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A B S T R A C T   

Recently, the deep learning algorithms have been increasingly utilized in remote sensing change detection. 
However, incomplete buildings and the blurred edges caused by the complex scenes in change detection ap
plications make the detection results fail to describe the real land cover changes. Superpixels can be used to 
alleviate edge blurring, but the existing superpixel methods cannot be trained jointly with the models in change 
detection. In this work, we investigated an innovative double-head method using deep learning, called double U- 
Net (W-Net), which consists of a superpixel module and a change detection module. Due to the superpixel 
module, W-Net can handle building edges very well. In order to solve problem that multiple subtasks fail to 
achieve the optimal results, a two-branch multi-task coupling framework of change detection and superpixels is 
designed for W-Net, which enables the model to achieve a globally optimal detection performance. The 
advancement of the W-Net was demonstrated using three public datasets. The F1score on LEVIR-CD dataset was 
0.9031 and kappa coefficient was 0.8969. The F1-score on WHU building dataset was 0.9172 and kappa coef
ficient was 0.9142. The F1-score on SYSU-CD dataset was 0.8167and and kappa coefficient was 0.7724. The 
experiments confirmed that the W-Net is capable to detect the edges of changed area better and outperforms the 
other advanced change detection methods.   

1. Introduction 

The dynamic monitoring by remote sensing technology is an 
extremely valuable technical tool in applications such as ecosystem 
monitoring with the background of global change (Ji et al., 2021), 
forestry resource management (Kim et al., 2014), damage assessment 
(Bovolo & Bruzzone, 2007), and agricultural surveying (Tan et al., 
2021). However, the diverse background features and dense buildings 
bring challenges to building change detection. 

Change detection is defined as the process of characterizing land 
surface changes and qualitatively analyzing them using remote sensing 
data derived from different times (Tan et al., 2019). The changed areas 
and types are obtained by feature extraction at the same location using 
images from different times. The traditional pixel-wised methods can be 

classified as clustering, transforming, image algebra and classification 
based (Shi et al., 2020). When object-oriented image analysis ap
proaches were applied for processing the high-resolution data, the basic 
cells of the change areas had been gradually transformed from pixels to 
segmented objects. Compared with individual pixels, objects contain 
more complete contextual information. Pixel-based post-classification 
comparison methods and direct classification comparison methods have 
been implemented for object-oriented change detection, generally 
achieving a better accuracy than the pixel-level change detection 
methods. However, such methods heavily rely on the difference map, 
and the process of superpixel generation tends to lose detailed infor
mation, which leads to instability in the accuracy of the results. 

Recently, the popularity of high-performance computing devices and 
the development of big data technology have driven the deep learning 
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revolution, which has also been employed in the remote sensing image 
analysis, because of its remarkable ability of deep feature extraction 
(Niu et al., 2021; Wang et al., 2019). Convolutional neural network 
(CNN) models, which are a classical deep learning structure, can auto
matically learn the abstract spatio-spectral features from remote sensing 
images (Wang et al., 2022a). LeNet (LeCun et al., 1998) was one of the 
first CNNs released to recognize handwritten digits in images, achieving 
a comparable performance to the support vector machine method at the 
time and becoming the dominant method for supervised learning. 
Although LeNet can achieve good results on small datasets, it does not 
perform as well as the other machine learning methods on larger 
datasets. 

However, the fully connected layer in CNN-based change detection 
methods has many parameters, is time-consuming, and has strict re
quirements on the size of the input and output. Therefore, fully con
volutional networks (FCNs) employ the convolutional operation in the 
last layer to extend image-level classification to pixel-level classification 
(Long et al., 2015), which can be utilized in the remote sensing change 
detection. FCN based algorithms have also been applied for remote 
sensing segmentation. Various types of neural network models have 
emerged and a number of breakthroughs have been achieved. For 
example, Li et al. (Li et al., 2021) investigated the fully convolutional 
neural network by adding a multi-scale convolutional module, which 
has been demonstrated that the multi-scale features can promote the 
effectiveness of high-resolution image change detection. The U-Net ar
chitecture improves on FCNs by taking a completely different approach 
to feature fusion, concatenating features together in the channel 
dimension to produce more significant features than FCNs. Zheng et al. 
(2021) investigated a CNN by embedding a multi-scale cross block in U- 
Net that can merge the features in different scales and different levels to 
improve the information usage of the network. Peng et al. (2019) used 
multi-temporal imagery overlay as an input to UNet++ (Zhou et al., 
2018) to fuse the change prediction maps using multi-scale character
istics. Zhou et al. (2019) improved the training structure of UNet++ to 
maintain the performance while also speeding up the inference. The 
well-known Siamese network architecture was originally used in change 
detection to compare the similarity between images from two periods 
(Zheng et al., 2022). Wang et al. (2020) devised a convolutional network 
using Siamese features to perform change detection by extracting the 
difference between features. 

