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a b s t r a c t 

Hyperspectral anomaly detection is aimed at detecting targets with significant spectral differences from 

their surroundings. Recently, deep generative models have been applied to anomaly detections, while 

the existing generative adversarial network (GAN)-based methods have difficulty in accurately modeling 

the background and achieving spectrum reconstruction. In this article, a hyperspectral anomaly detection 

network based on variational background inference and generative adversarial framework (VBIGAN-AD) is 

proposed. The proposed VBIGAN model can learn the background distribution characteristics of HSIs and 

enhance the detection performance by the use of reconstruction errors. Specifically, the VBIGAN frame- 

work consists of sample and latent GANs, which establishes the relationship between data samples and 

latent samples through two sub-networks to capture the data distribution. Furthermore, the variational 

inference method is introduced and the hyperspectral background distribution can be converged to a 

multivariate normal distribution. To accurately learn the background distribution characteristics and re- 

construct the background spectra, the coupling loss is conducted by enforcing feature match in the two 

discriminators on the basis of composite loss, and the results show that the additional loss can promote 

the detection performance. As a result, the reconstruction errors generated by the VBIGAN-AD method 

is utilized to detect abnormal targets. The experiments conducted on five datasets proved the robustness 

and applicability of the proposed VBIGAN-AD method. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Hyperspectral image (HSI) is a three-dimensional cube in which 

wo dimensions provide the spatial features of the materials, and 

he other one offers continuous spectral reflectance vectors [1] . Ac- 

ordingly, hyperspectral imagery has received with great attention 

n various application areas, such as image classification [2,3] , di- 

ensionality reduction [4] , and target/anomaly detection [5] . Hy- 

erspectral anomaly detection, without any prior spectra of the 

argets, is aimed at locating the abnormal targets with significant 

pectral differences from the background [6] . 

During the past decades, anomaly detection algorithms with 

ifferent background modeling approaches have been developing. 

he most classical algorithm of the statistical-based methods is the 
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eed-Xiaoli (RX) detector [7] . The RX algorithm assumes that the 

ackground satisfies a multivariate normal distribution and uses 

he Mahalanobis distance to detect anomalies. There are two kinds 

f RX algorithm, which are the global RX (GRX) and local RX (LRX) 

8] .The difference between them is whether use the entire image 

r the local double window for modeling. Zhang et al. [9] trans- 

ormed HSI into frequency domain only by fractional Fourier trans- 

orm and then used the tensor RX algorithm to detect anomalies. 

oreover, researchers improve the background reliability of RX al- 

orithm from the perspective of kernel method and spatial infor- 

ation [10,11] . Nevertheless, the background distribution in the 

eal world is quite complex, which usually leads to lower detec- 

ion accuracy [11] . 

Differing from the aforementioned statistical distribution ap- 

roaches, representation based background modeling algorithms 

ave been rapidly developing. Because the background of the 

SI has low-rank characteristics, a low-rank representation (LRR) 

heory was introduced into anomaly detection [12] . The low- 

ank and sparse matrix decomposition based Mahalanobis dis- 
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ance (LSMAD) model detected abnormal targets by obtaining 

urer background information and employing the Mahalanobis dis- 

ance [13] . Zhang et al. [14] used spectral difference low-rank 

ictionary representation learning for global background model- 

ng, which accurately constructs the pure background dictionary. 

ang et al. [15] proposed a detector based on a tensor low- 

ank sparse representation and constructed a dictionary learning 

lgorithm to effectively characterize the multiple subspace prop- 

rties of complex backgrounds. Chang et al. [16] proposed the 

nsupervised OSP-AD algorithm based on OSP-GoDec, and the 

enerated low-rank matrix and sparse matrix can be utilized as 

he background and target subspaces respectively. Alternatively, 

i et al. [17] proposed a collaborative representation based de- 

ector (CRD), which uses ensemble learning by the combination 

f neighboring pixels and the linear representation principle, and 

nally uses the spectral residual values to determine anoma- 

ies. Tan et al. [18] combined inverse distance weighting and a 

ultiple-window sliding filter algorithm based on the CRD algo- 

ithm, which adequately incorporates multi-scale spatial features 

o enhance the adaptation to complex backgrounds. Zhao et al. 

19] combined a weighted Cauchy distance graph and local adap- 

ive CRD to make full use of spatial and spectral information, 

hich is reliable and robust in complicated background condi- 

ions. However, for the conventional detection methods mentioned 

bove, the background of the hyperspectral imagery becomes com- 

lex, and often involves more parameter settings, which makes 

he traditional methods less powerful of target detection and 

pplications. 

