 
network. Both branches of the Siamese network structure have four 
branches of different resolutions, and the low-resolution branch is 
restored to the maximum resolution by up-sampling in the final stage, 
which can be regarded as a fusion feature map combined with multiple 
resolutions. ASPP is appended after the Siamese high-resolution feature 
extraction for the multi-scale feature learning. The Siamese features are 
fed into the ASPP to learn the difference information. After this, the 
difference map is constructed using the multi-scale feature maps, and is 
followed with the DAM to reinforce the feature representation. Finally, 
the softmax operation is carried out to transform the values of the last 
feature map to the probability of belonging to the changed or unchanged 
category, so as to judge whether the corresponding pixel has changed. 
The parallel different-resolution feature extraction and the multi-scale 
difference feature map can emphasize the feature representation 
under different scales of buildings, and the DAM can keep the subtle 
changes, which is beneficial to the building change detection. The 
floating-point-operations (FLOPs) of HDANet is 284.33G when the input 
size of bi-temporal images is 256 × 256 × 3 and the total parameter size 

is 6.77 MB. 

4. Experiments 

4.1. Dataset description 

4.1.1. The LEVIR-CD dataset 
The LEVIR-CD dataset (Chen and Shi 2020) was published by Bei

hang University. The original imagery of this dataset is made up of 
Google Earth images of Texas, USA, taken between 2002 and 2018, with 
spatial resolution of 0.5 m. The dataset has been released with training, 
validation, and test sets, for which the image number is 445, 64, and 
128, respectively. The size of each image in the original dataset is 1024 
× 1024. Considering the limitation of GPU memory size, each image was 
divided into 16 equal parts with size of 256 × 256, obtaining a total of 
7120, 1024, and 2048 images in the training, validation and test sets, 
respectively. Fig. 3 shows some scenes from the LEVIR-CD dataset. 

4.1.2. The SYSU-CD dataset 
The SYSU-CD dataset (Shi, Liu et al., 2022) was published by Sun 

Yat-Sen University. The main change types of this dataset include 
changes in different urban category objects, such as changes from forest 
land to building land, river bank expansion, the disappearance of ships 
in the water, and the addition of buildings. The changes of the ground 
objects in this dataset are complex. The image size is 256 × 256. The 
number of images is 12,000, 4,000, and 4,000 for the training, valida
tion, and test sets, respectively. Fig. 4 shows some scenes from the SYSU- 
CD dataset. 

Fig. 19. The results obtained on the second change scene in the LEVIR-CD dataset with the different data noise.  
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4.1.3. The WHU building dataset 
The WHU building dataset (Ji, Wei et al., 2018) was published by 

Wuhan University. The original image size of this dataset is 15354 ×
32507, and the location is Christchurch, New Zealand. The image pairs 
were obtained in 2012 and 2016. An earthquake in 2011 caused wide
spread damage to homes in the area, so the main types of changes are the 
construction of post-disaster housing and the conversion of bare soil to 
buildings. We cropped the entire image without overlapping, with a 
window size of 256 × 256, and obtained a total of 7434 images of 256 ×
256 in size. The original dataset was divided by the ratio of 8:1:1 to form 
the training, validation, and test sets, for which the image number is 
5948, 743, and 743 respectively. Fig. 5 shows some scenes from the 
WHU building dataset. 

4.2. Experimental settings 

Six current mainstream deep learning based methods were utilized as 
the counter parts: fully convolutional early fusion (FC) (Daudt, Le Saux 
et al., 2018), fully convolutional Siamese-concatenation (FC_S_C) 
(Daudt, Le Saux et al., 2018), fully convolutional Siamese-difference 
(FC_S_D) (Daudt, Le Saux et al., 2018), deeply supervised image fusion 
network (DSIFN) (Liu, Jiang et al., 2020), spatial–temporal attention 
neural network (STANet) (Chen and Shi, 2020), UNet++ (Peng, Zhang 
et al., 2019), and the two classic semantic segmentation models of 
SegNet (Badrinarayanan, Kendall et al., 2017) and DeepLab v3 (Chen, 
Papandreou et al., 2017). HRNet with the Siamese network structure 
(Siam_HRNet) was also used as a comparison method. Experiments were 
implemented with the LEVIR-CD, SYSU-CD, and WHU building datasets. 
All the models in the experiments were built using the PyTorch frame
work. The hardware device used in the experiments was an NVIDIA 

GeForce RTX 3090 GPU. In the parameter setting of the network model 
training, considering the limitation of the model size and GPU memory, 
the batch training size was set to 4. The maximum epochs for the model 
training was 100. In order to prevent overfitting during training, an 
early stopping method was used to end the training process. 

