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A B S T R A C T   

Obtaining high-precision soil organic matter (SOM) spatial distribution information is of great significance for 
applications such as precision agriculture. But in the current hyperspectral SOM inversion work, soil moisture 
greatly influences the representation of the sensitive information of SOM on the spectrum. Therefore, a Kubelka- 
Munk theory based spectral correction model for soil moisture removal is proposed to improve the spectral 
sensitivity of SOM. Firstly, the soil moisture content was obtained by the use of a Kubelka-Munk based physical 
soil moisture model and an unmixing method. Then, the spectral correction model for soil moisture removal was 
implemented based on the quantitative description of the Beer-Lambert law. The results show that the proposed 
spectral correction model for soil moisture removal can significantly enhance the expression of the sensitive 
spectral features of SOM, especially for the short-wave infrared range. After moisture removal, the imaging 
spectral data were used for inversion, using the sensitive band at 0.69 μm and a support vector machine 
regression (SVR) modeling method. The Kubelka-Munk moisture removal model for soil moisture removal can 
improve the accuracy of SOM inversion by at least 22% comparing with the 0.69 μm original spectral inversion 
model, with R2 of 0.42. Moreover, the proposed model can also improve the accuracy of SOM inversion by 19% 
for the SVR statistical regression method, with R2 of 0.69. Finally, the SOM distribution maps based on sensitive 
band model and SVR regression method were analyzed. Findings show that the two methods have high con
sistency, but the statistical method obtains better details of the SOM spatial distribution, due to its higher 
accuracy.   

1. Introduction 

With the high spatial and spectral resolution, airborne hyperspectral 
images are now widely used for classification (Wang et al., 2019) and 
quantitative analysis (Ou et al., 2021). The estimation of soil composi
tion content using hyperspectral data is also emerging as a hot research 
topic (Ben-Dor et al., 2019). Nowadays, accurate soil organic matter 
(SOM) content monitoring is crucial for intelligent agriculture. As the 
research has advanced, various SOM estimation methods based on 
hyperspectral data have been gradually developed (Nawar et al., 2016; 

Ou et al., 2022; Xu et al., 2020). However, most of the inversion models 
are based on statistical modeling methods, such as partial least squares 
regression (PLSR) and support vector machine regression (SVR) (Ange
lopoulou et al., 2019; Tan et al., 2021). Unlike indoor hyperspectral 
data, airborne hyperspectral data are more sensitive to environmental 
factors, such as angular variations during imaging, inconsistent lighting 
conditions, soil moisture (SM), and extremely mixed pixels (Ben-Dor, 
2002; Kokhanovsky, 2019; Ou et al., 2022). Some physical or chemical 
properties, such as iron oxide content, soil particle size, and calcium 
carbonate content, are less variable for small-scale airborne 
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hyperspectral image data, especially for arable land. However, the soil 
moisture of arable land is directly affected by topography, rainfall, snow 
melting and artificial factors, leading to the differences in SOM content 
distribution (Minasny et al., 2011). Therefore, in addition to the spectral 
variation caused by the difference in imaging conditions, the SOM and 
moisture content of soil can be considered as the main influencing fac
tors for the variation of soil reflectance in a small arable area (Hong 
et al., 2018). 

As the soil moisture content increases until it reaches saturation, the 
spectral reflectance shows a decreasing trend, after that, the soil 
reflectance is enhanced due to the effect of specular reflection (Weidong 
et al., 2002). When the SOM content is below 2%, the spectral reflec
tance of soils will show a significant decreasing trend (Al-Abbas et al., 
1972). Many researchers found that the sensitive features for SOM 
mainly focused on the intervals of 0.60–0.75 μm and 1.73–2.43 μm 
(Angelopoulou et al., 2019; Ben-Dor et al., 1997; He et al., 2009). The 
accuracy of SOM content estimation directly from original soil hyper
spectral information is easily affected by soil moisture (Hong et al., 
2018; Minasny et al., 2011; Ogen et al., 2019). The variation of SOM 
content has a far less impact on the soil spectra comparing with the soil 
moisture. Moreover, water participates in redox reactions in soil and 
acts as a solvent for various ions and molecules, which influence the 
different spectrum properties. Therefore, to achieve SOM estimation 
with high performance by airborne hyperspectral data, the soil moisture 
effects need to be removed (Babaeian et al., 2019). 

The most important prerequisite for removing the influence of 
moisture from hyperspectral data of soil is to obtain accurate soil 
moisture information. The inversion methods based on microwave 
remote sensing can effectively obtain soil moisture. However, the lack of 
radar data for simultaneous imaging and the low spatial resolution 
makes it difficult to meet the actual requirements. Moreover, the in-situ 
soil moisture data is also not available. Hence only the index-based 
models can be considered to obtain the soil moisture of a whole study 
area. The classical method VSDI (Zhang et al., 2013) model is simple to 
calculate, but the accuracy is relatively low compared to some of the 
other methods. The TOTRAM (Nemani et al., 1993) and other methods 
(Bablet et al., 2018; Sadeghi et al., 2017) are parameter complex. To 
date, Beer-Lambert law (Bach and Mauser, 1994) and Kubelka-Munk (K- 
M) (Kubelka, 1931) has been successfully applied to inversion of soil 
moisture. Kubelka-Munk physical model (Sadeghi et al., 2015) can 
achieve well performance with concise model parameters. Although 
many soil moisture inversion models have been developed, spectral 
correction models for soil moisture removal are still rare (Bablet et al., 
2018; Yuan et al., 2019; Zhang et al., 2020). Minasny et al. (2011) used 
an EPO method to construct a spectral correction model to remove the 
effect of moisture, and the accuracy with the test set reached 0.84 when 
use the corrected spectra for SOM prediction. Yaron et al. (2019) used 
the nearest neighbor spectral correction (NNSC) method to build a wet- 
dry soil spectra transformation coefficient vector, and the accuracy of 
the soil clay content reached 0.69. Castaldi et al. (2015) used the 
PRISMA dataset and calculated the statistical variability between wet 
and dry soils to synthetically dry soil spectra, thus improving the pre
diction accuracy for clay. Despite the numerous studies have calibrated 
field-collected spectra against measured SOM, the variation in soil 
moisture will have significant impacts on the prediction of SOM (Bog
rekci and Lee, 2006; Bricklemyer and Brown, 2010; Lobell and Asner, 
2002). Some issues should be handled, which can be described as 
follows:  

1) most available soil moisture correction models are applied to indoor 
spectral data. These correction models require measured dry soil 
spectra to build a linear or nonlinear correction model, which is 
ineffective when applied directly to imaging data;  

2) Existing soil organic matter hyperspectral inversion methods can 
better obtain the spatial distribution of local areas. However, for a 
broad area mapping without sample sites, the generalization 

performance of traditional regression methodology is poor. It will 
also perform poorly in terms of explainability. 