Deep learning based methods have been widely used for 

nomaly detection due to their ability of capturing the distri- 

utional properties of complex data and deep learning features 

6] . Unsupervised deep learning methods, such as autoencoders 

AEs), are widely employed for hyperspectral anomaly detection 

ecause they can learn deep features and reconstruct original 

pectra without label information [20–22] . Zhao et al. [21] used 

 stacked denoising autoencoder (SDA) to extract high-level fea- 

ures of the spectra and improve the targets detection accuracy. 

an et al. [22] investigated robust graph AE (RGAE) detector by 

mbedding a super pixel segmentation-based graph regulariza- 

ion term into AE, which was demonstrated to preserve the spa- 

ial structure of HSI. An autonomous anomaly detection (Auto- 

D) method was proposed by Wang et al. [23] , which was the 

rst to use full convolutional AE to extract spatial features and 

hus improved the model detection capability. Furthermore, Wang 

t al. [24] combined model-driven low-rank prior and data-driven 

ull convolutional AE to propose the deep low rank prior-based 

ethod (DeepLR), in which the network parameters can be up- 

ated with low-rank background through an iterative optimization 

ramework. Deep generative models express the probability dis- 

ribution of multivariate data in a certain way, and some schol- 

rs have been working on this direction [25–27] . For example, 

ie et al. [25] added a spectrally constrained strategy into an 

AE to learn the latent representations, and then used a two- 

ayer structure to achieve anomaly detection. In spatial and spec- 

ral constraints (SASCs) [26] , Wasserstein distance and spatial fil- 

ering (AD-WDSF) [28] , authors introduced spatial feature extrac- 

ion methods to improve detection performance. In addition, the 

oncept based on weakly supervised learning is applied in back- 

round distribution learning, which is mainly used to improve the 

eliability of target detection by constructing a background sample 

xtraction strategy [6,27,29] . 

The deep learning-based anomaly detection methods above 

ave significantly improved the anomaly detection performance 

rom the perspectives of spectral feature extraction, weakly super- 

ised learning, etc. However, the current deep learning methods 

or anomaly detection still have the following drawbacks: 
2 
1) Since the traditional AE-based algorithms are basically deter- 

ministic mappings, the detection algorithms based on AE are 

hard to handle variations in background and abnormal samples. 

Second, the various variants of GAN networks suffer from train- 

ing instability, and low quality of generated samples, resulting 

in high false positives and low detection accuracy in anomaly 

detection [28] . 

2) Due to the lack of prior knowledge of the targets and back- 

grounds, the existing deep learning-based algorithms cannot 

fully take the statistical distribution characteristics of back- 

grounds and anomalies into consideration. Meanwhile, the 

training samples contain both background and anomaly sam- 

ples, and the anomaly samples will impact the training process 

of the network, so the accuracy of anomaly detection in recon- 

struction error is reduced [29] . 

In this article, to deal with the aforementioned problems, a 

ovel variational background inference based on generative adver- 

arial network (VBIGAN-AD) is proposed, which relies on the re- 

onstruction errors generated by the network to detect anomalies. 

pecifically, the complex distribution properties of the background 

ith the low probability properties of the anomalies inspired to 

onstruct a robust network that accurately learns the background 

istribution and effectively improves the detection accuracy. Thus, 

he variational inference method is introduced into the VBIGAN 

odel to make the hyperspectral background distribution converge 

o a multivariate normal distribution, which effectively avoids the 

nterference of the abnormal samples on the network background 

earning. The VBIGAN framework consists of latent GAN and sam- 

le GAN. The latent GAN is used to discriminate whether the la- 

ent variable is from hyperspectral background distribution or a 

ultivariate normal distribution. From the perspective of the la- 

ent variables, we design multi-component samples fed into the 

ample discriminator to accurately reconstruct background spectra 

ver anomalies. Furthermore, we optimize the spectral reconstruc- 

ion loss and the adversarial loss, and design the discriminative 

eature matching loss to ensure the stable training of the network 

odel. The main contributions of this article are as follows: 

1) We investigate a novel VBIGAN-AD anomaly detection algo- 

rithm consisting of a sample GAN and a latent GAN, and each 

sub-network has independent discriminator. Two GAN subnet- 

works establish the relationship between data samples and la- 

tent samples to better improve detection performance. 

