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A B S T R A C T   

Though soil is widely known as one of the most valuable resources for the world, its quality is going to be lower 
because of unsustainable economic development and social progress. Therefore, it is important for us to monitor 
and evaluate the quality of soil, especially its heavy metal contents which is too scarce to identify in soil spectra 
easily but poisonous enough to affect human health in a long run. Most of the existing estimation methods have 
based the characteristic bands on statistical analysis to a large extent, which is hard to accurately explain the 
retrieval mechanism. In this paper, the absorption characteristics of heavy metal are studied based on the soil 
spectra, and the distribution pattern is mapped in a large-scale continuous space, for environmental monitoring 
and further decision support. Taking Yitong County, China as the study area. After spectra continuum removal, 
the heavy metal contents were estimated by 11 features including the absorption depth, absorption area, and 
band ratio around 2200 nm, which showed the best performance. For arsenic (As), the best model yields R2

p value 
of 0.8474, and the RMSEP value is 36.1542 (mg/kg). It is concluded that As is adsorbed by organic matter, clay 
minerals, and iron/manganese oxides in soil, and the adsorption of As by first two components is greater than 
that of the last. For airborne spectra after continuum removal, combining the spectral absorption characteristic 
parameters and the highly correlated bands is more accurate than using the spectral absorption characteristic 
parameters or bands alone. AdaBoost is presented for the heavy metal estimation, and the fitting ability of the 
method is found to be stronger than that of the traditional classical methods, with the R2

p values of 0.6242 and the 
RMSEP value of 43.6481 (mg/kg). In summary, these results will provide a prospective basis for the rapid 
estimation of soil heavy metals, the risk assessment of soil heavy metals and soil environmental monitoring in a 
large scale.   

1. Introduction 

The excess of heavy metals caused by various reasons and it in-
fluences the essential characteristics of the soil ecosystem. Many heavy 
metals mine, smelt, process and commercial manufacture activities have 
resulted in serious environmental pollution (Merdy et al., 2006; Wang 
et al., 2015; Yao et al., 2015). Heavy metal ions, easily absorbed and 
enriched by crops in farmland soils, significantly threat human health. 
Therefore, it is essential to acquire the soil heavy metals content. 

Hyperspectral technology has widely applied to soil monitoring and 
decision making by its repetitive coverages in large scale areas (Ma 
et al., 2016a,b; Liu et al., 2017; Tan et al., 2018). 

During the spectral measurement, light scattering, various particle 
sizes, and the different density distributions in soil all cause spectra 
noise Therefore, the preprocess on the spectra before estimation is 
necessary. There are several commonly-used preprocessing methods, 
including standard normal variate preprocessing, derivative trans-
formation, normalized processing, Savitzky-Golay smoothing, 
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continuum removal, wavelet preprocessing, and multiplicative scatter 
correction (Shi et al., 2013; Zhang et al., 2017). Continuum removal is 
commonly utilized in the soil heavy metals estimation. Peng et al. 
(2014) found that the application of the partial least squares regression 
(PLSR) model after continuum removal can achieve estimate the content 
of As in soil quickly and accurately. It is confirmed that continuum 
removal can help highlight the absorption characteristics of the spectra. 
Therefore, in this study, continuum removal was chosen as the spectral 
pretreatment method. 

The spectra absorption characteristics can reflect the structure and 
motion state of the soil components. Though the validity of these 
characteristics are proved in many research areas, such as mineral 
mapping (Meer, 2004; Wei et al., 2015), the chlorophyll-a of algae 
inversion (Zhang et al., 2011), and soil water content prediction (Jin 
et al., 2016), they are rarely used in soil heavy metal estimation. It (Choe 
et al., 2008) was reported that statistical features such as Depth500, 
Area2200 Asym2200 and R610,500 were of high sensitive with the heavy 
metals content, which was successfully applied to the soil heavy metals 
estimation in airborne hyperspectral image. Jin et al. (Jin and Zhou, 
2017) found the model based on bands depth performed better than 
spectral reflectance or reciprocal logarithm for Inner Mongolia chestnut 
soil Cd estimation. The absorption relationships between organic matter, 
iron oxides, and clay minerals, and soil heavy metals can be explored by 
analyzing the spectral absorption characteristics, providing theoretical 
support to the estimation mechanism of soil heavy metals. 

Some scholars have tried their best to explore the influencing 
mechanism between soil heavy metals and soil spectra. Furthermore, the 
absorption by organic matter has been extensively investigated in many 
heavy metal researches. Cao et al. (2007) found, through the analysis of 
black soil in polluted farmland in Northeast China, that Pb is easily 
adsorbed by organic matter, while the adsorption of Cd, Cu, and Zn is 
relatively difficult. Chen et al. (2016) found that the concentration of As, 
Pb, Cr, and Cd in soil along the Bortala River in China were highly 
correlated with the organic matter content. The assessment of heavy 
metals is reflected in the absorption of heavy metal ions by the other 
components. Xu et al. found that the most significant relative compo-
nents are organic matter, iron/manganese oxides, and clay minerals 
(Wang et al., 2007; Xu et al., 2011a,b). Therefore, we studied the spectra 
adsorption characteristics of these three main components in the black 
soil of Northeast China, as well as a further exploration of soil heavy 
metal estimation mechanism. 