Therefore, developing a physical model-based soil organic matter 
inversion method is of great interest for radiative transfer theory inter
pretation and large-scale remote sensing application. The primary goals 
of the research are to rapidly and accurately invert soil organic matter 
composition using hyperspectral remote sensing data. It is necessary to 
develop a physical model-driven soil spectral correction model (such as 
Kubelka-Munk analytical radiative transfer model) to remove the in
fluence of soil moisture on the spectrum. Moreover, the develop 
generalizable methods should be investigated for inverting soil moisture 
without the need for further measurement data. 

2. Datasets and methodology 

Fig. 1 shows the overall workflow of this study. Firstly, an unmixing 
method was used to extracted the water and soil abundance information 
from the airborne hyperspectral imagery. The driest and wettest soil 
spectra for the study area were then extracted based on the water and 
soil abundance information. And the soil moisture was inverted by the 
K-M physical model. Considering the effect of both the Fresnel effect and 
soil moisture, a spectral correction model for soil moisture removal 
based on K-M theory is proposed. Finally, sensitive bands were obtained 
from the corrected airborne hyperspectral data. 

2.1. Datasets 

2.1.1. Study area 
Fig. 2 is the map of the study area, with an area of about 139 km2 

(ranges from 125.33◦E–125.47◦E and 43.22◦N–43.33◦N), located in the 
southeastern part of Yitong Manchu Autonomous County in western 
Jilin province, China. The study area is primarily low-lying hills with 
gentle undulations, with an average elevation of 305 m, a minimum 
elevation of 215 m, and a maximum elevation of 430 m. The slope of the 
study area is very extremely with an average slope of 5.18◦. There are 
two gold mines in the study area. Natural villages are predominant, with 
only a few industrial plants. Agriculture is the mainstay of the economy, 
and the vast majority of the study area is cultivated with maize, with 
scattered plots cultivated with rice. Land use statistical information 
shows that 60 % of the area is agricultural land, 32% is forest, 6% is 
grassland, and only 1.1% impermeable layer. 

The background survey data for the study area were obtained from 
the National Soil Information Service Platform (https://www.soilinfo. 
cn). According to the second Chinese soil census (1980–1990), the soil 
types in the study area are dominated by dark brown forest soil, albic 
soil, meadow soil, and black soil, while dark brown forest soil accounts 
for a significant proportion. The texture of the soil is sandy loam. The 
organic matter content is generally 30–50 g/kg, and the soil is slightly 
acidic to neutral, with pH 5.9–7.5. The agricultural land has been 
reclaimed and is rich in nutrients. As such, it is suitable for dry crops 
such as corn with a yield of more than 4500 kg per hectare. 

2.1.2. Airborne hyperspectral data 
A HyMap hyperspectral data (0.40 μm–2.50 μm) were acquired in 

our study area between April 18 and April 22, 2017. Before the aerial 
photography, the hyperspectral imaging system should be processed 
with rigorous radiometric calibration in the laboratory, so that it is 
capable of obtaining high-precision irradiance information of the 
ground features. The hyperspectral data preprocessing included radio
metric calibration, geometric correction, atmospheric correction and 
seamless mosaicking correction. The MODTRAN4 atmospheric radiation 
transmission model (Berk et al., 1999) was used to perform atmospheric 
correction of all the orthophoto images. The bidirectional reflectance 
distribution function (BRDF)-based photometric correction algorithm 
was applied to handle the seamless mosaicking correction (Yu et al., 
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2017). All the processing was undertaken in HyMap-C™ processing 
software. 

Finally, the preprocessed airborne hyperspectral image data were of 
2734 × 2508 × 135 pixels in size, with a spectral resolution of 10–20 nm 
(VIS and NIR are 15 nm, SWIR1 and SWIR2 are 18 nm), and a spatial 
resolution of 4.5 m, as shown in Fig. 2. The absorption of water vapor 
near 1.40 μm (1.35–1.51 μm) and 1.90 μm (1.78–1.99 μm) causes 
anomalous reflectance of the spectral curve. Therefore, the bands in 
these two spectral ranges were removed, and 101 bands were finally 
retained. It has been published(Ben-Dor et al., 2019; Lekner and Dorf, 
1988) that the variation of the spectra are influenced by several factors, 
especially soil components such as water, organic matter and iron ox
ides. As shown in Fig. 2, darker soils are mostly concentrated in the 
watershed, and therefore, they are more significantly affected by soil 
moisture and organic matter content. 

2.1.3. Field sampling data 
Field sampling in the study area was undertaken simultaneously with 

the airborne imaging, shown in Fig. 2. The distribution of the samples 
was homogeneous throughout the study area. Each sample was collected 
from topsoil with a depth of 5 cm, and high-precision coordinate in
formation was recorded by real-time kinematic (RTK). Finally, ninety- 
three soil samples were acquired in the study area. The pretreatments 
of the soil samples including impurity removal, air drying, grinding, and 
sieving through a 100-mesh sieve were firstly conducted. Then, SOM 
content for ninety-three samples was determined by the potassium di
chromate volumetric method. Table 1 is the SOM content statistics in
formation, the mean value of SOM content is 30.50 g/kg, indicating 
relatively fertile soil. Theoretically, the standard normal distribution has 
zero skewness and kurtosis. Table 1 shows that the SOM’s kurtosis is 
0.69 and its skewness is 0.12, which indicates that the distribution of 

Fig. 1. The overall workflow of this study.  

Fig. 2. Study area and field sampling points.  
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SOM content can be regarded as a normal distribution. The coefficient of 
variation is small, which indicates that the spatial distribution of SOM 
content has not been disturbed by human activities. 

2.2. Unmixing method for driest and wettest soil spectra extraction 

The K-M physical model (Sadeghi et al., 2015) was chosen to esti
mate the surface soil moisture in the study area. In comparison with the 
other models, the inversion methods based on the K-M physical model 
are simpler to implement and can obtain a higher accuracy. The K-M 
physical model based soil moisture inversion method developed by 
Sadeghi (2015) is shown in Equations (1) – (2): 

θ =
STR − STRd

STRw − STRd
(1)  

STR =
(1 − Rswir)

2

2Rswir
(2) 

where θ is the soil moisture, and STR is Rswir converted to the K-M 
space, the 12th band (with a central wavelength of 2202.4 nm) in 
Sentinel 2A was used as Rswir in Sadeghi (2015). STRd and STRw are the 
K-M space spectra of the driest soil and the wettest soil in the study area, 
respectively. The model describes the linear relationship between sur
face soil moisture and the Rswir under K-M space, which is easily solvable 
for the whole region. 

