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Abstract— Convolutional neural networks (CNNs) have
achieved success in hyperspectral image (HSI) classification, but
the performance is constrained by the limited reception field.
In this regard, vision transformer (ViT) is introduced recently,
which is of powerful capabilities in long-range feature extraction
for HSI classification. However, transformers are computation
intensive and poor for local feature extraction. The motivation for
this study is to build a lightweight hybrid model, which ensembles
the respective inductive bias from CNNs and global receptive field
from transformers. In this work, we propose a concise and effi-
cient framework—the spatial-spectral feature extraction network
with patch attention module (PAM) (PASSNet), to simultaneously
extract both local and global features. Specifically, we design an
innovative plugin called PAM, which can be easily integrated into
both CNNs and transformers blocks to extract spatial-spectral
features from multiple spatial perspectives. Besides, a novel
partial convolution (PConv) operation is introduced, with a
reduced computational cost than vanilla convolution operation.
Through coupling the local attention from the CNNs with
the global receptive fields in the transformers, the proposed
PASSNet exhibits a superior classification performance on three
well-known datasets with a small training sample size.

Index Terms— Hyperspectral image (HSI) classification, partial
convolution (PConv), patch attention module (PAM), vision
transformer (ViT).

I. INTRODUCTION

N RECENT years, with the rapid development of remote

sensing technology, hyperspectral sensors are considered
a revolution, with their unprecedented spectral, spatial, and
temporal resolutions [1], [2]. Currently, hyperspectral images
(HSIs) have been widely applied in the fields of land-use
monitoring [3], water quality parameter estimation [4], and
so on. In order to make better use of HSI data in these areas,
in particular, HSI classification has received long-standing and
widespread interest [5].

Currently, with its powerful capabilities to extract local
spatial and spectral features, convolutional neural networks
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(CNNs) have shown great performances in HSI classifica-
tion. In the face of high-dimensional HSI data, a multiscale
3-D deep CNN (M3D-DCNN), proposed by He et al. [6],
employs 3-D CNNs to extract spatial and spectral feature
from HSI data. With the widespread use of group convolution
and attention mechanisms, more lightweight CNN networks
have been developed. For example, Cui et al. [2] designed
a lightweight spectral—spatial attention network (LSSAN) for
HSI classification, which maintained a high accuracy while
significantly reducing the amount of computation. Gao et al.
[7] proposed a multiscale residual network (MSRN) for HSI
classification, with mixed depthwise separable convolution,
which achieved better results with less computation effort.
In summary, the CNNs have effectively improved HSI classi-
fication performance. However, due to the fixed convolutional
kernel size design, it is challenging to capture the long-range
dependencies of the complex HSI cube. Therefore, in order
to achieve better classification performance, more CNN layers
are often required, which contradicts the goal of lightweight
modeling.

As is well known, in recent years, with the emergence of
models, such as the vision transformer (ViT) model [8] in
image processing and computer vision, transformer backbone
networks have also been introduced in HSI classification [9],
[10], [11]. Hong et al. [9] presented the spectralformer (SF)
network, which can learn spectrally local sequence informa-
tion from groupwise spectral embeddings. Mei et al. [10]
designed the group-aware hierarchical transformer (GAHT)
with grouped pixel embedding module, which obtains the fea-
ture information from the spatial-spectral context of HSI data.
Recently, some researchers have attempted to use a CNN to
first extract the shallow features before transformers. Sun et al.
[11] introduced a new model named the spectral-spatial
feature tokenization transformer method, which combines a
transformer and a CNN, to extract both spectral-spatial fea-
tures and high-level semantic features. In summary, it is
feasible to apply transformer backbone networks for HSI
classification, benefit from the larger global receptive field
and better feature extraction capability for sequence data.
However, since all the positions are required to be computed
at each step, transformers incur a significant computational
cost.