Researches on modeling methods have made significant progress, 
including univariate regression (Qi et al., 2007), multiple linear 
regression (Kokaly and Clark, 1999; Song et al., 2015), partial least 
squares regression (Pandit et al., 2010; Xia et al., 2015), ridge regres-
sion, and principal component regression (Lu et al., 2007) models. In 
addition, machine learning techniques have also been widely utilized to 
the soil heavy metals estimation, including artificial neural networks 
(ANNs) (Anagu et al., 2009), support vector machine (SVM) (Balabin 
and Lomakina, 2011; Ma et al., 2016a,b), and decision tree (DT) 
(Rodriguez-Galiano et al., 2015), which are widely used in soil heavy 
metal estimation. However, the conventional statistical approaches are 
of poor applicability because of the low content of soil heavy metals and 
the limited samples. 

A growing number of researchers have introduced ensemble learning 
methods into the inversion of soil components, which are famous for 
having a more stable, accurate, and faster performance. Ensemble 
learning methods combine individual learners to obtain a better model. 
The framework algorithms commonly utilized in ensemble learning 
methods are bagging (Dietterich, 2000), boosting (Svetnik et al., 2005), 
and stacking algorithms (Chen et al., 2014). Boosting algorithms include 
AdaBoost (Liao and Zhou, 2012) and gradient boosted decision trees 
(GBDT). The typical representative bagging method is random forest 
(RF) (Breiman, 2001). Stacking is a combination of various basic 
models. Extremely randomized trees (ET) is an ensemble learning model 
that is a further improvement of RF, which is both more random and 

robust than RF. Recently, XGBoost, GBDT, RF and ELM are utilized to 
analyze and estimate soil heavy metals. Wang et al. (2023) proposed a 
estimation model combining SMA and RF to invert heavy metal con-
centrations. Ye et al. (2023) integrated spatial correlation with XGBoost 
algorithm to improve the soil arsenic concentration estimation accuracy. 
Bian et al. (2023) reported that ELM-based spectral estimation models 
were able to predict metal concentrations with high accuracy and effi-
ciency. Saha et al. (2022) found ground spectral data can improve the 
precision and stability of the inversion of soil As with XGBoost. Ma et al. 
(2016a,b) found that RF was superior to PLS, SVM, and ET heavy metals 
inversion and analysis. However, AdaBoost and ET are less utilized in 
heavy metal estimation. 

Due to the complexity of the imaging process, the difficulty of 
spectral feature extraction, and the fact that most of the current research 
focuses on ground spectra, there are fewer studies to quantitatively es-
timate heavy metals based on imaging spectra. Wu et al. (2011) used 
simulated HyMap, Landsat Thematic Mapper (TM), and QuickBird 
spectra to estimate soil heavy metals, and found that the heavy metals 
with a high correlation with iron (Fe) had a better effect; Yang et al. 
(2016) used the spectral reflectance of Hyperion imagery to estimate the 
concentration of Zn and Cd in soil; and Tan et al. (2019) utilized airborne 
hyperspectral data to create a spectral analysis model for the heavy 
metal concentrations retrieval. Compared to the ground spectra, imag-
ing spectroscopy can achieve a larger-scale estimation of soil heavy 
metal. Therefore, the use of hyperspectral imagery for heavy metal 
mapping was the focus of our research. 

The motivation for this work is as follows: 
At present, there are many studies on soil heavy metals estimation. 

Since lacking of clear mechanism for heavy metals estimation, most of 
works utilized the statistical methods or correlation analysis between 
the heavy metals and organic matter, which is hard to reveal the heavy 
metals absorption characteristics and explain the absorption mechanism 
of soil heavy metals estimation. Meanwhile, the low content of heavy 
metals in soil, complex imaging environment, and spectral data redun-
dancy result in the poor performance of heavy metals estimation, which 
conducts heavy metals distribution trend cannot be effectively mapped. 

The main contributions of this work are as follows.  

(1) We analyze and derive the spectral absorption features to explore 
the heavy metal estimation mechanism. 

(2) We utilize ensemble learning methods to improve model reli-
ability and generalization. 

The model can lay a foundation for exploring a universal soil heavy 
metal estimation model and provide an important prerequisite for 
environmental quality monitoring in soil on a large scale quickly and 
efficiently. 

