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Abstract— The issues of spectral redundancy and limited
training samples hinder the widespread application and develop-
ment of hyperspectral images. In this letter, a novel active deep
feature extraction scheme is proposed by incorporating both rep-
resentative and informative measurement. First, an adversarial
autoencoder (AAE) is modified to suit the classification task with
deep feature extraction. Dictionary learning and a multivariance
and distributional distance (MVDD) measure are then introduced
to choose the most valuable candidate training samples, where
we use the limited labeled samples to obtain a high classification
accuracy. Comparative experiments with the proposed querying
strategy were carried out with two hyperspectral datasets. The
experimental results obtained with the two datasets demonstrate
that the proposed scheme is superior to the others. With this
method, the unstable increase in accuracy is eliminated by
incorporating both informative and representative measurement.

Index Terms— Active learning, adversarial autoencoder (AAE),
hyperspectral image classification, sparse representation.

I. INTRODUCTION

HYPERSPECTRAL remote sensing data record both rich
spectral and spatial information of the scene, which

has resulted in great breakthroughs in the field of land-cover
monitoring [1]. The classification of remote sensing imagery
is a critical prerequisite in a wide range of applications [2].
However, the problems of data redundancy and an insufficient
training set are still a barrier to its widespread application
and development. Indeed, training a classifier with a strong
capability requires a sufficient amount of labeled training
data. With the advances in Earth observation technology,
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more and more land-cover images are now becoming easily
accessible. However, obtaining sufficient labeled samples to
train a classifier might not be realistic because of the wide
scene coverage and the costly field surveying [3]. Classifica-
tion of hyperspectral (high feature dimension) images can be
difficult in the case of limited labeled samples [4]. To tackle
these problems, the most valuable samples should be selected,
to promote the performance of the classifier [5].

Methods based on the pattern recognition approach were
found to have a certain effect in the early development of
hyperspectral classification. In this case, dimensionality reduc-
tion, such as feature selection, is carried as a preprocessing
step [6]. Although this solution can decompose the problem
into several controllable subproblems, the optimal solutions
of these subproblems cannot converge to a globally optimal
solution. Compared with the handcrafted feature extraction
methods, deep learning can achieve a superior classification
performance [7], [8]. While these deep learning-based methods
usually require “big data,” which are limited with regard to
hyperspectral imagery [9], active learning has been developed
to overcome the difficulties in training with a small number
of training samples [10].

Active learning, which reduces the cost of labeling, has
attracted much interest in the field of remote sensing clas-
sification. The principle of an active learning algorithm is to
craft a selection strategy to obtain the most valuable instances
to label. The querying methods include query-by-committee
[11] and uncertainty sampling [12], which are both designed to
select the most informative samples. Another querying strategy
is to select the samples that are the most representative, which
can be achieved by focusing on the cluster centers of unlabeled
instances [13].

In this letter, a novel active deep feature extraction scheme is
proposed by combining sparse representation and deep feature
learning. More specifically, a softmax function is appended
to an adversarial autoencoder (AAE) [14] to construct the
conditional AAE (CAAE), which is used for deep feature
extraction. The encoder is capable of capturing the distribution
characteristics of the hyperspectral imagery, and the following
softmax layer aims to query the uncertainty of the instances,
which can be used for the informative measurement. Dictio-
nary learning is then utilized to select the most representative
samples. After this, the new labeled samples are used to retrain
the CAAE.

II. METHODOLOGY

The active learning strategy has been widely utilized in
hyperspectral image classification. The process of active learn-
ing is that the most valuable samples should be selected
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Fig. 1. Three different querying strategies (the points in blue belong to class
A, the points in green belong to class B, and the solid points are chosen by
the different measurements). (a) Using informative measurement. (b) Using
representative measurement. (c) Using combined measurement.

based on a designed rule for the unlabeled dataset, and
then, the chosen samples are labeled by experts and used
as training samples to retrain the classifier. This process is
iterative, and the classifier is trained more effectively than by
adding randomly selected new samples each time. Clearly, the
selection rule has a significant impact on the final performance,
and inappropriate selection can give rise to a waste of effort.