However, because of the complex scenes of the remote sensing im
agery with high resolution, the current methods have the problems of 
incomplete buildings and blurred building edges when applied to 
building change detection, which leads to a limited model accuracy. 
Considering the above problems, scholars have adopted superpixel 
representation to correct the inaccurate edges. A superpixel is a small 
region consisting of a series of pixel points that are located next to each 
other and are of the same properties, such as brightness, texture and 
color. These regions keep valid characteristic for further processing with 
clear boundary information of the objects. In recent years, superpixel 
algorithms have gradually become widely utilized in change detection. 
For example, Sakurada and Okatani (Sakurada & Okatani, 2015) 
employed a CNN and superpixels for street image change detection; 
Zhang et al. (2021) also combined superpixels with a CNN to reduce the 
potential noise in the imagery. 

Although these change detection methods have a good performance, 
the processes of change detection and superpixel generation are pro
cessed separately, and the final algorithm cannot obtain the globally 
optimal solution. To overcome these limitations, we designed the double 
U-Net (W-Net) architecture to achieve the global change discrimination 
and local superpixel coupling training objectives. The contributions are:  

(1) We investigate a new coupled double-head model—W- 
Net—consisting of a change detection module and a superpixel 
module, which is capable to guarantee the completeness of the 

features and the edge information in the change detection results 
using the superpixel module.  

(2) Integrating change detection and superpixel representation into 
the same network can obtain the globally optimal solution and 
can address the loss of detailed information and instability in the 
detection accuracy.  

(3) The proposed W-Net method achieved a superior performance on 
two well-known open-source datasets when compared with the 
recent CNN-based detection methods. 

This paper is organized as following. Methodology gives the previous 
works and W-Net. Experimental setup introduces the experimental 
setting and the change detection datasets utilized in the experiments. 
Experiments details the comparisons with other approaches. Discussion 
discusses the performances with different hyperparameters. Finally, we 
give the conclusions in Conclusion. 

2. Methodology 

In this part, we elaborate the details of the W-Net algorithm, to 
address the current problems of low accuracy, poor adaptability, and 
blurred edges in change detection. UNet++ is included as the basic 
framework, and the superpixel module is embedded to enrich the spatio- 
spectral characteristics and to correct the edges which can reduce the 
potential noise. In addition, a backbone and branch coupling structure 
are introduced to integrate the change detection and superpixel 
expression, to ensure that the different modules can converge to the 
global optimum. 

2.1. Main module 

As the representative end-to-end network for pixel-level prediction, 
FCN-based methods have become the basic framework for semantic 
segmentation. 

In this work, UNet++ is included as the basic framework. UNet++

consists of intermediate features with different depths, whose decoders 
are refused by dense skip connections. UNet++ shares the same feature 
extractor during training, and all the modules have a common input and 
can train together, which improves the overall segmentation perfor
mance and efficiency. In addition, UNet++ does not suffer from the 
limitations of skip connections because its dense skip connections pro
vide the multi-scale features during decoding. 

The skip connection structure expression is as follows: 

xi,j =

⎧
⎨

⎩

H
(
D

(
xi− 1,j) ), j = 0

H

([[
xi,k

]j− 1
k=0,U

(
xi+1,j− 1)

] )
, j > 0

(1) 

where H represents the convolution operation, D is downsampling, 
and U is upsampling. xi,j denotes the output of node [i, j], where i is the 
downsampling layer along the encoder index, and j is the convolutional 
layer along the skip connection index dense block. 

However, UNet++ has a complex model structure, resulting in many 
model parameters. Therefore, deep supervision is introduced in UNet++

to calculate the loss function value for each sub-model. Each sub-model 
is named L1, L2, L3, and L4, respectively, according to their depth. The 
implementation of deep supervision is to add an output layer for binary 
change detection on each sub-model. Because each sub-model in 
UNet++ can predict the results, the loss can be propagated to L1, L2, L3, 
and L4. Deep supervision can prune the model during inference and 
maintain a high accuracy with a high inference efficiency. For better 
global optimization of the model, UNet++ defines a mixed segmenta
tion loss function for each semantic scale, including pixel-level dice 
coefficient and cross-entropy loss function, which provides smooth 
gradients during the model training and alleviates the category imbal
ance issue. The outputs of the four scales of the proposed W-Net model 
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are 
[
Q1,Q2,Q3,Q4] ∈ RH×W×2, and then the final output of the model 

Qall is given by the average of the above branches as follows :

Qall =
1
4
•
∑4

i=1
Qi (2) 

The true label of the data processed by the OneHot encoder is set as 
G ∈ RH×W×2, and then the loss function is formulized as: 

L CE(y, ŷ) =
{

− log(ŷ) if y = 1
− log(1 − ŷ) if y = 0 (3)  

L
(
Qall,G

)
=

L CE
(
Qall,G

)

2
+

2 • Qall • G
Qall + G

(4) 

where L CE() represent the binary cross entropy. 