2. Data acquisition 

2.1. Study area 

The study region of 139 km2 is located in Siping city, Jilin province, 
China (see Fig. 1). The climate of Yitong County belongs to the cold 
temperate monsoon climate. The annual average temperature, the 
annual average precipitation and the frost-free period are 5.5 ◦C, 651.7 
mm, and 138 days, respectively. There is a river crossing the sampling 
area from northwest to southeast. In Yitong County, there are more than 
30 kinds of metallic, non-metallic, and energy minerals, including gold, 
silver, copper, silica, fluorite, kaolin, coal, oil, natural gas, and more 
than 200 mineral deposits have been discovered. This study area was 
also researched by Ou (Ou et al., 2021) and Tan (Tan et al., 2020). 
Fig. S1 shows the slope map of the study area. Advanced Spaceborne 
Thermal Emission and Reflection Global Digital Elevation Model 
(ASTER GDEM) data, with a spatial resolution of 30 m, is utilized to 
generate the slope map. 
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2.2. Datasets 

2.2.1. Soil samples collection and analysis 
93 ploughed soil points were sampled based on grid sampling 

method in late April 2017 in this study. The sample depth is 0~20 cm. 
Sampling sites were densely laid near potential pollution sources such as 
mining areas, factories and residential areas in the study area to better 
analyze the sources of hazardous substances in the soil. Soil samples 
were chosen as pure as possible to reduce the impact of spectral mixing. 

Real-time kinematic (RTK) positioning acquired high-precision co-
ordinate of each sampling point. After the coordinates of the sampling 
point were selected, 400 g of soil were sampled at the sampling point 
and four points around it with a diameter of 1 m. The surface soil 
samples were collected and mixed into sealed bags. Records and photos 
were taken during the soil samples collection for subsequent viewing of 
the geographical conditions. The samples were removed from debris, air 
dried, ground, and 100-mesh screened. The chemical analysis of the soil 
components and the laboratory spectroscopy were conducted for each 
sample. 

Vis–NIR spectra were measured by an Analytical Spectral Devices 
(ASD) field spectrometer with a wavelength range of 350–2500 nm. This 
device has a spectral resolution of 1.4 nm over the 350–1000 nm region 
and 2 nm over the 1700–2500 nm region, and records the reflectance at 
1 nm intervals. Soil samples were loaded in petri dishes and distributed 
evenly to reduce the effect of unequal particle size. The measurement 
probe was positioned perpendicular to each sample surface 10 times. For 
each sample, after anomalous spectra removing, the remaining spectra 

were averaged as the final spectrum. The laboratory spectra are shown 
in Fig. S1. 

At 350–1300 nm, the spectral curve shows an upward trend and a 
large slope. There exist a small absorption peak at 480 nm. The increase 
trend of the spectra is slower over 1500–1900 nm than that over 
350–1300 nm. The spectra begin to decrease with an obvious absorption 
peak near 2200 nm. 940 nm, 1400 nm and 1900 nm are water vapor 
absorption bands. 

We included the inductively coupled plasma-mass spectrometry 
(ICP-MS) to obtain the soil heavy metal concentration chemically. The 
concentrations of heavy metal were analyzed statistically. Table 1 shows 
the statistical results. 

Data dispersion can be reflected in CV. The CV of As is larger than 1, 
indicating that its variation is very high. The maximum and minimum 
values show that the As content data set has a large degree of dispersion 
and sample unbalance Meanwhile, there may also be a high- 
concentration accumulation zone of As. 

Total of 93 soil samples are divided into training set and testing set, 
which is composed according to the 2:1 segmentation rule at each soil 
samples group. Finally, 62 samples are selected into the training set and 
31 samples are selected into the test set. 

2.2.2. Imagery acquisition and preprocessing 
The HyMap-C imaging spectrometer is an airborne hyperspectral 

imaging system with a wavelength range of 400–2500 nm, which is 
operated by the HyVista corporation of Australia. It has a spectral range 
of 400–2500 nm and four detectors covering the VNIR (400–905 nm and 
880–1440 nm) and SWIR (1400–1960 nm and 1950–2500 nm) regions 
with a spectral resolution of 13–17 nm and 36 bands per detector. The 
spectrometer provides 144 spectral bands of the target. The flight alti-
tude is 1800m, with a spatial resolution of 3.5m. 

During the image acquisition process, due to the instability of the 
airborne platform and the disturbance of airflow, terrain, and other 
factors, the images inevitably contain geometric distortion. The geo-
metric correction process included rough geometric correction and fine 
correction. The rough geometric correction aimed to correct the 
hyperspectral image distortion according to the RTK data, attitude data, 
eccentricity vector, and digital elevation model; that is, using the prin-
ciple of collinear equations in photogrammetry to inversely construct 
the local geodetic coordinates of the pixels. Fine geometric correction 
was completed by image-to-image matching in ENVI using orthophotos 
with a high spatial resolution. 

The radiation correction of the images involved radiometric cali-
bration and atmospheric correction. Radiometric calibration was taken 
to convert the brightness value of the image into an absolute radiance 
value. The process involved wavelength calibration using mono-
chromator and energy accuracy calibration using integrating sphere. 
The atmospheric correction is performed to obtain the true reflectance 
values. The atmospheric radiation transmission model used for the at-
mospheric correction was MODTRAN (Berk et al., 1999). 