Soil moisture content extraction based on the K-M physical model 
method requires a dry soil spectrum with a known local minimum 
moisture content and a wet soil spectrum with a local maximum mois
ture content. In fact, we don’t have the field samples. And, it is still 
difficult to directly extract reliable dry and wet soil spectra from 
hyperspectral imagery. As the soil in the imaging spectra is a mixture of 
soil and moisture, an unmixing method is introduced to extract the dry 
and wet soil spectra. Firstly, superpixels were generated using the simple 
linear iterative clustering (SLIC) method proposed by Achanta et al. 
(2012). To reduce the time consumption, vertex component analysis 
(VCA) (Nascimento and Dias, 2005) was used to extract the endmem
bers. Finally, the fully constrained least squares (FCLS) (Heinz and 
Chein-I-Chang, 2001) method was applied to extract the soil abundance 
map. The method used to extract the study area’s dry and wet soil 
spectra were as follows.  

I. Soil abundance = 1, dry soils, manually select a dry soil spectrum 
as the driest soil spectrum.  

II. Soil abundance + water abundance = 1, wet soil dataset.  
III. Selected a soil spectrum with the highest moisture content in the 

wet soil dataset as the wettest soil spectrum. 

2.3. Spectral correction model for soil moisture removal 

The K-M model describes the relationship between two radiation 
fluxes I and J with opposite directions, whose spectra are related to the 
absorption coefficient k, scattering coefficient s, and thickness × of the 
material, as shown in Equations (3) and (4): 

− dI = − kI2dx − sI2dx+ sJ2dx (3)  

dJ = − kJ2dx − sJ2dx+ sI2dx (4) 

When the thickness × tends to infinity, the sample’s transmittance 
tends to 0, and the reflectance of sample R can be expressed using 
Equation (5): 

R = 1+
k
s
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

k
s

)2

+ 2
k
s

√

(5) 

When r = k
s, 

r =
k
s
=

(1 − R)2

2R
(6) 

Equation (5) is the well-known K-M model. For airborne imaging 
hyperspectral data, the thickness of the soil can be considered as infi
nitely thick, so that the soil spectrum can be directly converted to the K- 
M model space using Equation (6), which is expressed as the ratio of the 
absorption and scattering coefficients. 

If a completely non-scattering material exists, s = 0, and Equation (3) 
and Equation (4) are equivalent to: 

−
dI
dx

= − kI (7)  

dJ
dx

= − kJ (8) 

Equation (9) is obtained according to Kortüm Gustav’s (2012) 
derivation: 

R = Rge− 2kx (9) 

Equation (9) can be converted to the well-known Lambert’s law, 
where Rg is the background spectrum, which can be regarded as a special 
case of the K-M model. Bach and Mauser (1994) described the rela
tionship between the soil spectra and the active thickness of water layer 
using the Beer-Lambert law, as shown in Equation (10): 

R = R0*e− ε*l (10) 

where R is the spectrum of wet soil, R0 is the spectrum of dry soil, ε is 
the absorption coefficient of water (each band has a unique coefficient), 
and l is the active thickness of water layer of the soil. 

The Fresnel reflectivity effects are not considered in the derivation of 
the K-M model (Philpot, 2010). Fresnel reflectance describes the 
reflection behavior of light between different media. The Fresnel effect 
is enhanced with increasing soil moisture, so it needs to be removed. At 
the air–soil interface, the Fresnel reflectance is proportional to the soil 
moisture content: 

Ri =

(
nwater − nair

nwater + nair

)2

* θ (11) 

where Ri is the Fresnel reflectance; nwater is the refractive index of 
water, which is about 1.33; and nair is the refractive index of air, which is 
about 1. Equation (12) is the soil spectrum after removing the Fresnel 
reflectance: 

Rt = R − Ri (12) 

where Rt is the corrected spectrum, R is the original spectrum, and Ri 

is the Fresnel reflectance. 
Since SOM and other materials also have a large effect on the soil 

spectrum, the direct use of the soil moisture obtained from Equation 
(1–2) (instead of the soil active thickness of water layer l) to obtain ε and 
R0 will result in a large deviation. Therefore, it can first be assumed that 
the dry soil spectra are the same for all the samples, which means that R0 
is also the same. The two soil spectra Rt1 and Rt2 after removing the 
Fresnel reflectance are then randomly selected and substituted into 
Equation (13) to obtain the initial ε: 

Table 1 
Soil organic matter content statistics.  

Method Num. of Samples Max Min Mean C.V Skewness Kurtosis 

SOM(g/kg) 93  49.84  14.76  30.51  0.21  0.12  0.69  
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ε =
ln Rt1

Rt2

θ2 − θ1
(13) 

The derived ε is substituted into A = e− ε*θ, and by fitting the inter
mediate variable A to the soil spectrum Rt in exponential form, we can 
obtain Rf : 

Rt = Rf *eα*A = Rf *eα*e− ε*θ (14) 

where ε is the water absorption coefficient obtained by Equation (13) 
for any two soil spectra, θ can be calculated from Equation (9), and Rf 

and α are obtained by fitting operations. 
When θ = 0, Rt = Rf *eα, which means that Rf *eα is the theoretical 

reflectance of dry soil. Therefore, all the spectra should be stretched to 
this theoretical spectrum to achieve soil moisture removal and obtain 
the final spectral correction model for soil moisture removal: 

Rrw = Rt*
Rf *eα

Rf *eα*e− ε*θ = Rt* eα*(1− e− ε*θ) (15) 

where Rrw is the corrected spectrum. The correction coefficients are 
theoretically wavelength-independent, but due to the influence of 
environmental factors in the actual imaging, the moisture inversion 
varies greatly at different wavelengths. According to the relevant liter
ature (Sadeghi et al., 2017; Sadeghi et al., 2015), the moisture inversion 
accuracy is highest at 2.2 μm, so the correction coefficient calculated at 
this wavelength can be considered the most accurate, which means that 
the factor of 2.2 μm can be directly used for the whole spectrum. 

2.4. Evaluation and analysis methods 

In this paper, the evaluation indices are coefficient of determination 
(R2), root mean squared error, (RMSE), mean absolute error (MAE), 
ratio of performance to inter-quartile distance (RPIQ), and F-test (F). 

R2 = 1 −
∑n

i=1(ŷi − yi)
2

∑n
i=1(yi − y)2 (16)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ŷi − yi)

2

n

√
√
√
√
√

(17)  

MAE =
1
n

∑n

i=1
|ŷi − yi| (18)  

RPIQ =
Q3 − Q1

RMSE
(19) 

In this study, Advanced Spaceborne Thermal Emission and Reflec
tion Global Digital Elevation Model Version 2 (ASTER GDEM 2) data, 
with a spatial resolution of 30 m, were used to generate a stream 
network (Tachikawa et al., 2011). A series operation consisting of pit- 
filling, flow direction grid, accumulation and threshold processing are 
conducted to obtained the stream network. The conventional techniques 
pre-processing with a pit-filling algorithm(Jenson and Domingue, 1988) 
and flow direction calculation with the D-8 algorithm (O’Callaghan and 
Mark, 1984) were included to obtain the DEM hydrological analysis. All 
of the processing was performed using the ArcGIS 10.4. 