The motivation of this letter is to better tradeoff the net-
work structure and the local-global feature extraction. Thus,
we propose a lightweight hybrid model named PASSNet.
PASSNet consists of two convolutional blocks and two trans-
former blocks, which can employ the strengths of CNNs in
local feature extraction and the benefits of transformers in
long-range context modeling. In detail, first, we designed
a lightweight shallow feature information extraction module
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based on partial convolution (PConv). Second, we developed
a new attention module named the patch attention module
(PAM), which can be embed in convolution or self-attention
modules easily. In the convolutional blocks, PAM can help to
better extract local spatial-spectral feature information from
multiple spatial perspectives. Besides, a simplified version of
the PAM is also integrated into the multihead self-attention
(MHSA) layer in the transformer blocks, which contributes
blend local—global spatial and spectral features, while reducing
the computational cost. The main contributions of this letter
can be summarized as follows.

1) We propose an effective attention mechanism module
named PAM, designed specifically for the HSI classifica-
tion task with small input patches. PAM can strengthen
CNNs and transformers in extracting local and global
spatial-spectral features.

2) We introduce the lightweight and effective PASSNet,
consisting of two convolutional blocks and two trans-
former blocks, which enable better extraction of local
and information from HSI cubes.

3) We conduct a comparison analysis on three well-known
datasets, where the proposed PASSNet framework
obtained superior results compared to other models.

II. PROPOSED METHODOLOGY
A. Partial Convolution

Recently, a novel module named PConv was proposed
by Chen et al. [12], which can further reduce the number
of training parameters and the computational cost. Fig. 1
illustrates the different structures of vanilla convolution, group
convolution, and PConv. The PConv module first divides
the input feature cube X € R¥*W*C equally into n parts
as X; € RIWx(C/m jlong the channel dimension without
overlapping. Then, a vanilla convolution module is applied to
the first part, while the other parts remain unchanged and are
then concatenated back with the convolved part. Thus, it can
be seen that only the first part of the input feature cube in
PConv needs to be computed through vanilla convolution

5(\ = fPConv(X) = Concat(]:Conv(Xl)v XZ? ceey X[1 ceey Xn)

(D

where n is the number of divided groups, and Fco,y represents
a vanilla convolution operation.

We designed a residual module with PConv to extract the
shallow spatial-spectral features for HSIs, with a small number
of model parameters and amount of computation. As shown
in Fig. 2, each convolution module consists of a PConv (n =
2) accompanied by two pointwise convolutions (PWConvs).
Furthermore, a residual structure, a batch normalization (BN)
layer, and Gaussian error linear unit (GELU) activation are
employed to keep the robustness of the model.

B. Patch Attention Module

The spatial-spectral attention mechanism has been widely
applied in image classification. One of the most popular atten-
tion mechanisms is the squeeze and excitation (SE) module
[13], but it ignores the spatial information, which is rich and
critical in remote sensing images. Inspired by the SE module
[13] and coordinate attention (CA) module [14], we propose
the PAM, which attempts to extract the local spatial-spectral
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Fig. 1. Different structures. (a) Vanilla convolution. (b) Group convolution.
(c) PConv.

information from the broken ground surface in HSIs. Fig. 3
shows the detailed design of the proposed PAM module and
its differences with SE and CA modules.

Given the input X € R7>*WxC first, two spatial extents of
average pooling kernels, with the kernel size as H x 1 and
1 x W, are applied to encode the input features by channel
in the horizontal and vertical directions, respectively. Besides,
due to the low spatial resolution of HSI, a surface object
often composed of only a few pixels. Thus, a sliding and
nonoverlapping average pooling kernel, with the fixed kernel
size of 2 x 2, is used to extract the spatial features of the
blocks. Thus, the spectral information at different positions is
extracted. The output of the three average pooling operations
at the cth channel can be formulated as follows:
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where X, )/(';\”, and X? are the output of the horizontal, verti-
cal, and block PAM modules, respectively. Differing from the
SE module with global average pooling (GAP), the directional
and block spatial structures are preserved in the PAM module.

In addition, we introduce the PWConv block to enable the
extraction of local spatial-spectral features of HSIs. Specifi-
cally, transpose and flatten operations are first performed on
the output of the PAM module, respectively, so that those
vectors can be concatenated. Then, PWConv combined with
BN and a nonlinear activation function s_swish are applied to
concatenate the spatial features