2.2. Superpixels 

Superpixels can effectively assist in tasks such as semantic segmen
tation (Gadde et al., 2016), classification (Mu et al., 2022), and change 
detection (Shuai et al., 2022). The simple linear iterative clustering 
(SLIC) algorithm (Achanta et al., 2012; Di et al., 2021) designs feature 
vectors containing position and color channel information and generates 
superpixels using k-means clustering. Scholars have investigated 
superpixel algorithms based on deep learning. The semantic sensor 
network (SSN) algorithm (Jampani et al., 2018) employed a neural 
network to generate the features in pixel-level, and then utilized a k- 
means algorithm to obtained superpixels. Although SSN implements an 
optimizable superpixel algorithm, the structure is complex. The 
superpixel-FCN (Spixel-FCN) (Yang et al., 2020) algorithm used a very 
concise structure to achieve highly accurate superpixel segmentation 
based on the direct generation of superpixel mappings by an FCN. A 
superpixel algorithm based entirely on deep learning algorithm provides 
an innovative idea to the superpixel module for change detection 
models. The conventional superpixel clustering operations have non- 
differentiable mathematical characteristics and cannot use back
propagation for deep learning. Spixel-FCN utilized an FCN with an 
upsampling-downsampling framework that enables fast generation of 
superpixels, which saves on the time required for clustering and has a 

simple structure for easy application. 
Spixel-FCN is trained and optimized based on the two losses obtained 

from the prediction results, which are the superpixel internal recon
struction loss and the difference loss between labels. After dividing the 
image into a regular grid of size H × W and initializing the superpixel 
centers, only the nine superpixels around each pixel are considered. For 
example, the pixel in the green box in Fig. 1 only needs to be considered 
in association with the nine superpixels in the red box. A matrix Q ∈

RH×W×9 is obtained by calculating the association of each pixel with the 
superpixels. After this, Spixel-FCN predicts Q by the neural network to 
obtain the superpixel results. 

The features of the superpixel centers are obtained by weighted 
averaging according to the correlation between pixels and superpixels. 
The superpixel center s is denoted as Cs = (us, Is), where us represents 
the feature information and ls represents the location information. The 
superpixel center is then calculated as: 

us =

∑
x:s∈Nx

x • qs(x)
∑

x:s∈Nx
qs(x)

, ls =

∑
x:s∈Nx

x • qs(x)
∑

x:s∈Nx
qs(x)

(5) 

where x denotes one pixel in the superpixel, f(x) represents the 
feature of x, N x dentoes all the superpixels around the pixel, qs(x)
represents the association of x with superpixel s. 

After obtaining the superpixel centers, the association of pixels with 
superpixels is used to reconstruct the target features of each pixel on the 
basis of the superpixel features. The pixel reconstruction formula is: 

f′
(p) =

∑

s∈Np

us⋅qs(p), p′ =
∑

s∈Np

ls⋅qs(p) (6) 

where f′(p) is the reconstructed pixel feature, and p′ is the recon
structed pixel position information. 

The general form of the loss function design is: 

L(Q) =
∑

p
dist(f (p), f ′(p) )+

m
s
‖p − p′‖2 (7) 

A form of loss function based on SLIC is used: 

LSLIC(Q) = λ2

∑

p
‖fcol(p) − f ′

col(p)‖2 +
m
s
‖p − p′‖2 (8) 

where the features are represented in CIELAB color space, and the 
distance is calculated using the L2 norm, λ2 is the reconciliation 
hyperparameter. 

2.3. Coupled double-head model 

Most of the current methods for applying superpixels to change 
detection are based on using the superpixels to normalize the model 
predicted values. This is done by comparing the pixel and superpixel 
attributes based on the classification confidence, to determine the in
dividual pixel attributes. However, the separation of superpixel gener
ation from the inference of change detection can result in an 
optimization gap that limits the performance of the model, so it is 
desirable to implement end-to-end integration with an efficient frame
work. The implementation of multitasking with a single deep learning 
model has been studied in other fields. Wu et al. argued that the features 
generated by a single network model cannot achieve optimal results on 
multiple subtasks, so the same features should not be used to solve two 
subtasks simultaneously (Wu et al., 2020). Based on this idea, we 
designed a two-branch multi-task coupling framework for change 
detection and superpixels, which is a backbone and branch coupling 
structure integrating change detection and superpixel representation. 