4.3. Experiments with the LEVIR-CD dataset 

Table 1 lists the results obtained on the LEVIR-CD dataset. The F1- 
score of HDANet is 0.8987 and the kappa coefficient is 0.8934, which 
are the highest scores among all the methods. In the results of the 
comparison algorithms, the F1-scores of the four methods of UNet++, 
STANet, DSIFN, and DeepLab v3 are all higher than 0.85. Among these 
methods, UNet++ obtains the highest accuracy among the comparison 
methods, with an F1-score of 0.8823 and a kappa coefficient of 0.8762, 
which are 0.0164 lower than the F1-score of HDANet and 0.0172 lower 
than the kappa coefficient. 

Siam_HRNet, as a method that uses the HRNet architecture with the 
Siamese network structure, achieves an F1-score of higher than 0.87 and 
the accuracy is only lower than that of UNet++ among all the com
parison algorithms. The detection accuracy of the three methods based 
on the FC method is lower than that of the other methods. Among these 
methods, the FC method obtains the lowest accuracy, with a kappa of 
0.7947 and an F1-score of 0.8040, which are 0.0947 lower than the F1- 
score of HDANet and 0.0987 lower than the kappa coefficient. The Si
amese network structure based FC_S_C and FC_S_D methods show their 
superiority over the methods without the Siamese network structure in 
change feature extraction. 

As shown in Fig. 6 and Fig. 8, images of two scenes were chosen from 
the LEVIR-CD test set for visualization of the detection results. The 

Fig. 20. The results obtained on the first change scene in the SYSU-CD dataset with the different data noise.  
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change type of the first scene is the change from bare ground to build
ings. As shown in Fig. 7, the results of the FC, FC_S_C, and DeepLab 
methods show serious missed detections, and some false detections 
occur between the buildings for SegNet and STANet. DSIFN and HDANet 
show the best detection effect in this scene, and the boundaries of the 
buildings are kept completely. Small buildings in this scene are well 
detected in the result of HDANet, which performs better than 
Siam_HRNet. The second scene is the change of bare soil and vegetation 
to residential land. As shown in Fig. 9, the building changes are missed 
in the results of the SegNet method, and the FC, FC_S_D, DeepLab, 
DSIFN, UNet++, and Siam_HRNet methods cannot handle the detection 
in adjacent buildings, where the results do not show sharp boundaries 
between adjacent buildings. HDANet shows no obvious missed detection 
in the change boundaries, and the detailed outlines of the building 
changes are more complete. 

4.4. Experiments with the SYSU-CD dataset 

Table 2 reports the accuracy of the detection results obtained for the 
SYSU-CD dataset. Due to the complexity of the various change scenarios, 
the accuracies of the detection results of each method in the SYSU-CD 
dataset are lower than for the LEVIR-CD dataset. The HDANet method 
again achieves the highest values among the test results in terms of the 
kappa coefficient and F1-score, with an F1-score of 0.7920 and a kappa 
coefficient of 0.7271. The five comparison algorithms of UNet++, 
Siam_HRNet, STANet, DSIFN, and DeepLab all achieve F1-scores of over 
0.75. UNet++ performs the best among the other algorithms, with an 
F1-score of 0.7790 and a kappa coefficient of 0.7146. Compared with 
HDANet, the F1-score is lower by 0.0130 and the kappa coefficient is 
lower by 0.0125. The detection accuracy of the three FC-based 

approaches and SegNet is relatively low. The performance of the FC 
method is the worst, with an F1-score of 0.7156 and a kappa coefficient 
of 0.6427, which are 0.0764 and 0.0844 lower than those of HDANet, 
respectively. Compared with the FC method, the better detection accu
racy of FC_S_C and FC_S_D demonstrates that the Siamese network 
structure is a valid way to handle building change detection. 

The images of two scenes in the test set were utilized to visualize the 
detailed results, as shown in Fig. 10 and Fig. 12. The change type of the 
first scene is the change from forest land to building land. From the 
detection results of each method shown in Fig. 11, it can be seen that all 
the methods show a certain degree of omission, among which the FC and 
FC_S_D methods are the most obvious, and the results include many 
“holes” caused by missed detection. The results of HDANet, Siam_HR
Net, and UNet++ show better integrity for the land objects, among 
which the results of Siam_HRNet and HDANet are relatively close, but 
the boundaries of the buildings in the result of HDANet are smoother. 
The second scene 2 features the reconstruction of a shipping wharf, 
which includes the mutual transformation between water body and 
building. Fig. 13 gives the detection results of all the methods, where it 
can be seen that, in this change scenario, all the methods show a certain 
degree of missed detection, among which the SegNet and FC_S_C 
methods show the most serious omission in the area where the water 
body changes to building. The overall performance of the STANet, 
Siam_HRNet, and HDANet methods is better than that of the other 
methods. HDANet shows no obvious omission errors. 