The proposed active deep feature extraction method is based
on the integration of representative and informative measure-
ment. Fig. 1 shows the effectiveness of labeling both represen-
tative and informative instances for classification. The dashed
line in the three figures denotes the optimal classification
hyperplane after the classifier training under the assumption
that all pixels are labeled in categories A and B. The solid
line represents the factual hyperplane based on the actual
labeled pixels. Fig. 1(a) shows the instances selected by the
informative measurement, but it can be seen that the decision
boundaries are incorrect, which is caused by the chosen sam-
ples being close to the decision boundaries. Fig. 1(b) shows
that the selected instances are capable of identifying the correct
decision boundaries, but the improvement is limited because
the fine-grained information cannot be added by representative
measurement. As shown in Fig. 1(c), the selected samples
obtained by the use of both informative and representative
measurement are more efficient in finding accurate decision
boundaries.

In this work, we adopt a multivariance and distributional
distance (MVDD) scheme to choose the most informative
samples, and a dictionary learning method is used to find the
most representative candidates.

A. Details of the Proposed Approach

First, the notations adopted throughout this letter are given.
If we suppose that a hyperspectral dataset with b spectral
bands contains N labeled samples for L classes, and each
is represented by {x1, x2, . . . , xN } ∈ R

1×b, then the cor-
responding label vector is Y = {y1, y2, . . . , yN } ∈ R

1×L .
The last layer of the decoder in the CAAE consists of b
neurons, and the generated samples of the CAAE are denoted
as {x g

1 , x g
2 , . . . , x g

N } ∈ R
1×b.

As shown in Fig. 2, each category has an initial set of
labeled samples to train the CAAE, in which all the networks
are fully connected. After the training process, the posterior
probability matrix is obtained through the softmax layer in
the CAAE. Likewise, the generated samples obtained by the
trained CAAE are regarded as the items that make up the initial
dictionary and are compared with the unlabeled samples. After
the calculation of sparse representation coefficient based on
orthogonal matching pursuit (OMP) [15], the representative
measurement and informative measurement are then applied,

and the corresponding candidates are selected in the alternative
set, compared with the dictionary items. They are then used
to update the dictionary.

B. Conditional Adversarial Autoencoder

The CAAE is a probabilistic autoencoder that uses an
adversarial training process to perform variational inference
by matching the aggregated posterior of the hidden code
vector with a given prior distribution, which is shown in
Fig. 3. The additional softmax is added in AAE to obtain
the CAAE, which is capable to tackle the distribution fitting
and classification.

Compared with a variational autoencoder, which uses the
Kullback–Leibler (KL) divergence to impose a prior distrib-
ution on the encoder, the CAAE uses an adversarial training
procedure by matching the posterior probability of the hidden
encoder with the prior distribution. The output part of the
encoder is modified to obtain the posterior probability by
appending a softmax layer. The observed loss L consists of
three parts—the adversarial loss, the supervised classification
loss, and the reconstruction loss—which can be formulated as

L = Vadv + Recost + V softmax. (1)

The solution to the generative adversarial procedure can be
expressed as follows [13]:

min
sampler

max
D

V = Ex∼p(x)

[
logD(x)

] + Ez∼p(z)

×[
log(1 − D(sampler(z)))

]
. (2)

The sampler and the discriminator D can be optimized
using alternating stochastic gradient descent (SGD): 1) the
discriminator is trained to distinguish the true samples from
the fake samples generated by the sampler and 2) the generator
is then trained to fool the discriminator D with its generated
samples. The other two parts of (1) are expressed as

(x̂ − x)2 −
L∑

j=1

y j log
ea j

∑L
k=1 eak

. (3)