As shown in Fig. 2, the proposed W-Net is a coupled double-head 
model and includes two decoders sharing one encoder. Unlike the 
existing methods, W-Net divides the change detection and superpixels 
into different branches, which pass through their respective convolu
tional layers to produce two different features for the superpixel tasks 

Fig. 1. Illustration of the superpixel.  
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Fig. 2. The structure of the W-Net framework for remote sensing change detection.  

Table 1 
The performance of the different algorithms on L-CD dataset.   

FC FC-S-C FC-S-D DeepLabv3 UNet++ HFANet HDANet Proposed 

Precision  0.9016  0.9394  0.8911  0.9003  0.9144  0.8344  0.9226  0.9124 
Recall  0.7255  0.7597  0.7756  0.8251  0.8524  0.8228  0.8761  0.8921 
F1score  0.804  0.8401  0.8293  0.8611  0.8823  0.8286  0.8987  0.9031 
Kappa  0.7947  0.8324  0.8209  0.8539  0.8762  0.8193  0.8934  0.8969  
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and change detection. Meanwhile, the two branches generate different 
types of loss function values. The differences between the two values are 
coordinated to jointly optimize the backbone network, so that the model 
achieves a globally optimal detection performance. Two kinds of losses 
have been integrated in W-Net, which comes from the sueprpixel gen
eration part and the change discrimination part. The superpixel gener
ation part employs two losses. The one is the distance with CIELAB 
features and the other is the spatial distance. Moreover, the change 
discrimination part employs the binary cross entropy loss. The balance 
parameter between these two parts has been optimized to set as 0.03. 
Only using CIELAB features or other unsupervised information cannot 
obtain the supervised semantic information. The superpixel generation 
part in this work is to improve the boundary integrity and reduce the 
pepper noise in the changed parcels, and the one-hot vector features is 
employed in the other head of the W-Net. Due to the lack of semantic 
information in the superpixel generation part, the generated superpixels 
are cracked, which can be modified using the sufficient semantic labels 
in the future research. All the SLIC loss and the supervised loss can be 
propagated to the encoder part of the W-Net. 

To be more specific, two images of the same region at difference 
periods are acquired and normalized separately to obtain two images 
with size H× W× 3. These two images are input into the network and 
combined into an input with size H × W × 6 by channel-wise concate
nation. The proposed network is a single-input, multi-output structure, 
and the input data are downsampled by the multi-segment convolu
tional structure of the network to generate multiple sets of depth feature 
maps with multi-scales {Hi × Wi × Ci} . In the upsampling part of the 
model, the feature map generates four sets of intermediate features by 
several sets of common skip connections and deconvolution layers. For 
the last set of upsampling, the proposed W-Net model sets up a set of 
parallel convolution modules, named “double heads”, which are the 
change detection head and the superpixel head. The parallel modules 
perform the convolution calculation and softmax function on the input 

features and output the results. The change detection head outputs a 
classification vector with size H × W × 2, and the superpixel head 
outputs a superpixel prediction vector with size H × W × 9. Except for 
the parallel modules, where the two tasks are optimized separately, the 
other parts are optimized together. In the training step, the change 
detection head calculates cross entropy between output vector and label. 
Superpixel head calculates the reconstruction error within the super
pixel prediction and the segmentation loss with the labels. The final loss 
is the sum of these items with different weights. 

The final observation equation is expressed as: 

L = LCE(Probout,R)+ λ1LSLIC(Q) (9) 

where λ1 is the reconciliation hyperparameter; LCE(Probout ,R) is the 
binary cross entropy between the result and the label. LSLIC(Q) is the 
SLIC loss of the superpixel network. 

In the test step, the model post-processes the classification vector to 
obtain the binary classification map and post-processes the superpixel 
prediction vector to obtain the pixel categorization data. Finally, the 
classification result map is adaptively soft fused with the pixel catego
rization data to achieve the detection map. 

The adaptive soft fusion equation is given below. Assuming that the 
pixels in a superpixel are {

[
Xi,Yi, Pposi,Pnegi

]
, i = 1,2,3,⋯,N}, then the 

overall classification result for this superpixel is: 

mode =

{
0

∑N

i=1
Pposi >

∑N

i=1
Pnegi

1
∑N

i=1
Pposi ≤

∑N

i=1
Pnegi

(10) 

where [Xi,Yi] is the superpixel position; Pposi denotes the probability 
that the position labeling as the ‘unchanged’; Pnegi denotes the proba
bility that the position labeling as ‘changed’; mode is determined by 
discriminating the confidence level of the two classes, which represents 
the class attribute of this superpixel. N is the number of the pixel in one 
superpixel. 

Fig. 3. The detection maps with A change scene on the L-CD dataset.  

X. Wang et al.                                                                                                                                                                                                                                   



International Journal of Applied Earth Observation and Geoinformation 122 (2023) 103456

6

The category of each pixel is determined in turn, where the original 
classification result is assumed to be CLSorigi with confidence level Pi. 