X = concat()/(z, )/(?, )/(Z’) 3)
X" = h_swish(BN(Fpwcon (X'))) 4)

where X' € RUFWHHW/Hx(C/r) g the intermediate feature
cube, and r is the reduction ratio to squeeze the number of
channels, as in the SE block. After this, X’ is split back
into three separate tensors at their original size. Then, three
individual PWConv and sigmod operations are applied to
excite X}, X, and X}, so that the number of channels is
restored to match the input X

gh = f(]:PWConvl (X;l))
8" = f(Frwcoma(X,,))
8" = f(Fewcoms (X})) (5)

where f is the sigmoid function. Next, g is transposed back
to its original shape, and nearest neighbor interpolation is
applied to restore g” to the original spatial size. Finally, the
three outputs g”, g, and g’ are considered as being attention
weighted and are multiplied with the input features X

—

h w b
Xij=XijxXg X8 X&;

(6)
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Fig. 4.  Different designs of MHSA attention block. (a) Original MHSA
module. (b) PAM-enhanced MHSA module.

where )/(,\j is the final output of the PAM block. The proposed
PAM is added to the PConv block to improve the extraction
of local image features by the convolution module.

C. Transformer Block With Simplified PAM

Similar to most ViT modules, the transformer block in the
proposed PASSNet consists of two parts: an MHSA layer and
a feed forward (FF) layer. Since HSIs are very fragmented, the
fusion of local and global features is very important for HSI
classification, and we tried to migrate a simplified PAM block
into the transformer block. The PAM module helps to enhance
the local-global feature extraction capability of the MHSA
layer, thus contributing to improved classification results with
less computational cost.

As shown in Fig. 4(b), a simplified PAM operation is
performed to extract the spatial features and reduce the feature
size of the input key and value before the MHSA layer. After
the concatenation of the three spatial features extracted by
PAM, as shown in (3), only one sigmoid activation function
is retained, and all the convolution operations in the PAM are
now removed. Each pixel is treated as a token, and all the
pixel tokens constitute the input sequence. Given the input
X € RHWXC “the query Q', key K’, and value V' can then
be formulated as follows:

Q' =XW?, K =PAM(XWX), V' =PAM(XW") (7)
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Fig. 5. Sensitivity analysis for the PASSNet with different input patch sizes
on the three datasets. (a) PU. (b) SA. (c) HT.

where Q' with only linear projection, and K’ and V' are
the PAM-enhanced key and value, with abundant local spatial
features, respectively. Then, an MHSA layer with two heads
is applied to extract global spatial and spectral feature.

For the FF layer, since HSIs feature is rich in spatial
relationships, we reconstructed the FF layer with a convolution
operation instead of linear projection, named as ConvFF. The
output of the ConvFF layer can be computed as follows:

)? = GELU(]:PWCOnV(X))
}A( = GELU(fDWConv (X)) +X
)? = FpwcConv (52) (8)

where Fpwcony 1S the PWConv with the expansion times as 4,
and Fpwcony 18 the depthwise convolutions (DWConvs) with
the kernel size as 3.

Moreover, as shown in Fig. 2, layer normalization, residual
structure, and absolute positional encoding are also introduced
in the transformer blocks. These operations can improve the
stability and learning efficiency of the model.

D. Overall Architecture

An overview of the proposed PASSNet is shown in
Fig. 2. We aimed at designing a novel hybrid method
to further improve the performance of HSI classification.
The PASSNet consists of two convolutional blocks and two
transformer blocks. The first two convolutional blocks with
PAM are specifically designed to fully extract local fea-
tures from HSI patch, and the latter two transformer blocks
with PAM-enhanced MHSA are applied to extract and blend
local-global spatial and spectral features.

The proposed PASSNet takes HSI patch data as the input,
where each patch is labeled based on the label of its center
pixel. First, the principal component analysis (PCA) method
is applied to reduce the dimensionality of the HSI data to
Co = 30. We then sequentially feed the feature cube through
four blocks to obtain further feature maps. The four generated
feature cubes keep the spatial size of H x W unchanged,
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TABLE I
CLASSIFICATION RESULTS OF THE COMPARE CNN- AND TRANSFORMER-BASED METHODS ON THE THREE DATASETS

M3D-

Datasets Indicators 3-D CNN DCNN LSSAN MSRN SF SPRLT GAHT PASSNet
OA (%) 89.12+0.64 89.18+1.18 96.90+0.15 97.49+0.33 90.00+1.28 96.65+0.38 98.00+0.35 98.48+0.31