Airborne hyperspectral spectra of the 93 samples were extracted 
from the imagery shown in Fig. S3. In the vicinity of 1400 nm and 1900 
nm, the curves are distorted or even show negative values as a result of 
water vapor influence. In the modeling process of the airborne hyper-
spectral data, the bands ranging over 1369–1418 nm and 1835–1912 nm 
with serious water vapor influence were removed. 

For this study, bare soil needs to be extracted from the imagery. The 
spectral unmixing method involves extracting a certain feature compo-
nent and a proportion of each component from a spectrum in which a 

Fig. 1. The locations of the sampling sites in study region.  

Table 1 
Basic statistics of As content.  

Element Max (mg/ 
kg) 

Min (mg/ 
kg) 

Mean (mg/ 
kg) 

Std. (mg/ 
kg) 

CV 

As 419.9602 6.3509 42.7515 67.9779 1.5901  
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plurality of components is mixed. There are two main steps in spectral 
unmixing. First of all, select several representative pure spectra of the 
four objects: pure bare soil, buildings, water, and vegetation. Then es-
timate fractional abundances of the four kinds of objects by the fully 
constrained least squares (FCLS) method (Heinz and Chang, 2001). Each 
pixel whose soil abundance was larger than 0.65 was defined as bare 
soil. Bare soil image in the study area is shown in Fig. S4. 

2.3. Feature analysis 

2.3.1. Continuum removal 
A spectral curve that highlights absorption and reflection charac-

teristics was obtained by removing from the continuum (Van der Meer, 
2006). The continuum is connected by the extreme value points on the 
spectral curve, which is utilized to divide the original curve to obtain the 
continuum removed curve. 

Fig. 2 takes a laboratory spectral curve as an example to show the 
spectral curve and the continuum-removed spectral curve, where the 
solid blue line is the laboratory spectral curve and the red solid line is its 
continuum spectral curve. The green dashed line is the curve after 
continuum removal. After continuum removal, the absorption charac-
teristics caused by the soil components can be obviously reflected on the 
spectral curve, which is a foundation for the following analysis on the 
components’ occurrence state in soil based on absorption characteristic. 
The absorption peaks on the spectral curve, such as 500 nm, 1400 nm, 
1900 nm, and 2200 nm, are more obvious after continuum removal. 

2.3.2. Extraction of spectral absorption parameters 
The parameters reflecting spectral absorption characteristic in this 

study included absorption depth (D) and absorption area (A) shown in 
Fig. S5. 

2.4. Modeling methods 

2.4.1. Traditional methods 
In linear regression, least squares (LS) is the most basic method, 

which is useful to bridge the dependent variables and independent 
variables (Markovsky and Huffel, 2007). Partial least squares (PLS) 
(Leone et al., 2012) extracts the latent variables, i.e., principal compo-
nents, from the independent variables and the dependent variables, 
respectively. A linear model then is built by the latent variables of the 
independent and dependent variables. Ridge regression (RR) is an 
improved least square estimation method and can handle the non-full 
rank coefficient matrix. Support vector machine (SVM) is a 
kernel-based method(Vapnik, 1997). It can come to a better settlement 

on small samples, over-learning, non-linear, high-dimensional numbers 
and other practical situations. 

2.4.2. Decision tree (DT) 
DT, a base learner, can be regarded as a tree model. Each node in the 

DT represents the attribute of the object. Starting from the following 
node, it passes through several intermediate nodes to the leaf node, and 
the path represents the predicted rule. 

2.4.3. Random forest (RF) 
RF, an improvement of the DT algorithm, is proposed by Breiman 

(2001). This parallel ensemble algorithm consisting of DT is an extended 
variant of Bagging. It combines multiple weak classifiers and introduces 
random attribute selection, which makes the overall model result with 
high accuracy, excellent generalization performance, and good stability. 

2.4.4. Extremely randomized trees (ET) 
In addition to RF method, ET [49] method improves on it. Compare 

with RF, the randomness of the split point calculation method is further 
enhanced. RF divides each tree’s learning by a random subset of char-
acteristic, while ET obtained the threshold randomly for each candidate 
feature, and the best of these is selected as the segmentation rule. 

2.4.5. AdaBoost 
AdaBoost is an excellent boosting algorithm, and a high prediction 

accuracy can be achieved by improving several weak learners with low 
prediction accuracy through it. AdaBoost assigns a weight to each 
sample during the training process, to control the learning degree of the 
sample by the weak learner. It then assigns a weight to each weak 
learner, calculates the inner product between the weak learner and 
weight, and finally obtains a strong learner. The sample of the AdaBoost 
algorithm is (xi, yi), and the set of weak learners is H = (h1,h2,h3,…,hn,). 
When n weak learners are integrated, the expression of the strong 
learner is as follows: 

f (x)= sign

(
∑n

t=1
ωtht(x)

)

ωt > 0, t= 1, 2,…, n (2)  

where f(x) is the strong learner, ht(x) is the weak learner, and ωt is the 
weight of the weak learner. ωt is normalized as: 

∑n

t=1
ωt = 1 (3) 

The inner product of the weak learner and the weight of the Ada-
Boost algorithm are calculated by sign() to obtain the final prediction 
result. 