CLSi =

⎧
⎨

⎩

CLSorigi Pi >
∑N

i=1
Pi*

1
N

mode otherwise
(11) 

where Pi is the posterior probability for the original label, mode 
denodes the class attribute of this superpixel. 

3. Experimental setup 

To ensure the generality of the approach, we tested the proposed W- 
Net method using the WHU building and the LEVIR-CD dataset. 

WHU building dataset (WB-CD dataset) is published by Wuhan 
University (Ji et al., 2018). The dataset was collected in Christchurch, 
New Zealand, with two periods of images acquired in 2012 and 2016. 
The original image has 15354 × 32507 pixels, which has been cropped 
into 256 × 256 non-overlapping images and divided in the ratio of 1:1:8 

to get 743 images for the test set, 743 for the validation set and 5948 for 
the training set. 

LEVIR-CD dataset (L-CD dataset) is a publicly available dataset tar
geting building change (Chen & Shi, 2020) between 2002 and 2018. The 
image in the original image set has 1024 × 1024 pixels and was sampled 
by the authors into a test dataset, a training dataset, and a validation 
dataset. We cropped the original image to 256 × 256 to obtain 2048 
images to test the W-Net, 1024 images to validate the optimized model 
and 7120 images to train the W-Net. 

SYSU-CD dataset is a batch of change detection datasets published by 
the Sun Yat-Sen University (Shi et al., 2022). The main change types of 
this dataset include changes in different natural objects. The dataset has 
been released with training set, validation set and test set by the authors. 
The number of images is 12000, 4000, and 4000 for the training, vali
dation and test set respectively. The size of each image is 256 × 256. 

3.1. Implementation details 

The W-Net algorithm was conducted under the PyTorch 1.10 

Fig. 4. The detection maps with B change scene on the L-CDdataset.  

Table 2 
The performance of the different algorithms on WB-CD dataset.   

FC FC-S-C FC-S-D DeepLabv3 UNet++ HFANet HDANet Proposed 

Precision  0.7623  0.8831  0.802  0.8256  0.8906  0.8344  0.8987  0.9476 
Recall  0.7765  0.7261  0.7631  0.8197  0.7898  0.8228  0.8255  0.8888 
F1score  0.7693  0.7969  0.7821  0.8226  0.8372  0.8286  0.8605  0.9172 
Kappa  0.7603  0.7899  0.7739  0.8158  0.8313  0.8193  0.8554  0.9142  
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framework. The optimizer is Adam optimizer with the initial learning 
rate of 0.005. The β1, andβ2 was set to 0.9 and 0.999, respectively. The 
weight decay was 0.01. The batch size was 8, and the training epochs 
were based on early stopping criterion. We observed in the experiments 
that the best results were achieved with λ1 and λ2 set to 0.03 and 0.001, 
respectively, in the loss function for the different settings. The details of 
the related experiments are provided in Section 5. The same training 
method was used on all the test datasets. The parameter settings used in 
the other comparison methods were essentially the same as the above. 
All the experiments in this study were conducted on an NVIDIA RTX 
3090 GPU device and a Linux server. 

3.2. Evaluation indicators 

We selected the four indicators of F1-score, kappa coefficient, recall 
and precision to assess the accuracy, which are calculated by the 
following equations: 

Precision =
TP

TP+ FP
(12)

Recall =
TP

TP+ FN
(13)

F1 =
2 × Precision× Recall
Precision+ Recall

(14)

OA =
TP+ TN

TP+ TN + FP+ TN
(15)

P =
(TP+ FP)(TP+ FN) + (FN + TN)(FP+ TN)

(TP+ TN + FP+ TN)2 (16)

kappa =
OA − P
1 − P

(17)

where FP denotes the amount of incorrectly recognized ‘changed’ 
label, TN is the amount of correctly recognized ‘unchanged’ label, FN is 
the number of incorrectly recognized ‘unchanged’ label, and TP repre
sent the amount of correctly classified ‘changed’ label, 

4. Experiments 

To confirm the advantage of W-Net in terms of accuracy, seven other 
advanced algorhtims are compared the W-Net method, namely, FC, FC- 
S-D, FC-S-C, DeepLabv3, UNet++, HFANet, and HDANet. 