2) We integrate the variational inference and adversarial learning 

to make the hyperspectral background distribution converge to 

multivariate distribution, which can effectively capture the dis- 

tribution characteristics of background and anomaly. 

3) We devise the composite loss function and discriminative fea- 

ture matching loss to effectively ensure the stable learning of 

background distribution characteristics and effective generation 

of spectra. 

The rest of this article is organized as follows. Section 2 is 

 brief introduction to the AE and GAN networks. Section 3 de- 

ails the basic principles of the proposed VBIGAN-AD algorithm. 

ection 4 depicts the experimental results. Section 5 concludes the 

rticle. 

. Related work 

Recently, deep learning has been applied in the fields of 

nomaly detection, because of its advantage of being able to au- 

omatically learn the data distribution [30] . The basic networks 

tructures commonly used in anomaly detection are shown in 

ig. 1 . As a typical unsupervised network, the autoencoder (AE) 

20] shows great application value for the accurate learning of data 
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Fig. 1. Illustration of the structure of AE, VAE, GAN,GAN_Dz, GAN_Ds, and FBGAN 

networks, where x and x’ are the input and generated data, z is the latent vector, 

and y represents the data real or fake. E, G, and D are the encoder, generator, and 

discriminator, respectively. 
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istributions and spectral reconstruction. Deep generative model 

s one that can learn the underlying feature distribution of high- 

imensional data by observing the existing data samples and gen- 

rating data with the same distribution as the real data. Among the 

ost representative network models are the variational autoen- 

oders (VAEs) [31] and GANs [32] . Therefore, the next section fo- 

uses on AE and GAN networks. 

.1. Autoencoder 

As shown in Fig. 1 (a), the AE [20] is composed of an encoder E

nd a generator G The E projects the inputs x into the latent space

, and then the G uses z to reconstruct x ′ reversely. The network 

s trained using the reconstruction loss L = 

∥∥x − x ′ 
∥∥

2 
to force the 

utput to be equal to its input. The AE is calculated as follows: 

 

′ = G (E(x )) (1) 

However, the AE has difficulty in accurately characterizing the 

ackground distribution and learning weak abnormal information, 

hich makes it difficult for AE to detect anomalies. As an advanced 

ersion of AE, VAE shows great potential for generating complex 

ata [31] . VAE uses the encoder to learn a variance function q (z)

ith parameters μ and σ , which maps the observed variables to 

he latent variables and then converges the distribution to a fixed 

istribution. Thus, the E can be modeled based on the mapping 

esults and the G can generate data with the same distribution as 

he observed variables. Moreover, the hyperspectral data is mainly 

f multivariate distribution, while the sampling process of VAE is 

ased on single-peaked distribution, which makes the generated 

ata blurred. 

.2. Generative adversarial network 

The GAN framework [32] , as illustrated in Fig. 1 (c), which is 

omposed of a generator G and a discriminator D. The task of the 

 is to map the input z ∼ p z (z) to a given real x ∼ p(x ) as much as

ossible. Meanwhile, the goal of the D is to determine whether the 

ata is true or false. The objective function of the GAN network is 

s follows: 

in 

G 
max 

D 
E x ∼p(x ) [ log D (x )] + E z∼p z (z) [ log (1 − D (G (z)))] (2) 
o

3 
Afterwards, many new variants of GAN have been developed 

33,34] . The GAN to accurately capture the distributional proper- 

ies of the data to generate new expected spectral data, which 

oincides with background modeling in anomaly detection [35] . 

or example, with the assumption that the background of the HSI 

beys a multivariate normal distribution, a latent discriminator Dl 

s utilized to adversarial training with the E, which is named the 

AN_Dl framework, as shown in Fig. 1 (d). The GAN_Dl is used to 

atch the distribution of latent variable data to the prior distri- 

ution ξ = N (0 , 1) , which facilitates stable training of the model 

29] . However, the above GAN_Dl framework has difficulty in main- 

aining the detailed features of the original data, which further de- 

reases the detection performance. The GAN_Ds is used to match 

he generated samples of the generator by adding a sample dis- 

riminator Ds, as shown in Fig. 1 (e), which enables the Ds to 

elp the G competitively generate stable spectral samples [29] . 

s shown in Fig. 1 (f), the forward-backward GANs (FBGANs) con- 

ists of encoder, generator, forward discriminator and backward 

iscriminator, which can better capture the data distribution and 

re applied in MINST dataset anomaly detection [36] . In this study, 

e chose a GAN network as the basic structure, and then build a 

ew adversarial network framework that can effectively applied to 

yperspectral anomaly detection. 