2.5. Model evaluation method 

Five accuracy indicators are employed, the mean absolute error 
(MAE), the root-mean-square error (RMSE), the coefficient of determi-
nation (R2), the ratio of prediction performance to interquartile range 
(RPIQ) and the residual prediction deviation (RPD). Each indicator is 
calculated as follows: 

MAE=
1
N
∑N

i=1
|obsi − predi| (4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(obsi − predi)

2

N

√
√
√
√
√

(5)  

Fig. 2. Schematic diagram of the continuum removal process.  
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R2 = 1 −

∑N

i=1
(obsi − predi)

2

∑N

i=1
(obsi − obs)2

(6)  

RPIQ=
IQ

RMSEP
(7)  

RPD=
SD

RMSEP
(8)  

IQ=Q3 − Q1 (9)  

where obs denotes the observed value, pred denotes the predicted value, 
and IQ is the interquartile distance of the prediction set. R2

C, RMSEC, and 
MAEC represent the calibration data set evaluation, and R2

P, RMSEP, and 
MAEP express the prediction data set evaluation. 

3. Results 

3.1. Study of the retrieval mechanism based on the laboratory spectra 

3.1.1. Characteristics analysis 
By continuum removal, absorption characteristics can be effectively 

highlighted. These characteristics belong to the bands which are near 
420 nm, 480 nm, 610 nm, 700 nm, 840 nm, 1400 nm, 1780 nm, 1900 nm 
and 2200 nm. Among them, 1400 nm and 1900 nm are the water vapor 
absorption bands. The red circles indicate the locations of the selected 
absorption features in Fig. 3. 

The ions (Fe2+, Fe3+ and Mn3+) have electron transition which 
caused the spectral absorption over the 380–780 nm. Iron/manganese 
oxides caused the spectral absorption at 420 nm and 480 nm(Xu et al., 
2011a,b). The harmonic frequency and double frequency of the molec-
ular groups of organic matter and clay minerals resulted in the absorp-
tion over 780–2500 nm (Viscarra Rossel and Behrens, 2010; Knadel 
et al., 2013). 

The absorption characteristics at 1780 nm and 2200 nm are con-
cerned in organic matter (BenDor et al., 1997; Viscarra Rossel and 
Behrens, 2010; Knadel et al., 2013). One thousand and nine hundred nm 
and 2200–2400 nm features are relevant to the double frequency of the 
molecular hydroxyl (-OH) stretching vibration of the clay minerals 
(Clark et al., 1990; Knadel et al., 2013; Chen et al., 2022). Fig. S6. il-
lustrates the correlation coefficients. The red circles indicate the regions 
located in the absorption features that have a high correlation with As. 

In Fig. S6, with regard to As, there are highly correlated bands 
around 420 nm, 480 nm, 1780 nm, and 2200 nm. For the estimation of 
As, 11 spectral absorption parameters were extracted, including D420, 
D480, D610, D700, D840, D1780, D2200, A2200, and lgA2200. R(2153-2102), 

(2153+2102) and R2153,2102 were also selected due to there being a sudden 
drop from 2102 nm to 2153 nm. Shi et al. (2016) reported the wave-
bands at 480 nm, 600 nm and 810 nm have high correlation with As 
concentration. Xu et al. (2017) found that the wavebands at 1778 nm 
have significant relationships with As. These characteristics bands are 
similar to our findings. 

3.1.2. Modeling using a single variable 
The heavy metals are sorted by concentration gradient, two out of 

every three samples are used as the training dataset, and the remainder 
is set as the training dataset. 

As concentration was estimated using the 11 spectral absorption 
characteristic parameters, and the regression coefficients were obtained 
by the LS method (Table S1). 

In the visible range, the estimation performance for As by D480 is 
better than by the other parameters, indicating that the iron/manganese 
oxide in soil has an adsorption effect on As. In the near-infrared range, 
the effect of estimating As with D2200 is better than that for D1780, and 
the R2

p is 0.4394. Moreover, the R2
p of R(2153-2102),(2153+2102) can reach 

over 0.6. The 2200 nm band is the response region for clay minerals and 
organic matter. It is obvious that iron/manganese oxide, organic matter 
and clay minerals all have adsorption effect on As. However, there is 
obvious underfitting of the model estimated by a single variable, and the 
R2

C is clearly smaller than the R2
p . Therefore, we introduce multivariate 

variables to improve the model performance. 

3.1.3. Modeling using multivariate variables 
According to the results shown in Table S1, several single spectral 

characteristic parameters were utilized to estimate the concentrations of 
As, and to fully explore the effective characteristics. Since it is incon-
venient to display the number of dependent variables in the table, only 
the variable number is written, which is the same as the numbering in 
Table S1. 