FC (Daudt et al., 2018) uses U-Net to input the images of two periods 
into the network by fusing the features with the same size in each step, to 
recover the information that is lost in downsampling the feature maps. 
FC-S-C (Daudt et al., 2018), as an extended form, uses a Siamese- 
structured VGG network for feature extraction, processing the two im
ages through two encoder branches with the same structure and the 
same parameters. The three features in each branch and the corre
sponding layer in the decoding are skip connected. The follows the en
coders are integrated. FC-S-D (Daudt et al., 2018), which is also an 
extended form of FC_EF, utilizes the absolute difference of the subtracted 
features of the two decoders. DeepLabv3 (Chen et al., 2017) utilzes 
atrous spatial pyramid pooling structure with different expansion rates 

Fig. 5. The detection maps with A change scene on the WB-CD dataset.  
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of convolution in parallel, to learn the features of objects at different 
scales. We used ResNet-50 as the feature extraction network. UNet++

(Peng et al., 2019) uses two periods of image superposition as input and 
uses a more intensive jump connection approach, compared to U-Net. It 
also uses a deep supervision strategy to compute multiple outputs of 
different layers with simultaneous losses to improve the accuracy and 
training stability. HFANet (Zheng et al., 2022) uses a Siamese network as 
the backbone and applies a new attention module to capture the 
building information, enabling better detection of the edges of changed 
buildings. HDANet (Wang et al., 2022b) utilizes HRNet architecture to 
capture the features, connecting four different resolutions in parallel to 
achieve feature fusion between the different resolutions. 

4.1. Experiments on the L-CD dataset 

Table 1 reports the detection performance of each method on the L- 
CDdataset. W-Net algorithm outperforms the other methods. W-Net 
achieves the highest results in F1-score and kappa, with the value of 
0.9031 and 0.8969, comparing with the other approahes. DeepLabv3, 

UNet++, and HDANet also achieve high detection accuracies, among 
which HDANet obtains the highest F1-score of 0.8987. The F1-score of 
W-Net is improved by 0.35% and the kappa coefficient is improved by 
0.44% comparing with HDANet. The detection accuracy of all the al
gorithms in the FC, FC-S-D and FC-S-C is worse than that of the above 
algorithms. Although the precision of FC-S-C is the highest among all the 
methods, the recall is lower and the detection of changed objects is not 
comprehensive, resulting in a low F1-score of 0.8401. The F1-score of W- 
Net shows an improvement of 6.3% and the kappa coefficient is 
improved by 6.45% comparing with HDANet. 

Fig. 3 and Fig. 4 show the visualization of the detection results under 
different scenes. From Fig. 3, all the methods, except for W-Net, show 
some omissions in this changing scene, among which FC-S-C, FC, and 
DeepLabv3 show the most serious omissions. W-Net algorithm has the 
highest target coverage and the best detection effect comparing with 
other approaches, and the generated change map is the most consistent 
to the real. For Fig. 4, FC, DeepLabv3, HDANet, and W-Net obtain the 
best detection results, FC-Siam-Diff and UNet++ have some voids in the 
changed regions, and HFANet shows false detection at the edges. Among 

Fig. 6. The detection maps with B change scene on the WB-CD dataset.  

Table 3 
The performance of the different algorithms on SYSU-CD dataset.   

FC FC-S-C FC-S-D DeepLabv3 UNet++ HFANet HDANet Proposed 

Precision  0.8269  0.7792  0.8492  0.8099  0.8144  0.8013  0.7853  0.8302 
Recall  0.6308  0.7208  0.643  0.7065  0.7466  0.7641  0.7988  0.8037 
F1score  0.7156  0.7488  0.7319  0.7547  0.779  0.7823  0.792  0.8167 
Kappa  0.6427  0.6752  0.6635  0.6856  0.7146  0.7617  0.7271  0.7724  
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Fig. 7. The detection maps with A change scene on the SYSU-CD dataset.  

Fig. 8. The detection maps with B change scene on the SYSU-CD dataset.  
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the different methods, W-Net effectively distinguishes the changed area, 
and the building edge contours of the detection results are the most 
complete. 

4.2. Experiments on the WB-CD dataset 

Table 2 reports the accuracy of all algorithms on the WB-CD dataset. 
W-Net outperforms the other method, with 0.9476 for the precision, 
0.8888 for the recall, 0.9172 for the F1-score, and 0.9142 for the kappa 
coefficient, with each metric being the highest value among the different 
methods, quantitatively proving the superior of W-Net. The four coun
terpart methods of DeepLabv3, UNet++, HFANet, and HDANet all 
achieve a good accuracy, with HDANet performing the best. As with the 
previous dataset, the performance of the three methods in the FC series 
is poor, with FC obtaining the lowest accuracy. The F1-score of FC is 
lower than that of W-Net over 10%. 

As shown in Figs. 5 and 6, two scenes are selected for visualization. 
From Fig. 5, the detection process for large objects results in the poor 
existence of the severe building damage, except for HFANet and W-Net. 
The HFANet segmentation results are more complete, but there are some 
missed detections affected by the texture of the target features. W-Net 
obtains the best results and demonstrates an optimal visual 

performance. In the second scene, all the methods perform better, 
overall, although HFANet shows a small area of false detection. W-Net 
again obtains the best change map, retains clearer boundaries, and 
further demonstrates its superior change detection capability. 