C. Measurement of Informative Candidates

Dictionary learning based on the deep features is utilized
as the representative measurement. The basic assumption of
dictionary learning is that the structure of a complex signal can
be expressed directly by a set of atoms and the corresponding
sparse coefficients, that is, if the sample is used as an atom
in a dictionary with high efficiency, it may be the most
representative for an active learning problem. The process can
be expressed as follows:

max
D,ai

N∑

i=1

∥∥xh
i − DICαi

∥∥2

2+λ

N∑

i=1

‖αi‖0 (4)

where N denotes the number of items and λ is a regularization
parameter. ‖·‖2

2 and ‖·‖0 represent the L2 and L0 norms.
With the active learning procedure, DIC is increased, which
is solved by the elimination of the residual

ri = xh
i − DICαi . (5)

After this, the sparse coefficients and the items of the dic-
tionary are obtained using OMP and k-singular value decom-
position in an alternating manner. The iteration is carried out
with the updating of the dictionary DIC, using the alternative
set chosen by the MVDD scheme.
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Fig. 2. Detailed illustration of the proposed MVDD scheme.

Fig. 3. Structure of the CAAE.

D. MVDD Scheme

The proposed MVDD scheme consists of two querying
strategies: multivariance in the posterior probability and the
distance between the learned distribution and the true data
distribution. The multivariance calculation uses the top three
posterior probabilities. The distributional distance is measured
by the use of the Euclidean distance between the generated
samples and the real data

MVDD = max
i∈L

(p(yl |x) − E(p(yl |x)) + max
i∈L{l+}

(p(yl|x)

− E(p(yl|x)) + max
i∈L{l+,l++}

(p(yl|x) − E(p(yl|x))

+ ∥∥x g − x
∥∥

2 (6)

where p(yl|x) means the posterior probability for yl and l+
is the most probable label class for sample x . l++ is the
second most probable label class for sample x . E(·) denotes
the expectation of the top three posterior probabilities, and x g

is decoded by the CAAE. A high MVDD value indicates that
the corresponding sample has high uncertainty and contains
more information.

III. EXPERIMENTAL SETUP AND RESULTS

A. Dataset Description

In order to verify the effectiveness of the proposed method,
two hyperspectral datasets were investigated. The first was
the Pavia University dataset. This dataset consists of 610 ×
340 pixels and is characterized by 103 spectral channels
ranging from 430 to 860 nm after noisy band removal. The
dataset contains nine categories of interest. Because of the
high spatial resolution, the scattered objects, such as the trees
and the footpath, bring great difficulty to feature learning. The
pseudo-color composite image and the labeled categories are
shown in Fig. 4. The second dataset was the Indian Pines

Fig. 4. Pseudo-color composite image and the corresponding ground truth
for the Pavia University ROSIS dataset.

dataset. This dataset consists of 145 × 145 pixels, with a
spatial resolution of 17 m/pixel. A total of 200 bands ranging
from 400 to 2500 nm were used in the experiments after
removing the noisy bands. The available training samples
cover 16 categories of interest, which are mostly different
types of vegetation. The specific ground features of Indian
Pines dataset are shown in Fig. 5.

B. Experimental Setting

In order to test the proposed method, the conventional
classifier of support vector machine (SVM) and the main-
stream deep learning algorithms of the spectral decomposition
algorithm (SDA) and deep belief network (DBN) were chosen
as comparative methods. SDA and DBN used two layers. Two
of the widely used querying strategies were also adopted as the
counterpart of the MVDD scheme. Moreover, the two active
learning-guided classification models based on deep learning
named AL-B-CNN [16] and WI-DL [5] are included as the
comparative methods. Because the WI-DL is conducted based
on DBN, the network structure of the WI-DL is set consistent
with that of DBN.

1) Maximum Entropy (ME): It selects instances with the
highest classification uncertainty as the most informative
samples. The maximum predictive entropy is calculated
as

ME = −
L∑

i

p(yi |x)logp(yi |x). (7)

2) Breaking Ties (BT): It mainly considers the difference
between the largest and the second-largest posterior
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TABLE I

NUMBER OF PARAMETERS AND MEMORY OVERHEAD IN ALL METHODS

Fig. 5. Pseudo-color composite image and the corresponding ground truth
for the Indian Pines AVIRIS dataset.