Table 2 reports the estimation results for As using multiple variables. 
The first set of variables (2, 6–11) is the seven variables whose R2

p is 
higher than 0.2, according to the results in Table S1. The performance 
after combination of the variables is better than that of a single variable. 
In the first set, the R2

p improves from 0.6356 to 0.7826, while the R2
C is 

also greatly improved from 0.1763 to 0.4311. These results indicate that 
the multiple variables can promote the model performance. The second 
set of variables (1–9) is a combination of absorption depth and ab-
sorption area, which performs slightly worse than the model established 
by the first set. In the second set, the R2

C and R2
p are 0.3817 and 0.6502, 

respectively. The fourth set of variables (1–11) includes the 11 charac-
teristics of absorption depth, absorption area, and band ratio. The model 
for As estimation performs the best using this set of variables, in which 
the R2

C is 0.4892, the R2
p is 0.8474, and RPD is 2.2665. In summary, the 

combination of the 11 spectral absorption parameters, and especially the 
band ratio, can promote the estimation performance. 

The fourth set of variables is based on the following models: Y =
391.84 * D420 − 812.11 * D480 + 324.99 * D610 + 208.32 * D700 +

1699.88 * D840 − 10,970.67 * D1780 + 4789.35 * D2200 − 744.53 * A2200 
+ 6066.31 * lgA2200 − 5,269,473.06 * R(2153-2102),(2253+2102) +

2,611,461.33 * R2153,2102 − 2,612,220.65. 
The estimation scatter diagram for the fourth set is shown in Fig. S7. 
In Fig. S7, the points of the predicted and observed values are 

concentrated in the lower-left corner, and several larger values are 
loosely distributed, indicating the imbalance of the samples. The values 
of the predicted set are concentrated near the 1:1 line, which is consis-
tent with the fact that the R2

p is larger than the value of the R2
C. 

Fig. 3. Laboratory spectra after continuum removal.  
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3.2. Estimation based on airborne hyperspectral imagery 

3.2.1. Characteristics analysis 
The spectra absorption characteristics could be effectively high-

lighted by continuum removal, and were 600 nm, 1300 nm, 1600 nm, 
2000 nm, and 2200 nm (Fig. S8). The spectral absorption characteristics 
that were the same as the laboratory spectra were 600 nm, 1600 nm, and 
2200 nm. Due to the differences in the spectral resolution between the 
laboratory spectra and imagery spectra, the absorption characteristics 
differ from the absorption characteristics of the laboratory spectra. 

The spectral absorption parameters of the airborne hyperspectral 
imagery were D600, D1300, D1630, D2000, D2200, A2200, and lgA2200. The 
selection of band and band ratio depends on the actual conditions of 
heavy metal. The selection method for the band ratio was the same as for 
the laboratory spectra analysis method. According to the relationship 
between spectra and heavy metal content after continuum removal, two 
bands with a sharp increase and decrease were selected as a band ratio. 
This method combines the bands with high positive correlation and high 
negative correlation, which can achieve a better performance of the 
heavy metal estimation. 

The correlation coefficients between the As concentrations and the 
image spectra after continuum removal are shown in Fig. S9. The red 
circles indicate the regions located in the absorption features that have 
high correlation with As. 

The bands which have a high correlation with As are around 500 nm, 
1300 nm, 1600 nm, and 2200 nm, which is consistent with the char-
acteristic bands of the laboratory spectral analysis at 500 nm, 1780 nm, 
and 2200 nm. The correlation shows a sharp increase from 1449 nm to 
1628 nm, as well as 2210 nm and 2240 nm, so the two pairs of bands 
were selected as band ratios. Therefore, there were 11 spectral absorp-
tion characteristic parameters selected to estimate As: D600, D1300, D1630, 
D2000, D2200, A2200, lgA2200, R(1628− 1449),(1628+1449), R1628,1449, 
R(2240− 2210),(2240+2210), and R2240,2210. It has been reported that the 
wavebands at 591 nm, 1299 nm, 2015 nm, and 2260 nm are associated 
with As (Wu et al., 2021). In Ou et al. (2021) research, 1290 nm, 1640 
nm and 2210 nm are selected to conduct As distribution map. These 
characteristics bands are similar to our findings. 

3.2.2. Model evaluation 
In order to establish a better estimation model, we introduced the 

ensemble methods of ET and AdaBoost. LS, PLS, RR, SVM, and DT were 
compared to explore the superiority of the two methods. 

In the analysis of As concentration estimation by laboratory spectra, 
the spectral absorption characteristic parameters combination can 
perform better than just the LS method. As was estimated using the 11 
spectral absorption characteristic parameters extracted from the 
airborne imagery spectra. Table S2 lists the results. 

The performance of the eight models established by only the 11 
spectral absorption characteristic parameters is poor. The R2

p values of 
the RF and ensemble methods are all superior to those of the other 
methods, but the three ensemble methods all show overfitting. Table S3 
shows the results of As estimation using the 30 highly correlated char-
acteristic bands after continuum removal. 