PU AA (%) 84.28+2.06 83.76+1.64 94.80+0.85 95.63+0.62 83.74+1.42 93.61+1.24 96.66+0.71 97.47+0.53
kX100 85.35+£0.92 85.46+1.62 95.88+0.20 96.67+0.44 86.64+1.72 95.55+0.51 97.35+0.47 97.99+0.41

OA (%) 90.45+0.81 92.16+0.85 96.78+0.51 96.66+0.45 89.68+0.90 95.85+0.38 95.92+0.79 98.99+0.65

SA AA (%) 93.23+0.75 94.43+1.20 98.26+0.24 98.20+0.17 90.97+1.54 97.74+0.18 97.77+0.34 99.40+0.24
kX100 89.36+0.90 91.28+0.95 96.41+0.57 96.28+0.51 88.51+1.01 95.38+0.43 95.46+0.88 98.87+0.72

OA (%) 88.52+0.96 88.61+1.66 97.34+0.51 97.24+0.63 88.35+0.83 96.26+0.35 95.71+0.64 98.05+0.34

HT AA (%) 88.36+1.14 88.27+1.74 97.21+0.46 97.34+0.57 86.95+0.97 96.01+0.46 95.85+0.58 98.15+0.30
kX 100 87.58+1.03 87.68+1.79 97.13+0.55 97.02+0.68 87.40+0.90 95.96+0.37 95.36+0.69 97.89+0.37

Fig. 6.
(c) 3-D CNN. (d) M3D-DCNN. (e) LSSAN. (f) MSRN. (g) SF. (h) SPRLT. (i) GAHT. (j) PASSNet.

while the channel number changes, which are denoted at
C, =64, C, = 128, C3 = 64, and C, = 64. Finally, a GAP
layer and a fully connected module are applied to obtain the
HSI classification results.

III. EXPERIMENTS AND ANALYSIS

A. HSI Dataset Description

To verify the validity of the proposed PASSNet framework,
we conducted experiments on three well-known HSI datasets:
the Pavia University (PU), Salinas (SA), and Houston 2013
(HT) datasets. We set a relatively small sample size for the
training set. For the PU and SA datasets, 1% labeled samples
were selected for the training. Due to the small number of
samples tagged in the HT dataset, 5% labeled samples were
selected. All the training sets were selected independently and
randomly, and the other samples were applied for the testing.

B. Experimental Setups

The experiments were implemented in the PyTorch
1.13 environment on a desktop PC with an NVIDIA
RTX 2070 GPU. For the proposed PASSNet, the learning rate
was set to 0.001, and the AdamW optimizer was employed
to update the training parameters. Furthermore, for all the
models, we set the training batch size to 64 and the number
of training epochs to 100. To ensure the optimal performance
of the comparison models, all the other experimental setups
remained the same as reported in the original articles, as much
as possible.

The overall accuracy (OA), average accuracy (AA), and
kappa coefficient (k) are used to compare the classification
results in a systematic manner. To minimize the experimental
errors, we applied a random sampling strategy and repeated
the process for five times. Finally, the experimental results are
reported in the form of mean and standard deviation.
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Classification maps of the compared CNN- and transformer-based methods on the SA dataset. (a) False-color map. (b) Ground-truth map.

C. Influence of Patch Size

We conducted several experiments using different input
patch sizes from the set of {3, 5, 7, 9, 11, 13, 15}.
All the other training parameters were set as described in
Sections III-A and II-B. Fig. 5 indicates that, for the PU
and HT datasets, the OA shows an increasing trend with the
patch size, until a certain point (9 x 9). For the SA dataset,
the OA continues to improve within the range of the tested
input patch sizes. To balance the classification accuracy and
computational cost, we set the patch size to 9 x 9 for the
subsequent experiments.

D. Comparison With Other Methods

In this section, we compare the proposed PASSNet with sev-
eral commonly used deep learning methods. The CNN-based
backbone models were 3-D CNN [15], M3D-DCNN [6],
LSSAN [2], and MSRN [7], and the transformer-based back-
bone models were SF [9], the local transformer with spatial
partition restore network (SPRLT) [16], and GAHT [10]. The
proposed PASSNet is a hybrid architecture that combines the
features of both CNN and transformer structures.