2.5. Model and parameter information 

In this experiment, the samples were all sorted according to the SOM 
content, and every three samples were treated as a group. All soil sam
ples were divided into a training set and testing set, which was 
composed according to the 2:1 segmentation rule at each soil samples 
group. Finally, sixty-two samples are selected into the training set and 
thirty-one samples are selected into the test set. Feature selection is 
required to avoid data redundancy before the SOM estimation task, 

which can remove irrelevant features and reduce the difficulty of the 
feature learning task. There are many feature selection methods, such as 
the competitive adaptive reweighted sampling (CARS) algorithm (Li 
et al., 2009), genetic algorithms (GAs) (Leardi, 2000), and Pearson 
correlation coefficient based feature selection methods (Tan et al., 
2021). In the comparison experiments, the full-band (101 features, ALL) 
and CARS band selection methods were used as feature comparisons. 
PLSR (Geladi and Kowalski, 1986), SVR(Drucker et al., 1997) and 
Random Forest regression (RF) (Liaw and Wiener, 2002) statistical 
regression methods were used as regression method comparisons. In 
addition to the above, SemiDNN (Ou et al., 2021), WT-RF (Gu et al., 
2019) and CR-PLSR (Yu et al., 2015) from published literature were used 
as comparative experiments. 

The search space of the default hyperparameter of PLSR was [2, 20]. 
The kernel function applied in SVR was radial basis function (RBF). The 
search space of penalty parameter C was [2^-5, 2^20], and gamma was 
[2^-20,2^20]. The n_estimators in the random forest regression model 
are 30 and the rest of the parameters are defaults. Different methods 
were used for the comparative experiments to verify the effectiveness of 
the spectral correction model for soil moisture removal. In the feature 
comparison, all the original 101 spectral features (ALL + PLSR/SVR), 
the original spectral features selected by the CARS method (CARS +
PLSR/SVR), random forest method and the spectral features selection 
after soil moisture removal by the CARS method (Removed + CARS +
PLSR/SVR) were chosen for the comparison experiments. The experi
ments were conducted by randomly selecting two soil spectra and using 
Equation (13) to calculate the initial ε, which was approximately 
1.4880. 

3. Results and analysis 

3.1. Effect of moisture on soil spectra 

Fig. 3a show the scatter plot and exponential fit of the soil moisture θ 
to soil spectral reflectance after Fresnel correction. Fig. 3b shows the 
scatter plot and exponential fit of e− ε*θ to soil spectral reflectance after 
Fresnel correction. It can be observed that the direct exponential fit of 
the soil moisture θ obtained by the K-M physical model inversion 
method to the soil reflectance can reach an determination coefficient of 
0.9820. However, when the θ value is lower, the fitted curve deviates 
more from the true curve (as shown in the red box), which significantly 
impacts the correction of the soil sample spectra to the dry soil condi
tion. In contrast, the results were also calculated after e− ε*θ was fitted to 
the reflectance, where the coefficient of determination can reach 
0.9995. When θ = 0, the ideal reflectance obtained by fitting directly 
with the moisture content information is 0.27, while the ideal reflec
tance obtained by fitting after e− ε*θ processing is 0.30, indicating that 
this tiny precision difference has a significant impact on the 
performance. 

After obtaining ε, α, and Rf (for example, in this experiment ε =
1.4884, Rf = 0.0545, and α = 1.7059), soil moisture removal can be 
performed by Equation (15). Fig. 4 shows the raw soil spectrum 
extracted by the hyperspectral imaging, with a minimum SOM content 
of 14.76 g/kg and a maximum of 49.84 g/kg in the soil samples. Fig. 5 
shows the corrected soil spectra obtained by the spectral correction 
model for soil moisture removal proposed in this paper. The compara
tive analysis in Figs. 4 and 5 demonstrates that the soil moisture content 
has a stronger influences on the soil spectral information than the SOM 
content. The soil reflectance decreases as the soil moisture increases. 
Soil spectra after soil moisture removal show a decreasing trend with 
increasing SOM content, as shown in Fig. 5. For example, the soil spectra 
with the lowest SOM content has the highest reflectance after the soil 
moisture removal, while the soil spectra with the highest SOM has the 
lowest reflectance. For soil spectra with only minor differences in SOM 
content, they are more difficult to distinguish because the correction 
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factor is utilized only by a factor of 2.21 μm. However, the distin
guishability is superior when the soil spectra have more significant 
gradients of SOM content. 

3.2. Soil organic matter physical inversion model 

The primary purpose of soil moisture removal is to investigate the 
relationship between SOM content and soil spectral reflectance. Fig. 6 
shows a comparison of the Pearson correlation coefficients between the 

Fig. 3. (a) The scatter plot between the soil moisture information θ and the spectra after Fresnel correction. (b) After calculation of the initial coefficient ε, the scatter 
plot between e− ε*θ and the spectra after Fresnel correction. 

Fig. 4. Spectra of the original soil samples.  

Fig. 5. Spectra of the soil samples after soil moisture removal.  
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SOM content and soil spectra before and after soil moisture removal. 
Clearly, the SOM shows a negative correlation with the spectral reflec
tance, while the correlation after soil moisture removal is significantly 
enhanced in the vast majority of bands, especially around 2.21 μm. In 
the visible spectral range, both the original spectra and the spectra after 
removing the influence of moisture have a strong correlation, especially 
in the range of 0.68–0.73 μm. The spectra after soil moisture removal 
show the highest correlation of − 0.61 at 0.69 μm. At 0.69 μm, the 
correlation of the spectra after soil moisture removal improves from −
0.45 to − 0.61, which is an improvement of 16%. At 2.17 μm, the cor
relation of the spectra after removing the effect of moisture also reaches 
a peak, with an improvement from − 0.12 to − 0.47, representing a 
significant increase of 35%. It is particularly notable that, at around 2.21 
μm, the correlation between the SOM content and soil spectra after soil 
moisture removal is substantially enhanced. This can be attributed to the 
fact that, since the moisture effects in the bands around 2.21 μm are 
similar, the correlation coefficients should also be similar, which can 
substantially enhance the expression of the spectral features of SOM. In 
the rest of the bands, such as the visible band, the correlation co
efficients, due to the effect of moisture, are different from those in the 
short-wave infrared band, so the enhancement of the spectral expression 
of SOM is relatively low. 

Therefore, SOM inversion can be performed using the single-band 
information after removing the effect of moisture. Hence, a SOM sen
sitive band inversion model was constructed in the form of the Beer- 
Lambert law, as shown in Equation (20): 

SOM = SOM0*e− ε*R (20) 

where SOM0 is the organic matter content when the hyperspectral 
reflectance is 0, ε is the coefficient, R is the sensitive band reflectance, 
and both SOM0 and ε can be obtained by fitting. 