Fig. 6. OAs obtained using the different methods with five initial training
samples per class. (a) Indian Pines dataset. (b) Pavia University dataset.

probabilities to measure the similarity between classes,
where the smaller the value of BT, the more uncertain
the instance is. BT is formulated as

BT = max
i∈L

p(yl |x) − max
i∈L{l+}

p(yl|x) (8)

where l+ = argmaxl∈L p(yl|x) is the most probable label
class for sample x .

SVM_ME and SVM_BT denote the SVM classifier with
ME and BT strategies, respectively. SDA_ME and SDA_BT
denote the SDA classifier with ME and BT strategies, respec-
tively. DBN_ME and DBN_BT denote the DBN classifier
with ME and BT strategies, respectively. Proposed denotes
the proposed method. The hyperparameters of each network
were chosen empirically. To exhibit the complexity of the
proposed methods, the number of trainable parameters and
memory overhead is given in Table I.

C. Results

For the purpose of the comparison, the number of added
samples was the same for each active learning algorithm. For
a fair comparison, the number of iterations was set to 10,
and 50 samples were added in each epoch. The comparative
experiments were implemented in six different forms, i.e., the
two querying strategies with the three different classification
algorithms. The OAs are given in Fig. 6 and Table II, and the
classification results are presented in Figs. 7 and 8.

The proposed method obtains the best performance of
95.08% and 94.86% in OA on the Pavia University and

Fig. 7. Classification results for the Indian Pines dataset. (a) SVM_ME.
(b) SVM_BT. (c) SDA_ME. (d) SDA_BT. (e) DBN_ME. (f) DBN_BT.
(g) AL-B-CNN. (h) WI-DL. (i) Proposed.

Fig. 8. Classification results for the Pavia University dataset. (a) SVM_ME.
(b) SVM_BT. (c) SDA_ME. (d) SDA_BT. (e) DBN_ME. (f) DBN_BT.
(g) AL-B-CNN. (h) WI-DL. (i) Proposed.

Fig. 9. Classification results of different iterations on the two datasets.
(a) IP-Iter1. (b) IP-Iter3. (c) IP-Iter5. (d) IP-Iter7. (e) IP-Iter9. (f) PU-Iter1.
(g) PU-Iter3. (h) PU-Iter5. (i) PU-Iter7. (j) PU-Iter9.

Indian Pines datasets, respectively, which indicates that the
MVDD active learning scheme can significantly improve the
classification accuracy when compared with the other querying
methods. The OA of the proposed method is better than the
other methods by at least 1.32% on the Pavia University
dataset and 0.92% on the Indian Pines dataset. Moreover,
a decrease in accuracy is seen in both the ME and BT results,
which is caused by the unsuitable chosen candidates. The OA
obtained by AL-B-CNN has a more stable upward trend with
the increment of iteration compared that obtained by WI-DL,
while the best OA of WI-DL on the two datasets is higher
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TABLE II

OVERALL ACCURACY OF THE DIFFERENT METHODS ON THE PAVIA UNIVERSITY AND INDIAN PINES DATASETS

than that of AL-B-CNN. The OA of the proposed method
is better than these two additional comparison methods by
at least 1.59% on the Pavia University dataset and 1.51%
on the Indian Pines dataset. To report the variation of the
classification map during the training process, the results of
the intermediate process are listed in Fig. 9, which shows
that the misclassification phenomenon is modified significantly
with the elected samples. Overall, the MVDD scheme elimi-
nates the unstable increase in accuracy by incorporating both
informative and representative measurement.

IV. CONCLUSION

In this letter, a new active learning approach for hyper-
spectral image classification has been proposed. We also
modified the CAAE to make it suitable for the classification
task. In this work, we were concerned with the selection
of the most informative and most representative unlabeled
samples, which is carried out by the MVDD scheme. The
proposed MVDD scheme consists of two querying strategies:
the multivariance in the posterior probability and the distance
between the learned distribution and the true data distribution.
Dictionary learning is used as the representative measurement.
The proposed method is capable of decreasing the spectral
redundancy and highlighting the representative features for
the applied task. The experimental results demonstrate that
the proposed scheme can result in a significant improvement
in classification performance.
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