4.5. Experiments with the WHU building dataset 

Table 3 reports the results for the WHU building dataset. The per
formance of the HDANet method is the best in terms of the F1-score and 

Fig. 21. The results obtained on the second change scene in the SYSU-CD dataset with the different data noise.  
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kappa coefficient, with a kappa coefficient of 0.8554 and an F1-score of 
0.8605. In the results of the other methods, STANet obtains the best 
performance, with an F1-score of 0.8468 and a kappa coefficient of 
0.8410, which are 0.0137 and 0.0144 lower than HDANet, respectively. 
SegNet obtains the lowest accuracy among the comparison algorithm, 
with a kappa coefficient of 0.7219 and an F1-score of 0.7316. The ac
curacy of the FC_S_C and FC_S_D methods is still higher than that of the 
FC method with a non-Siamese network structure, as with the first two 
datasets. 

As shown in Fig. 14 and Fig. 16, two images of different scenes were 
chosen to explore the performance of all approaches. The first scene is 
the change from bare soil to residential area. As shown in Fig. 15, 
HDANet shows a superior ability to preserve the edges of the buildings, 
and there is no “horn” caused by obvious false detection. However, for 
the other comparison methods, there are many omission errors in the 
interior of the buildings. The second scene also features the change from 
bare soil to residential area, which is shown in Fig. 17. The buildings are 
clearly scattered in the result of the SegNet method, and the FC method 
cannot keep an unbroken shape for the buildings. The result of HDANet 
shows the best effect in maintaining the changed boundaries of the 
buildings in this scene, and there is no obvious missed detection or 
broken buildings. 

The result of HDANet shows the best effect in maintaining the 
changed boundaries of the buildings in this scene, and there is no 
obvious missed detection or broken buildings. 

4.6. Experiments with the degradation dataset 

The noise of remote sensing image will impact the performance of 
the remote sensing image processing (Hong, Yokoya et al., 2018). In this 

section, the noise immunity of the proposed HDANet has been analyzed. 
Firstly, salt-and-pepper noise and stripe noise, which are two kinds of 
common noise in remote sensing image, are utilized as the simulated 
noise to added to the original dataset. Salt-and-pepper noise is a kind of 
spot-like noise and the value of the affected pixels is the maximum or 
minimum value in the value range of the image. Stripe noise can be one 
pixel wide or multiple pixels wide. The gray value of the bright stripe is 
higher than that of the surrounding normal pixels, while gray value of 
the dark stripe is lower than that of the surrounding normal pixels. In 
this work, the noise ratio is set to 10 % and 50 %. 

Figs. 18-23 show the original images, the noise added images and the 
corresponding change detection results on three datasets. Table 4 lists 
the detection accuracy for the different datasets. Salt-and-pepper noise 
and stripe noise caused a loss of the detection accuracy. HDANet on 10 % 
of salt-and-pepper noise and stripe noise datasets obtained the higher 
accuracy compared with the 50 % of salt-and-pepper noise and stripe 
noise datasets. All the F1 of HADNet on these degradation datasets are 
lower than 0.88. From the detection map, the degraded impacts from 
salt-and-pepper noise are worse than that from stripe noise. Most change 
areas can not be well detected when the alt-and-pepper noise ratio is 50 
%. We have added the corresponding discussion on the manuscript. 

5. Conclusion 

In this work, a new method named HDANet has been proposed to 
handle building change detection. The parallel multi-resolution struc
ture of HRNet is utilized as the basic skeleton of the network. The feature 
maps of different resolutions are then fused to represent various char
acteristics. The HDANet framework is carried out using a Siamese 
network structure, which allows HDANet to represent the change 

Fig. 22. The results obtained on the second change scene in the WHU building dataset with the different data noise.  
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characteristics well. Moreover, a differential attention module based on 
change intensity is proposed to enhance the differential representation, 
which enhances the differential features of two different temporal im
ages. For the case of there being land objects in the same image with 
different scales, the parallel ASPP module with preset dilation rates is 
used for the multi-scale features extraction. The experimental results 
obtained in this study showed that the HDANet can achieve a high 
building change detection accuracy, compared with the current main
stream methods, with public building change detection datasets. 

In the aspect of future studies, two key points can be further pursued. 
Firstly, more advanced networks in computer vision field can be inves
tigated to learn the fine-grant features. Moreover, the proposed method 
is based on the supervised learning, which needs a large amount of the 
annotated samples. How to combine the deep learning methods with 
semi-supervised and unsupervised methods to solve the change detec
tion task is the other future research direction. 
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Table 4 
The accuracy of the HDANet with the different data noise.  

Dataset Precision Recall F1- 
score 

Kappa 
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HDANet_ SPN 50 
%  
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SYSU-CD 
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HDANet_SPN10%  0.7517  0.7342  0.7428  0.7219 
HDANet_ SPN 50 
%  

0.6829  0.6315  0.6562  0.6488 

HDANet_SN10%  0.7494  0.7537  0.7515  0.7371 
HDANet_SN50%  0.6352  0.6150  0.6249  0.6052 
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