The performance when using the 30 bands with high correlation to 
establish an estimation model is better than when using the 11 spectral 
absorption characteristic parameters. The three ensemble methods all 
perform well. Based on the AdaBoost model, the R2

P of As is 0.5878, the 

RMSEP is 44.5263, and the MAEP is 21.1311. 
A total of 41 characteristics were composed of the 11 spectral ab-

sorption parameters and 30 bands. These characteristics were utilized to 
estimate As. The estimation results of the eight models are reported in 
Table 3. 

The eight models established with 41 characteristics are all superior 
to those using 11 spectral absorption characteristic parameters or 30 
bands. For As, the R2

C and R2
p of the linear methods (LS, PLS, Ridge) are 

similar. Compared with the other methods, the accuracies of the three 
ensemble models are poor, which shows that the relationship between 
airborne hyperspectral spectra and As concentration is complex, so the 
relationship cannot be expressed by a linear model. SVM performs 
slightly better than the linear methods. For As, the R2

C of DT is more than 
0.9, while the R2

p is less than 0.1, so it can be seen that the training 
dataset has an abnormally high accuracy. This shows that the DT esti-
mation model shows serious overfitting, and it cannot estimate As, even 
though the R2

c values are better. Based on the AdaBoost model, the R2
P for 

As is 0.6242, the RMSEP is 43.6481, and the MAEP is 20.5760. The R2
P is 

the highest, while the RMSEP and the MAEP are the lowest among all the 
methods. Therefore, the introduced methods AdaBoost are stable and 
able to predict the concentration of As well. 

For As, the performance of the AdaBoost is the best, and Fig. 4 draws 
the estimation scatter diagram of it. 

In Fig. 4, the measured-predicted points of the calibration set are 
distributed well around the 1:1 line, but the accuracy of the predicted set 
is lower. The smaller value distribution in the lower-left corner is denser, 
and the larger value distribution in the upper-right corner is sparser, 
indicating that there are several high leverage values in the As data set. 

In Fig. 5, the measured-predicted points of the calibration set are 
distributed well around the 1:1 line, but the accuracy of the predicted set 
is lower. The smaller value distribution in the lower-left corner is denser, 
and the larger value distribution in the upper-right corner is sparser, 
indicating that there are several high leverage values in the As data set. 

3.3. Mapping heavy metal using airborne hyperspectral imagery 

Based on the estimation characteristics and models, As was estimated 
to analyze their distribution patterns and influencing factors in the 
whole study area. 

Fig. 5 draws the estimation results for As concentration of the study 
area. The regions with high concentration values indicated by A-D are 
marked. The criterion of As referred to is the National Standard 
(GB15618–2018, GB15618-1995) in China, which is shown in Table 4 
(Agency, 1995; Regulation, 2018). 

In the early experiment period, the situation of the study region was 
investigated. There are four mining areas and one concentrating mill in 
the study area and nearby. The river running from the northwest to the 
southeast is the Yitong River, for which the flow direction is from south 
to north. There is also a small river channel in the northeast corner. The 
Yingsong Expressway is running nearly parallel to the right side of the 
Yitong River. The main bare soil in the study area exists in farmland. 
Fig. 6 shows the detailed landscape. 

We have conducted a field survey of the study area. In Fig. 6, area A 
is artificial activity areas. The farming and human activities are likely to 
have made the concentrations of heavy metal differ from the back-
ground values. The inconsistent management of cultivated land and 

Table 2 
Estimation results using multiple variables.  

X Number R2
C RMSEC MAEC R2

p RMSEP MAEP RPD RPIQ 

2,6–11 0.4311 44.4691 29.8063 0.7826 41.7166 30.0040 1.9643 0.7709 
1–9 0.3817 46.3626 31.5444 0.6502 51.6368 34.0138 1.5869 0.6228 
10,11 0.3196 48.6337 32.6184 0.5334 56.9930 39.0300 1.4378 0.5643 
1–11 0.4892 42.1372 29.6831 0.8474 36.1542 27.6927 2.2665 0.8895  
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livestock excrement pollution further exacerbate the As pollution of 
cultivated land in the study area. Area B is a concentrating mill. The 
pollutants such as waste water and waste slag discharged from the 

concentrating mill will have likely resulted in an increasement of the soil 
heavy metal concentration. This area is located next to the national 
highway, the field survey reveals that the road is in subpar condition. 
The dust and the truck exhausts contribute to the As pollution in the 
surrounding farmland. Both areas C and D are gold deposits. There will 
be some residual heavy metal ions in the tailings of the gold deposits, 
which are likely to have entered the farmland or groundwater via 
rainwater. Moreover, mineral powder will also exist in the tailings, 
which can be blown into the farmland and villages by wind, posing a 
threat to the health of residents. Area D is a gold mining area that is 
being mined without strong environmental protection measures in the 
production process. Area C used to be a gold mine, but is no longer 
mined, and the surrounding environment has been restored. 