Since the correlation between the spectra and SOM at 0.69 μm and 
2.21 μm showed peaks, these two bands were mainly used to bulid the 

SOM inversion model by using Equation (20). The results are listed in 
Table 2 and shown in Fig. 7. At both 0.69 μm and 2.17 μm, the corre
lation between the original spectra and SOM is extremely low, with the 
determination coefficient at 0.69 μm being only 0.20, while that at 2.17 
μm shows no correlation. From the scatter plot of the spectral reflectance 
after soil moisture removal, the best inversion results can be obtained 
from the sensitive band inversion model based on the Beer-Lambert law. 
The SOM inversion model constructed at 0.69 μm can reach a determi
nation coefficient of 0.42, while that at 2.17 μm can reach 0.30, which is 
a significant improvement in inversion accuracy compared with the 
original spectrum. Therefore, to a certain extent, the information at 0.69 
μm can be used as a sensitive waveband for SOM inversion. The inver
sion model also shows that the SOM is negatively correlated with the soil 
spectrum, which is consistent with reality. 

3.3. Soil organic matter statistical inversion model 

From the perspective of the inversion accuracy, directly applying 
SOM inversion by the sensitive bands is less accurate, and the highest 
determination coefficient for the inversion model is 0.42. From the 
sensitive band inversion model, it is known that the inversion results for 
samples with a high SOM content will be low compared with the actual 
content, so that more bands information should be considered. The 
optimal waveband combination obtained by the CARS method is shown 
in Fig. 8, with 24 feature bands. From the selected bands, it is apparent 
that most of the bands are located in the visible position, especially in 
the range of 0.60–0.90 μm. 

Table 3 lists the final accuracies, where the determination coefficient 
for the training set reaches 0.68, while that for the testing set reaches 
0.69. Fig. 9 shows the scatter plots of the regression models obtained by 
the PLSR and the SVR. There are no overfitting of the PLSR method and 
SVR method, but the model built by the SVR method obtains a higher 
model accuracy and is concentrated around the 1:1 line in both the 
training and testing sets. 

3.4. Analysis for the spatial distribution of soil organic matter 

Fig. 10 shows the SOM spatial distribution results for the 0.69 μm 
sensitive band inversion model, while Fig. 11 shows the spatial distri
bution results for the SVR regression model. By overlaying the stream 
network generated by the digital elevation model (DEM) hydrology 
analysis, it shows the areas with high SOM are concentrated around the 
stream network. Generally speaking, the stream network derived from 
the DEM calculation is oriented toward valleys and lowlands. Therefore, 
the aggregation of SOM is mainly due to the transportation and 

Fig. 6. Comparison of the Pearson correlation coefficients between the SOM content and soil spectra before and after soil moisture removal.  

Table 2 
Organic matter content inversion by the single-band method.  

Wavelength Type Model R2 MAE RMSE 

0.69 μm Original SOM = 48.111*exp 
(− 2.960*R)  

0.20  4.40  5.70 

Correction SOM = 75.761*exp 
(− 3.733*R)  

0.42  4.00  5.02 

2.17 μm Original SOM = 34.484*exp 
(− 0.684*R)  

0.01  4.78  6.34 

Correction SOM = 3281.5*exp 
(− 14.27*R)  

0.29  4.29  5.62  
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aggregation by surface water and other factors. On the other hand, 
arable soil is loose and is easily eroded, so that SOM is easily migrated 
through the flow of rain and snow meltwater, etc. In both maps, the SOM 

content is higher in the flat cultivated land on the east side of the Yitong 
River, while the cultivated land with steep slopes shows a lower SOM 
content. The gold mining has a certain impact on the soil nutrient loss, 

Fig. 7. Scatter plots of soil organic matter and the original and modified soil spectral reflectance at 0.69 μm and 2.17 μm. (a) Scatter plot of the original spectra at 
0.69 μm. (b) Scatter plot of the corrected spectra at 0.69 μm. (c) Scatter plot of the original spectra at 2.17 μm. (d) Scatter plot of the corrected spectra at 2.17 μm. 

Fig. 8. Band selection by the CARS method.  

Table 3 
Accuracy comparison of the various methods.  

Method Num. of features(Bands) Training set (62 samples) Testing set (31 samples) 

R2c RMSEc MAEc RPIQc R2p RMSEp MAEp RPIQp 

Removed þ CARS þ PLSR 24  0.46  4.58  3.64  1.64  0.55  4.42  3.44  1.70 
Removed þ CARS þ SVR 24  0.68  3.51  2.38  2.14  0.69  3.68  2.82  2.04  
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hence the SOM content is low around the two gold mining areas, but the 
influence is relatively weak. The location of the soil with a lower SOM 
content, as shown in the green part of the figure, has textural charac
teristics that are related to the topographic characteristics. This means 
that soils on cultivated land with a steeply sloping topography have a 
lower SOM content. The annual cultivation activities lead to great 
changes in the SOM content of the surface soil, especially in sloping 
cultivated land, where soil erosion and soil degradation are caused by 
the looseness of the soil and the topographic relief. 

Comparing the two maps, it can be noted that the overall distribution 
trends of the two maps are consistent, but there is large variability in the 
details. Combined with the kernel density estimation plot, the sensitive 
band inversion method results in lower values of estimated SOM content 

for soils with higher actual SOM content. The spatial map obtained using 
the multi-band regression method has more detailed and more accurate 
information. For example, in the soil around the Yitong River, the SOM 
obtained by the sensitive band model tends to be more consistent, while 
the SOM obtained using the regression method is more detailed, as 
shown in Fig. 12. Field investigation found that the Yitong River carries 
a lot of fine sand, and the soil around the riverbank is seriously 
degraded. The results obtained by the regression method have a lower 
SOM content, which is more realistic. From the SOM distribution map 
around the stream network, the SOM content obtained by the regression 
method is higher, and both methods show the phenomenon of aggre
gation to the low-lying areas. 

In summary, the results obtained by the two methods are consistent 

(a) (b)
Fig. 9. Scatter plots of the predicted and measured values obtained by the PLSR and SVR methods.  

Fig. 10. Soil organic matter content inversion results by the 0.69 μm sensitive band model.  
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in the overall spatial distribution trend characterization of SOM content. 
However, from the viewpoint of accuracy, the regression-based inver
sion method obtains a higher accuracy with more detailed information, 
and can better characterize the realistic spatial distribution of SOM. 

4. Discussion 

4.1. Comparative experimental accuracy analysis 

Table 4 provides an accuracy comparison of the various methods. 
When comparing the accuracy of the regression model learning using 

Fig. 11. Soil organic matter content inversion results by the SVR regression model.  