. Proposed method 

The real hyperspectral image is mainly of multivariate distribu- 

ions, while the sampling process of VAE is based on single-peaked 

istribution, which results in the generated data often being 

lurred. By contrast, GAN generates samples randomly with mul- 

ivariate sampling, and the generated samples can reflect clearer 

nd richer details than VAE. The GAN_Dl and GAN_Ds have shown 

ood performances in anomaly detection, whereas the GAN_Dl 

ends to generate blurred spectral data. The GAN_Ds attaches a 

ample discriminator that produces stable spectral samples with 

ore accurate spectral detail features. The combination of GAN 

nd VAE has been explored in recent studies [37] . VAE-GAN com- 

ines the advantages of VAE and GAN to form an unsupervised 

enerative model, which can improve the shortcomings of the base 

odel. Moreover, FBGAN can better capture the data distribution 

y learning the probability distribution of normal and abnormal 

xamples [36] . 

Therefore, inspired by the combination of VAE-GAN [37] and 

BGAN [36] , a variational background inference and GAN (VBIGAN) 

s proposed to address the problems of inaccurate background 

odeling and spectral reconstruction. Mathematically, we define 

 = { x 1 , x 2 , . . . , x m ×n } ∈ R 

B ×mn , where B represents the number of 

ands, m and n represent the number of image rows and columns. 

ig. 2 shows the flow chart of the VBIGAN framework, which is 

omposed of three parts: data preparation, network learning, and 

econstruction error generation for anomaly detection. Firstly, we 

tilize all pixels x i ∈ { i = 1 , . . . , mn } for training in each iteration.

he connection between real data sampling and latent sampling is 

stablished and the distribution characteristics of the background 

re learned during the learning process of the VBIGAN. After the 

terative training process, we can obtain the reconstruction error 

f the generated and the original HSI based on the trained VBI- 

AN to detect abnormal targets. Next, we will introduce the VBI- 

AN framework in detail. 

.1. VBIGAN for anomaly detection 

The proposed VBIGAN framework contains encoder E, generator 

, sample discriminator Ds, and latent discriminator Dl, as shown 

n Fig. 2 . In the following, we focus on the network learning part 

f the VBIGAN framework, which consists of a sample GAN and a 
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Fig. 2. Process overview of the VBIGAN-AD framework. 
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atent GAN. In the latent GAN, the mapping from spectra to latent 

amples is firstly created, and then the variational inference is in- 

roduced to learn the distributional characteristics of backgrounds 

nd anomalies in latent space. The sample GAN is utilized as the 

pectra generation process, which generates the counterfeit spec- 

ra by the normal distribution samples and latent variable samples. 

fter that, the adversarial learning is conducted to ensure accurate 

econstruction of the spectra. 

We first introduce the variational inference approach, where 

he E learns to map the observed variables to the latent vari- 

bles, and then converges the distribution to a multivariate nor- 

al distribution. Specifically, the variance and mean of the la- 

ent variables are first obtained by passing the observed variables 

hrough the E, and then the sampled data is obtained by repa- 

ameterization, which is consistent with the forward propagation 

f VAE. Sampling from multivariate normal distribution can en- 

ure the latent samples are better mapped to the background spec- 

ra. For the Dl, the input contains the normal distribution sample 

and the latent variable sample z, which facilitates the learning 

f the background distribution characteristics. In this process, the 

eparametrized sampled data transformed by the E is considered 

s generated fake data, while the data sampled in the fixed distri- 

ution is considered as real data. The adversarial training process 

uides the reparametrized generated data to match the prior dis- 

ribution, and the encoder aims to fool the Dl into trusting that the 

ata sampled by the hidden variables is from the true distribution. 

he Dl is included to determine whether the data is from the true 

r fixed distribution, which enhances the detailed characteristics of 

he generated hyperspectral data. 