The classification result accuracy statistics for the compari-
son methods and the proposed PASSNet are listed in Table L.
It can be found the PASSNet obtains the best performance on
three well-known datasets. In detail, PASSNet outperforms the
second-ranked method by approximately 0.48%/0.81% in the
PU dataset, 2.21%/1.14% in the SA dataset, and 0.71%/0.81%
in the HT dataset, in terms of OA/AA.

In addition, the classification results based on the same
training samples are visualized to qualitatively compare these
methods in terms of visual effects based on the SA dataset.
As presented in Fig. 6, by adding the PAM to the convolutional
and transformer blocks, PASSNet is able to extract more
spatial-spectral features for HSI data. PASSNet is better at
producing a clear and visually appealing visualization than
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Classification performance under different percentages of training
samples on the three datasets. (a) PU. (b) SA. (c¢) HT.

Fig. 7.

TABLE I

TOTAL TRAINABLE PARAMETERS, FLOPS, AND PREDICTING TIMES
FOR DIFFERENT COMPARISON METHODS ON THE SA DATASET

M3D-
3D-CNN DCNN LSSAN MSRN SF

Params. (M) 039 0.60 0.04 0.14 0.36 0.84 0.97 0.24
FLOPs (M) 7033  45.21 1.10 3.71 37.68  68.22  78.69 19.45
Pred. (s) 13.99 13.80 8.85 7.88 40.91 31.72 18.72 15.24

Indicators SPRLT GAHT PASSNet

TABLE III

TOTAL TRAINABLE PARAMETERS AND OAS FOR DIFFERENT
ABLATION STRUCTURES ON THE THREE DATASETS

Computational cost

0,
Network composition (for the PU dataset) OA (%)
Params. (M) FLOPs (M) PU SA HT
Baseline 0.2842 23.03 97.64 98.37 97.07
Baseline+PConv 0.2655 21.62 97.86 98.41 97.30
Baseline+PConv+PAM 0.2723 21.87 98.15 98.57 97.75
BaselinetPConvtPAM+PAM-MHSA  0.2438 19.45 98.48 98.99 98.05
BaselinetPConvtCA+PAM-MHSA  0.2420 19.28 98.27 98.78 97.71

the other methods, as it has a weaker sense of fragmentation,
with fewer noise points and smoother, clearer boundaries.

E. Robustness Evaluation

To further evaluate the robustness of the proposed PASSNet,
Fig. 7 illustrates the classification performance of all com-
parative methods across three datasets, considering varying
percentages of training samples. It can be found with the
increase of the number of training samples, PASSNet consis-
tently achieves the best OA on three datasets, which shows its
robustness. This is attributed to the integration of CNNs and
transformer with PAM modules, which effectively harnesses
the spatial and spectral characteristics of the limited training
samples, resulting in an improved feature learning capacity.

F. Complexity Analysis

Table II shows the total trainable parameters, FLOPs, and
predicting times of several methods on three datasets. Com-
pared with other methods, it can be found that the proposed
PASSNet has a medium number of parameters and FLOPs.
The LSSAN method, as a lightweight CNN-based network
with spatial and spectral attention mechanisms, boasts min-
imal parameters and FLOPs. The GAHT method owns the
largest computational cost due to its incorporation of multiple
transformer modules. In summary, the proposed PASSNet
demonstrated superior classification performance and visual
effect while maintain an acceptable computational burden.

G. Ablation Experiment

To verify the effectiveness of our proposed method, we con-
ducted ablation experiments on various modules of PASSNet.
The baseline network consists of the vanilla convolution and
the original MHSA modules without any attention mech-
anism. Table III shows that the combination of PCA and

5510405

PConv is positive for classification. The PAM module can
also enhance the local-global feature extraction capability
of convolution and MHSA layer. In summary, the proposed
method is effective for HSI classification.

IV. CONCLUSION

In this letter, an effective and efficient spatial-spectral fea-
ture extraction framework called PASSNet has been proposed
for HSI classification, which is a combination of convolutional
and transformer blocks. First, we introduce a new convolution
module PConv that can quickly extract the shallow seman-
tic information for HSIs. In addition, we present a novel
lightweight attention mechanism named PAM, which can be
introduced into the CNNs and transformers blocks. Finally,
based on a small training sample size, the PASSNet demon-
strated an excellent classification ability on three well-known
datasets.
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