Fig. 12. Comparison of the organic matter content obtained by the two methods in the Yitong River area.  
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the PLSR method, it can be found that the method after moisture 
removal (Removed + CARS + PLSR) obtains the second highest accu
racy, with a determination coefficient of 0.55 on the test set. Compared 
with the CARS + PLSR method, the accuracy is improved by at least 
17.71%. In the model obtained using the SVR regression model, the 
accuracy of the Removed + CARS + PLSR method is at least 19.44% 
better than that of the CARS + PLSR method. SemiDNN achieves the 
highest accuracy. Although the RF method is capable to obtain high 
accuracy on the training set, the accuracy on the testing set is relatively 
low and therefore suffers from overfitting. WT-RF using wavelet trans
form and random forest regression has poor performance on this dataset. 
The main reason is that the pre-processing by the wavelet transform 
method may lead to a sensitivity decrease of the SOM features on the 
reflectance spectra. While the CR-PLSR method can improve the inver
sion accuracy through the continuum removal pre-processing method. 
However, compared to the proposed moisture removal model, our pro
posed method has more advantageous, and the accuracy is improved by 
at least 14%. 

Therefore, after removing the effect of moisture, the spectra can 
significantly improve the feature expression of SOM, and can improve 
the model inversion accuracy by at least 19.44% or more. After 
removing the effect of moisture, the SOM inversion model can also reach 
an accuracy of 0.42 when using only one feature band, which is better 
than the (ALL + PLSR) and (CARS + PLSR) methods. Although the 

accuracy of the proposed method will be slightly lower than that of deep 
learning method, it has an less time consumption in the training process. 
The regression inversion model (Removed + CARS + SVR) after mois
ture removal achieves an accuracy of 0.69 on the testing set, which is 
consistent with the results of the published papers. For example, Levi 
et al. (2022) constructed a soil quality index (SQI) based on AisaFENIX 
hyperspectral airborne imagery to predicted SOM with a final accuracy 
of 0.72. Wu et al. (2023) developed a semi-empirical soil multi-factor 
radiative transfer model for soil organic matter prediction, which had 
an accuracy of 0.66 for GF-5 satellite imagery and 0.68 for Hymap 
airborne imagery. Majeed et al. (2023) achieved an accuracy of 0.70 for 
soil organic matter prediction model constructed on the AVIRIS-NG 
hyperspectral data. Whether on the satellite-based or airborne hyper
spectral image data, the accuracy of the proposed model is similar to 
that of the existing soil organic matter inversion models, which dem
onstrates the high reliability of the proposed model. The mapping results 
of single-band based reversion model shows a high consistence with the 
SVR model. Therefore, the single-band inversion model has the advan
tages of fast and reliable in soil organic matter estimation and mapping. 

Fig. 13 shows the two-dimensional kernel function density estima
tion of the organic matter inversion model in the sensitive band of 0.691 
μm, the SVR statistical method and the SemiDNN method. The results 
obtained by the three methods have high consistency in their distribu
tions, and all of them have the highest kernel function density estimates 

Table 4 
Accuracy comparison for the various methods.  

Method Num. of features(Bands) Training set (62 samples) Testing set (31 samples)  

R2c RMSEc MAEc RPIQc F R2p RMSEp MAEp RPIQp F 

0.69 μm inversion 1  0.42**  4.00  5.02  1.58  55.43  –  –  –  –  – 
ALL + PLSR 101  0.38  4.95  3.98  1.56  21.47  0.37  5.17  4.07  1.46  28.21 
CARS + PLSR 11  0.37*  4.98  3.90  1.55  26.86  0.38*  5.12  3.97  1.47  21.80 
Removed þ CARS þ PLSR 24  0.46**  4.58  3.64  1.64  55.36  0.55**  4.42  3.44  1.70  32.47 
ALL + SVR 101  0.45  4.66  3.37  1.63  41.28  0.47  4.73  3.65  1.52  31.20 
CARS + SVR 11  0.51*  4.38  3.17  1.73  41.79  0.50*  4.61  3.48  1.56  41.84 
Removed þ CARS þ SVR 24  0.68**  3.51  2.38  2.14  136.34  0.69**  3.68  2.82  2.04  51.99 
Random Forest 30  0.95**  1.75  1.40  4.86  4524.21  0.57**  4.20  3.27  1.86  50.24 
Semi-DNNR(Ou et al., 2021) 17  0.96**  1.15  0.69  6.59  7945.82  0.71**  3.52  2.59  2.04  101.33 
WT-RF(Gu et al., 2019) 20  0.48**  4.46  3.57  1.71  71.43  0.47**  4.84  3.51  1.51  31.01 
CR-PLSR(Yu et al., 2015) 22  0.70**  3.37  2.63  2.27  143.18  0.55**  4.44  3.52  1.65  35.97 

ALL: all original features. Removed: soil moisture removal spectral correction. *: p < 0.1. **: p < 0.05. 

Fig. 13. Comparison of the kernel function density estimation for the soil organic matter inversion results. a. between the sensitive band model and the SVR 
regression model. b. between SVR regression model built in this manuscript and the SemiDNN regression model. 
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at a 31 g/kg content. The sensitive band model has fewer high values 
(greater than40 g/kg), while the SVR method has a more consistent 
distribution with the Gaussian distribution properties. However, the 
high-value interval predicted by the SVR method would be low 
compared with the sensitive band inversion model. Besides, it is indi
cated that though the sensitive band inversion model is enough for the 
whole-area trend analysis, a higher-precision SVR regression model 
should be introduced to reveal more detailed characteristics of spatial 
distribution. In general, the organic matter inversion model in the sen
sitive band of 0.691 μm exhibits the discontinuities in the low SOM value 
region. 

4.2. Shortcomings and outlook 

Despite the good performance of our proposed model, the experi
mental conditions described in this study have some influence on the 
model performance. Firstly, inconsistent sampling strategies lead to 
inaccurate model predictions. Fig. 13 demonstrates that the single-band 
inversion model fails to capture the distribution characteristics of SOM 
in the range of 5–10 g/kg. Even though the minimal SOM in the research 
area is 14 g/kg, it is concentrated near the two mining zones and is 
located consistent with the sampling sites, which is caused by the 
sampling conditions and the sampling schemes aiming to analyze the 
impact of mining activities on the SOM. The spatial distribution of the 
samples is not extensive enough to draw strong inferences in the entire 
research region. Although the SVR method can solve this issue, it is 
essential to further expand the sample size in low-density areas for 
single-band inversion method. Moreover, the model employs a single 
2200 nm band for inversion of soil moisture and selects only one spectral 
curve for acquiring dry and wet soils, resulting in a low accurate soil 
moisture result in some regions. 

The study area is arable land, which can be considered homogeneous 
soil, and the substances such as soil particle size can be considered 
constant. Moreover, the low content of soil heavy metals can hardly 
impact the spectrum (Wu et al., 2007). Therefore, the factors such as soil 
particle size or heavy metals are not considered in constructing the 
mechanism modelling based on an application-friendly model. Hence, 
the spectral correction due to iron oxides and other soil heavy metals 
should be further considered in our future works. 