4.3. Experiments on the SYSU-CD dataset 

Different with the two datasets above, the main change types of this 
dataset include changes on different natural category objects, such as 
changes from forest land to building land, river banks expansion, the 
disappearance of ships in the water and the addition of buildings, etc.. 
The change of ground objects in this dataset is complicated, which 
brings the challenges to the change detection algorithms. Table 3 lists 
the accuracy of the detection results obtained for the SYSU-CD dataset. 
When tackling the forest changes or some changes in mountainous areas 
which have more irregular and unclear change boundary compared with 
the man-made building areas. W-Net achieved the highest values among 
the test results in terms of the kappa coefficient and F1-score, with an F1- 
score of 0.8167and a kappa coefficient of 0.7724. FC-S-D obtained the 
highest Precision, with a Precision 0.8492. FC obtained the lowest F1 
score which was as with the previous two datasets. 

Two natural resources change scenes have been selected for 

Table 4 
Results of the experiments with different superpixel methods.  

Datasets LEVIR-CD WB-CD SYSU-CD 

Methods SLIC SSN Proposed SLIC SSN Proposed SLIC SSN Proposed 

F1score  0.8863  0.8895  0.9031  0.8908  0.8941  0.9172  0.794  0.8042  0.8167 
Kappa  0.885  0.8848  0.8969  0.8895  0.9002  0.9142  0.7441  0.767  0.7724  

Fig. 9. The detection maps generated by the different superpixel algorithms on the L-CDdataset.  
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visualization, shown in Figs. 7 and 8. From Fig. 7, the changed area in 
the exposed mountain has been detected well by W-Net, but the results 
obtained by other methods cannot detected the whole changed area. The 
HDANet segmentation results are more credible comparing with other 
contrast methods, but there is some pepper noise in the changed area 
comparing with the W-Net. The second scene shows that for the more 
complex change scenario, the five counterpart methods of FC, FC-S-C, 
FC-S-D, DeepLabv3 and HFANet have obtain the bad visual perfor
mance. Among the other methods, W-Net shows no obvious omission 
errors. 

4.4. Experiments with other superpixel methods 

The traditional superpixel approach normalizes the predicted values 
based on the plurality in the superpixel range, but this needs to be 
supported by better classification results. If the initial classification re
sults are poor, superpixels may play a side role. Therefore, the method 
used in the proposed approach uses end-to-end superpixels and adaptive 
fusion to effectively alleviate the dependence of superpixels on classi
fication quality. To ensure the validity of the proposed superpixel model, 
we selected four samples of difficult scenes on WB-CD dataset, L-CD 
dataset and SYSU-CD dataset for comparison experiments compared to 
other superpixel methods. We chose SLIC and SSN methods to be added 
to the backbone. The compare method SLIC and SSN methods are con
ventional superpixel methods. The detection results obtained by the 
backbone are refined by the superpixel results generated using SLIC and 
SSN. Table 4 lists the performance for each metric. Compared with SLIC, 
W-Net improves the performance of the F1-score by 1.68% and the 
kappa coefficient by 1.19% on the L-CDdataset comparing. W-Net im
proves the accuracy of the F1-score by 2.31% and the kappa coefficient 

by 1.40% on the WB-CD dataset comparing with SSN. W-Net improves 
the accuracy of the F1-score by 2.27% and the kappa coefficient by 
3.13% on the SYSU-CD dataset comparing with SLIC. The F1-scores of 
the W-Net are consistently higher than the results of the other ap
proaches on both datasets. It can also be illustrated in the Figs. 9–11 that 
the W-Net algorithm is effective in reducing the error rate, despite the 
poorer classification base, taking advantage of the double head and 
adaptive fusion in the training step to generate better detection maps. 

5. Discussion 

5.1. Hyperparameters 

In this part, the effectiveness of the hyperparameters is disscussed. 
The loss function of W-Net introduces a new hyperparameter, the bal
ance parameter λ1, which controls the proportion of the loss values in 
the superpixel branch so that it is as balanced as possible with the 
classification branch. The superpixel branch is frozen whenλ1 = 0. The 
loss value of the superpixel branch will be up to hundreds when λ1 = 1. 
The value of λ1 has a significant influence on the detection results, which 
needs to be chosen reasonably, to ensure that both branches can main
tain the same optimization progress in the training step. Since the ratio 
between the segmentation loss and cross entorpy loss of the superpixel 
module is fixed, we employed the same settings as Yang et al. [49] and 
fixed λ2 to 0.001 while changing only the value of λ1. For a fair com
parison, extensive experiments on the value of λ1 are conducted and the 
four metrics for W-Net on the two datasets at different values of λ1 are 
evaluated. 