Fig. 5 shows that the content of As is higher in the mining areas 
(areas C and D), the concentrating mill (area B), the artificial activity 
areas (area A), and near the river sedimentation area, but are generally 
less than 95 mg/kg. Areas C and D, which are near the gold deposits, 
have the highest content of As, with values above 300 mg/kg. According 
to the National Standard, there may be a risk of soil pollution if the 
content of As in soil is more than 40 mg/kg. When it is more than 150 
mg/kg, edible agricultural products are not in accordance with the 
safety standards. Therefore, serious As pollution exists in the study area. 

As the most serious polluted areas of heavy metal (As), in the vicinity 
of areas C and D, the gold deposits have a bad impact on the soil. As is a 
companion of many non-ferrous metals, and is transferred from the 
depth of formation to the surface in the mining process of the gold mine. 
Therefore, the As content is high in the tailings. As does not migrate, but 
it does become a substance that can migrate after oxidation, hydrolyz-
ing, and weathering. The surface water flowing through the tailings 
dissolves the As, which then flows into the farmland and rivers nearby, 
resulting in pollution of the soil and water area. Moreover, the particles 
containing As are disseminated into the air by wind, which can cause As 
poisoning via inhalation. Therefore, the supervision of the production in 
mining areas should be strengthened to protect the environment. In the 
human activity areas of A, the long-term use of chemical fertilizers in the 
cultivated land has led to the heavy metal accumulation. The content of 
As in soil has reached 50–60 mg/kg, because of the long-term applica-
tion of fertilizers. In the process of cultivation, land resources should be 
rationally utilized, and fertilized reasonably. 

Fig.S10 shows the distribution trend (a) and interpolated image (b) 
of As. In Fig.S10 (b), the red area is gold deposit which cause serious 
pollution. 

4. Conclusion and prospects 

In this paper, we have analyzed soil hyperspectral data, combined 

Table 3 
Estimation results using all 41 features extracted from the image spectra.  

Element Method R2
C RMSEC MAEC R2

p RMSEP MAEP RPD RPIQ 

As LS 0.5373 46.4199 30.9838 0.3562 56.4412 40.5609 1.2090 0.5445 
PLS 0.4651 82.5993 53.4361 0.3529 84.1353 56.7201 0.8111 0.3653 
Ridge 0.5365 46.4599 30.8491 0.3537 56.3917 40.2052 1.2101 0.5450 
SVM 0.5438 51.3722 21.2991 0.4491 53.3276 29.1093 1.2796 0.5763 
DT 0.9835 8.7607 4.7337 0.0630 96.2933 52.3934 0.7087 0.3191 
RF 0.9379 21.5117 13.2719 0.4471 51.1683 32.9125 1.3336 0.6006 
ET 0.9992 2.0033 1.2821 0.5540 46.2785 29.0105 1.4745 0.6640 
AdaBoost 0.9978 3.1872 1.0896 0.6242 43.6481 20.5760 1.5634 0.7041  

Fig. 4. The scatter plot of As estimation using AdaBoost. (unit: mg/kg).  

Fig. 5. Estimation map for As.  

Table 4 
Soil environmental quality risk control standard for the soil contamination of 
agricultural land (unit: mg/kg).  

Metal Background Risk screening values Risk intervention values 

As 15 40 150  
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this with the soil physicochemical properties, and extracted the spectral 
absorption characteristic parameters, to model the estimation heavy 
metal (As). In the laboratory spectral analysis, it was found that the LS 
method for As estimated by 11 features (including absorption depth, 
absorption area, and the band ratio around 2200 nm) had the highest 
accuracies in the multivariate variables analysis. It was concluded that 
As is adsorbed by organic matter, iron/manganese oxides, and clay 
minerals in soil, and the adsorption of As by first two components is 
greater than that of the last. When estimating As content based on 
airborne spectra, it is impossible to accurately make an estimation only 
using the absorption features, but the estimation could be achieved by 
combining the parameters and the high-correlation bands. AdaBoost 
was found to have the best prediction accuracy. The As content in the 
study area exceeds the National Standard level. After analyzing the 
influencing factors, it was concluded that the mining areas and 
concentrating mill in the study area have had the most serious impacts 
on the soil environment. The content of As around farmland soil is also 
significantly higher than the natural background value. Furthermore, As 
has also been deposited in the sedimentation areas along the rivers. 
Human agricultural behavior has impacted on the soil heavy metal 
content of the study area. 

This study conducts on soil heavy metals estimation and traceability 

analysis with hyperspectral image, which provides a solid foundation for 
heavy metals pollution risk assessment, heavy metal pollution preven-
tion and control, and crop health risk assessment. Meanwhile, it is also 
an important premise for government departments to carry out soil 
environmental governance and food security. 

The retrieval mechanism was analyzed from the spectral absorption 
characteristics, and it was not analyzed from the physical model, so the 
model of soil radiation transfer could be considered in future work. In 
future work, we will attempt to investigate the correlation between soil 
heavy metal concentration and anisotropy reflectance characteristics of 
soil to estimate heavy metal content. 
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