5. Conclusion 

In this paper, we have provided a new spectral correction model 
based on K-M and Beer-Lambert models to remove the influence of soil 
moisture, which greatly improves the spectral feature expression of 
SOM. The soil spectra processed based on the Kubelka-Munk moisture 
removal model can effectively attenuate the influence of soil moisture 
on the spectra and highlight the feature information of SOM components 
in the spectra. The correlation between the spectra and SOM after 
removing the effect of moisture was improved by 16% at 0.69 μm, while 
it was improved by 35% at 2.166 μm. The inversion model for SOM 
obtained by the sensitive band at 0.69 μm can acquire the highest 
inversion accuracy, with a R2 of 0.42. Using the spectral information 
after the removal of the soil moisture influence, combined with the 
CARS method for feature selection, and finally using the SVR model to 
construct the inversion model, the test set coefficient of determination 
reached as high as 0.69. The accuracy of the inversion model was 
improved by at least 19.44% or more, compared with the original 
spectra. This indicates that the spectral correction model for soil mois
ture removal can significantly improve the feature information of the 
SOM components in soil spectra, and the method is both effective and 
convenient. Spatial mapping of the results of sensitive band inversion 
and SVR regression was performed and analyzed. The results showed 
that the spatial distribution maps obtained by the two methods had a 
high similarity, and the overall distribution trends were consistent. 
However, the details of the SVR regression model are better presented. 
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Ben-Dor, E., Chabrillat, S., Demattê, J., Thenkabail, P., Lyon, J., Huete, A., 2019. 
Characterization of soil properties using reflectance spectroscopy. CRC Press, Boca 
Raton, Hyperspectral remote sensing of vegetation.  

Berk, A., Anderson, G.P., Bernstein, L.S., Acharya, P.K., Dothe, H., Matthew, M.W., Adler- 
Golden, S.M., Chetwynd Jr, J.H., Richtsmeier, S.C., Pukall, B., 1999. MODTRAN4 
radiative transfer modeling for atmospheric correction, Optical spectroscopic 
techniques and instrumentation for atmospheric and space research III. International 
Society for Optics and Photonics 348–353. 

Bogrekci, I., Lee, W., 2006. Effects of soil moisture content on absorbance spectra of 
sandy soils in sensing phosphorus concentrations using UV-VIS-NIR spectroscopy. 
Trans. ASABE 49, 1175–1180. 

Bricklemyer, R.S., Brown, D.J., 2010. On-the-go VisNIR: Potential and limitations for 
mapping soil clay and organic carbon. Comput. Electron. Agric. 70 (1), 209–216. 

Castaldi, F., Palombo, A., Pascucci, S., Pignatti, S., Santini, F., Casa, R., 2015. Reducing 
the influence of soil moisture on the estimation of clay from hyperspectral data: A 
case study using simulated PRISMA data. Remote Sens. (Basel) 7, 15561–15582. 

Drucker, H., Burges, C.J., Kaufman, L., Smola, A.J., Vapnik, V., 1997. Support vector 
regression machines. Adv. Neural Inf. Proces. Syst. 155–161. 

Geladi, P., Kowalski, B.R., 1986. Partial least-squares regression: a tutorial. Anal. Chim. 
Acta 185, 1–17. 

Gu, X., Wang, Y., Sun, Q., Yang, G., Zhang, C., 2019. Hyperspectral inversion of soil 
organic matter content in cultivated land based on wavelet transform. Comput. 
Electron. Agric. 167, 105053. 

He, T., Wang, J., Lin, Z., Cheng, Y.e., 2009. Spectral features of soil organic matter. Geo- 
spatial Information Science 12 (1), 33–40. 

D. Ou et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S1569-8432(23)00317-5/h0005
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0005
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0005
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0010
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0010
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0015
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0015
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0015
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0020
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0020
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0020
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0025
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0025
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0025
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0025
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0035
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0035
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0040
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0040
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0040
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0045
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0045
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0045
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0050
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0050
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0050
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0050
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0050
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0055
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0055
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0055
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0060
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0060
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0065
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0065
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0065
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0070
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0070
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0075
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0075
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0080
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0080
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0080
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0085
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0085


International Journal of Applied Earth Observation and Geoinformation 124 (2023) 103493

13

Heinz, D.C., Chein-I-Chang, 2001. Fully constrained least squares linear spectral mixture 
analysis method for material quantification in hyperspectral imagery. IEEE Trans. 
Geosci. Remote Sens. 39 (3), 529–545. 

Hong, Y., Yu, L., Chen, Y., Liu, Y., Liu, Y., Liu, Y., Cheng, H., 2018. Prediction of Soil 
Organic Matter by VIS–NIR Spectroscopy Using Normalized Soil Moisture Index as a 
Proxy of Soil Moisture. Remote Sens. (Basel) 10, 28. 

Jenson, S.K., Domingue, J.O., 1988. Extracting topographic structure from digital 
elevation data for geographic information system analysis. Photogramm. Eng. 
Remote Sens. 54, 1593–1600. 

Kokhanovsky, A., 2019. Springer Series in Light Scattering. Springer, New York.  
Kortüm, G., 2012. Reflectance spectroscopy: principles, methods, applications. Springer 

Science & Business Media, New York.  
Kubelka, P., 1931. Ein Beitrag zur Optik der Farbanstriche (Contribution to the optic of 

paint). Z. Tech. Phys. 12, 593–601. 
Leardi, R., 2000. Application of genetic algorithm-PLS for feature selection in spectral 

data sets. J. Chemom. 14 (5-6), 643–655. 
Lekner, J., Dorf, M.C., 1988. Why some things are darker when wet. Appl. Opt. 27, 

1278–1280. 
Levi, N., Karnieli, A., Paz-Kagan, T., 2022. Airborne imaging spectroscopy for assessing 

land-use effect on soil quality in drylands. ISPRS J. Photogramm. Remote Sens. 186, 
34–54. 

Li, H., Liang, Y., Xu, Q., Cao, D., 2009. Key wavelengths screening using competitive 
adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 
648 (1), 77–84. 

Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R news 2, 
18–22. 

Lobell, D.B., Asner, G.P., 2002. Moisture effects on soil reflectance. Soil Sci. Soc. Am. J. 
66 (3), 722–727. 

Majeed, I., Purushothaman, N.K., Chakraborty, P., Panigrahi, N., Vasava, H.B., Das, B.S., 
2023. Estimation of soil and crop residue parameters using AVIRIS-NG hyperspectral 
data. Int. J. Remote Sens. 44 (6), 2005–2038. 

Minasny, B., McBratney, A.B., Bellon-Maurel, V., Roger, J.-M., Gobrecht, A., Ferrand, L., 
Joalland, S., 2011. Removing the effect of soil moisture from NIR diffuse reflectance 
spectra for the prediction of soil organic carbon. Geoderma 167, 118–124. 

Nascimento, J.M.P., Dias, J.M.B., 2005. Vertex component analysis: A fast algorithm to 
unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43 (4), 898–910. 

Nawar, S., Buddenbaum, H., Hill, J., Kozak, J., Mouazen, A.M., 2016. Estimating the soil 
clay content and organic matter by means of different calibration methods of vis-NIR 
diffuse reflectance spectroscopy. Soil Tillage Res. 155, 510–522. 