It can be observed that, when the value of λ1 is larger than 0.1, the 
superpixel branch has a severe inhibitory effect on the classification 

Fig. 10. The detection maps generated by the different superpixel algorithms on the WB-CD dataset.  
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branch, and it is at the order of 0.01 that the balance between the two 
branches is maintained. In general, the value of λ1 is selected to ensure 
that the loss function values of the two branches are in the same order of 
magnitude, and in fact the best λ1 range is at the 0.01 level. In addition 
to the values, we tested values in the interval [0.01,0.09], with similar 
experimental results. The results for different values of λ1 on three 
datasets are presented in Table 5, which can prove that the trained 
model yields the best performance when λ1 is 0.03. 

The proposed model has a single-input, multi-output structure, with 
the two branches having their own loss function computation modules. 
The two branches also have independent gradients in the double-head 
part, and the gradients are vectorially accumulated in the down
sampling. Therefore, if there is an order of magnitude difference be
tween the losses of the two branches, it causes the parameter update in 
the downsampling part of the model to be more biased toward the 
branch with the larger loss value, thus hindering the optimization pro
cess of the other branch. The hyperparameter λ1 is what plays the role of 
adjusting the optimization step, so that the loss function values remain 

balanced at the early step of training and achieve the global optimum for 
the model. 

5.2. Superpixel ablation study 

We conducted ablation discussion on the two datasets to validate the 
validity of the W-Net. The traditional fusion method refers to the use of 
superpixels in the results and the comparison of pixel with superpixel 
attributes based on the classification confidence, to determine the in
dividual pixel attributes. Since W-Net is derived from UNet++, we chose 
it as the baseline, which just utilized the multiscale features without the 
superpixel constraint and named “Without_SP”. The generated super
pixels have been overlaid on the images of two periods. Fig. 12 shows 
that the change detection results by W-Net are clearly better than that by 
the baseline which without superpixel generation part. Because the 
input data of the W-Net are the images of two periods, the generated 
superpixels represent bitemporal land cover characteristics. The super
pixels align to many different landcover, and one building entity 
generally is commonly characterized by many superpixels. Because of 
the adaptive soft fusion, the superpixel which distributed in the changed 
area can constrain the change discrimination part to make the detected 
areas have regular shapes. 

The superpixels were added to UNet++ in different ways to get the 
comparation models, and the performances are reported in Tables 6. 
After coupling the superpixels into the change detection algorithm, the 
model shows performance improvement in accuracy, and adding 
superpixels can reduce the noise and utilize more information in the 
scene. 

Fig. 11. The detection maps generated by the different superpixel algorithms on the SYSU-CD dataset.  

Table 5 
The results obtained by varying λ1 for the W-Net loss function on the three 
datasets.  

λ1 L-CD WB-CD SYSU-CD 

F1score Kappa F1score Kappa F1score Kappa 

0.001  0.8630  0.8468  0.8827  0.8736  0.7838  0.7433 
0.01  0.9041  0.8938  0.9041  0.8938  0.8025  0.7668 
0.03  0.9033  0.8996  0.9132  0.9051  0.8167  0.7724 
0.1  0.8373  0.8141  0.8942  0.8827  0.7921  0.7644 
1  0.7298  0.7129  0.7845  0.7579  0.797  0.7532  
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6. Conclusion 

In this work, we have proposed a double-head model that couples a 
change detection branch and a superpixel branch. The proposed W-Net 
method effectively improves the building edge blurring through the 
auxiliary inference of superpixels and makes the model more holistic 
and fully optimized by coupling the training methods. The advancement 
of the W-Net was demonstrated using three public datasets. The F1score 
on LEVIR-CD dataset was 0.9031 and kappa coefficient was 0.8969. The 
F1-score on WHU building dataset was 0.9172 and kappa coefficient was 
0.9142. The F1-score on SYSU-CD dataset was 0.8167and and kappa 
coefficient was 0.7724. The proposed W-Net method achieved a superior 
performance on three well-known open-source datasets when compared 
with the recent CNN-based and FCN-based change detection methods. In 
addition, we explored the role and association of the various modules of 

the W-Net. After coupling the superpixels into the change detection al
gorithm, the model shows performance improvement in accuracy, and 
adding superpixels can reduce the noise. 
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Fig. 12. The illustration of the superpixel on the three datasets.  

Table 6 
The ablation study on the three dataset.  

Methods L-CD WB-CD SYSU-CD 

F1score Kappa F1score Kappa F1score Kappa 

Without_SP  0.8823  0.8762  0.8372  0.8313  0.779  0.7146 
With_SP  0.9031  0.8969  0.9172  0.9142  0.8167  0.7724  
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