Nemani, R., Pierce, L., Running, S., Goward, S., 1993. Developing satellite-derived 
estimates of surface moisture status. J. Appl. Meteorol. Climatol. 32 (3), 548–557. 

O’Callaghan, J.F., Mark, D.M., 1984. The extraction of drainage networks from digital 
elevation data. Computer vision, graphics, and image processing 28 (3), 323–344. 

Ogen, Y., Faigenbaum-golovin, S., Granot, A., Shkolnisky, Y., Goldshleger, N., Ben- 
dor, E., 2019. Removing Moisture Effect on Soil Reflectance Properties: A Case Study 
of Clay Content Prediction. Pedosphere 29 (4), 421–431. 

Ou, D., Tan, K., Lai, J., Jia, X., Wang, X., Chen, Y.u., Li, J., 2021. Semi-supervised DNN 
regression on airborne hyperspectral imagery for improved spatial soil properties 
prediction. Geoderma 385, 114875. 

Ou, D., Tan, K., Wang, X., Wu, Z., Li, J., Ding, J., 2022. Modified soil scattering 
coefficients for organic matter inversion based on Kubelka-Munk theory. Geoderma 
418, 115845. 

Philpot, W., 2010. Spectral reflectance of wetted soils. Proceedings of ASD and IEEE GRS 
2, 1–12. 

Sadeghi, M., Jones, S.B., Philpot, W.D., 2015. A linear physically-based model for remote 
sensing of soil moisture using short wave infrared bands. Remote Sens. Environ. 164, 
66–76. 

Sadeghi, M., Babaeian, E., Tuller, M., Jones, S.B., 2017. The optical trapezoid model: A 
novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat- 
8 observations. Remote Sens. Environ. 198, 52–68. 

Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D.B., Oimoen, M.J., Zhang, Z., Danielson, J. 
J., Krieger, T., Curtis, B., Haase, J., 2011. ASTER global digital elevation model 
version 2-summary of validation results. NASA. 

Tan, K., Ma, W., Chen, L., Wang, H., Du, Q., Du, P., Yan, B., Liu, R., Li, H., 2021. 
Estimating the distribution trend of soil heavy metals in mining area from HyMap 
airborne hyperspectral imagery based on ensemble learning. J. Hazard. Mater. 401, 
123288. 

Wang, X., Tan, K., Du, Q., Chen, Y.u., Du, P., 2019. Caps-TripleGAN: GAN-Assisted 
CapsNet for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 57 
(9), 7232–7245. 

Weidong, L., Baret, F., Xingfa, G.u., Qingxi, T., Lanfen, Z., Bing, Z., 2002. Relating soil 
surface moisture to reflectance. Remote Sens. Environ. 81 (2-3), 238–246. 

Wu, Y., Chen, J., Ji, J., Gong, P., Liao, Q., Tian, Q., Ma, H., 2007. A Mechanism Study of 
Reflectance Spectroscopy for Investigating Heavy Metals in Soils. Soil Sci. Soc. Am. 
J. 71 (3), 918–926. 

Wu, F., Tan, K., Wang, X., Ding, J., Liu, Z., 2023. A novel semi-empirical soil multi-factor 
radiative transfer model for soil organic matter estimation based on hyperspectral 
imagery. Geoderma 437, 116605. 

Xu, X., Chen, S., Xu, Z., Yu, Y., Zhang, S., Dai, R., 2020. Exploring Appropriate 
Preprocessing Techniques for Hyperspectral Soil Organic Matter Content Estimation 
in Black Soil Area. Remote Sens. (Basel) 12, 3765. 

Yu, L., Hong, Y., Geng, L., Zhou, Y., Zhu, Q., Cao, J., Nie, Y., 2015. Hyperspectral 
estimation of soil organic matter content based on partial least squares regression. 
Transactions of the Chinese Society of Agricultural Engineering 31, 103–109. 

Yu, J., Yan, B., Liu, W., Li, Y., He, P., 2017. Seamless Mosaicking of Multi-strip Airborne 
Hyperspectral Images Based on Hapke Model, International Conference on Sensing 
and Imaging. Springer, pp. 285–292. 

Yuan, J., Wang, X., Yan, C.-X., Wang, S.-R., Ju, X.-P., Li, Y., 2019. Soil moisture retrieval 
model for remote sensing using reflected hyperspectral information. Remote Sens. 
(Basel) 11, 366. 

Zhang, N., Hong, Y., Qin, Q., Liu, L.u., 2013. VSDI: a visible and shortwave infrared 
drought index for monitoring soil and vegetation moisture based on optical remote 
sensing. Int. J. Remote Sens. 34 (13), 4585–4609. 

Zhang, Y., Tan, K., Wang, X., Chen, Y., 2020. Retrieval of soil moisture content based on 
a modified Hapke photometric model: A novel method applied to laboratory 
hyperspectral and Sentinel-2 MSI data. Remote Sens. (Basel) 12, 2239. 

D. Ou et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S1569-8432(23)00317-5/h0090
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0090
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0090
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0095
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0095
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0095
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0100
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0100
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0100
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0105
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0110
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0110
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0115
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0115
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0120
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0120
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0125
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0125
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0130
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0130
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0130
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0135
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0135
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0135
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0140
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0140
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0145
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0145
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0150
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0150
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0150
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0155
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0155
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0155
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0160
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0160
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0165
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0165
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0165
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0170
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0170
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0175
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0175
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0180
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0180
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0180
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0185
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0185
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0185
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0190
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0190
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0190
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0195
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0195
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0200
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0200
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0200
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0205
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0205
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0205
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0210
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0210
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0210
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0215
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0215
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0215
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0215
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0220
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0220
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0220
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0225
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0225
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0230
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0230
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0230
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0235
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0235
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0235
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0240
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0240
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0240
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0245
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0245
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0245
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0250
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0250
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0250
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0255
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0255
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0255
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0260
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0260
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0260
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0265
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0265
http://refhub.elsevier.com/S1569-8432(23)00317-5/h0265

	Prediction of soil organic matter by Kubelka-Munk based airborne hyperspectral moisture removal model
	1 Introduction
	2 Datasets and methodology
	2.1 Datasets
	2.1.1 Study area
	2.1.2 Airborne hyperspectral data
	2.1.3 Field sampling data

	2.2 Unmixing method for driest and wettest soil spectra extraction
	2.3 Spectral correction model for soil moisture removal
	2.4 Evaluation and analysis methods
	2.5 Model and parameter information

	3 Results and analysis
	3.1 Effect of moisture on soil spectra
	3.2 Soil organic matter physical inversion model
	3.3 Soil organic matter statistical inversion model
	3.4 Analysis for the spatial distribution of soil organic matter

	4 Discussion
	4.1 Comparative experimental accuracy analysis
	4.2 Shortcomings and outlook

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	References