Moreover, we use the reconstruction property of background 

nd anomaly samples for detection from the perspective of spec- 

ral generation. A large number of background samples can be ex- 

racted based on the latent variable z, which enhances the relia- 

ility of background learning. For the anomaly samples extracted 

rom the latent distribution, the large variance makes the gener- 

ted data vastly different from the true anomaly samples. The nor- 

al distribution sample ξ and the latent variable sample z are 

nput into the G to generate two generated samples x Gξ and x Gz , 

espectively. x Gz denotes the spectral feature obtained from the E 
4 
nd then reconstructed by the G. x Gz denotes the spectral feature 

btained from the E and then reconstructed by the G. x Gξ repre- 

ents a faked spectral generated by the G from the fixed distribu- 

ion sample. The fixed distribution has been fixed as normal distri- 

ution, which can generate HSIs that correspond to the real back- 

round distribution. For the Ds, the multi-component input con- 

ains not only the samples x but also samples x Gξ and x Gz .The real

ample x can enable the Ds to distinguish between true and false 

amples. x Gξ and x Gz serve the same purpose of discriminating the 

ample true and false, the spectra are accurately reconstructed, and 

he background distribution is learned. Therefore, the Ds can help 

he G to generate more accurate background spectra and increase 

he detail features. 

Therefore, the purpose of the E is to obtain the latent vari- 

ble sample z using variational inference, and the purpose of the 

l is to discriminate whether the data are from the latent vari- 

ble sample z or the normally distributed sample ξ . Therefore, the 

raining of the E and the Dl are adversarial relationship. The G 

nsures that the spectra are accurately generated by the sample 

and z, while the aim of the Ds is to discriminate whether the 

ata is fake or real, so the G performs adversarial learning with 

he Ds.Moreover, the two discriminators independently implement 

dversarial learning, and at the same time, the two discriminators 

re coupled with each other to better capture the data distribu- 

ion. The VBIGAN framework is able to fuse the respective advan- 

ages of the sample GAN and the latent GAN, couple the feature 

atching of the two discriminators to keep the input and output 

onsistent. 

The four networks structures of the VBIGAN model is shown in 

ig. 3 The E consists of three fully connected layers, where μ and σ
ome from two different fully connected layers, and the leaky ReLU 

s utilized. The G consists of four fully connected layers whose out- 

ut dimension is consistent with the number of bands, and the last 

ayer is activated using a sigmoid function. The Ds and the Dl are 

lso consisting of four fully connected layers, and the last layer of 

oth discriminators utilizes a sigmoid function to output the dis- 

riminative probabilities for loss calculation during the adversarial 

raining. In addition, the design outputs feature vectors in the third 

ayer of the network for coupling the two GAN sub-networks. 



Z. Wang, X. Wang, K. Tan et al. Pattern Recognition 143 (2023) 109795 

Fig. 3. The implementation of each network in the VBIGAN framework. 
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.2. Loss terms of the VBIGAN framework 

(1) Variational Inference Loss: The purpose of our introduced 

ariational inference process in the VBIGAN framework is to learn 

he latent variable distribution to sample the real data distribution. 

he variational inference process can be described as z = N 

(
μ, σ 2 

)
nd the latent variable z can be reparameterized by z = μ + σξ , 

here ξ = N (0 , 1) is an auxiliary variable, μ and σ are encoded 

y the E. Using the Kullback-Leibler divergence penalty, the sam- 

le process for z is based on a reparameterization of the variable ξ
uch that the latent variable z resembles a prior distribution. Thus, 

he variational inference process can be transformed by reparame- 

erization as follows: 

 KL = D 

(
N 

(
μ, σ 2 

)‖N (0 , 1) 
)

= 0 . 5 
(
1 + log σ 2 − μ2 − exp 

(
log σ 2 

))
(3) 

herefore, the VBIGAN framework can learn the background distri- 

ution characteristics by imposing variational inference loss better, 

s well as help the G to generate more stable and homogeneous 

ackground samples. 

(2) Spectral Reconstruction Loss: Firstly, the spectral vectors are 

econstructed spectra generated by the E and the G, so the training 

oal of the VBIGAN model is to make the generated spectra more 

imilar to the original spectra. Therefore, the mean squared error 

MSE) loss function is used to calculate the difference between the 

enerated spectra and the original spectra. The MSE is calculated 

s follows: 

 MSE = ‖ x − G (z) ‖ 2 + ‖ x − G (ξ ) ‖ 2 (4)

here x is the real spectra and the generated spectra Gz and Gξ . 

Because of the detailed feature consistency of the original and 

enerated spectra, we introduce an additional constraint of spectral 

ngle mapper (SAM) [25] to ensure the accurate reconstruction of 

he generated spectra. The SAM is used to estimate the similarity 
5

f two spectra and control the direction error effectively. The spec- 

ral constraint is defined as: 

 SAM 

= 2 − 1 

π

[
arccos 

(
xG (z) 

‖ x ‖ 2 ‖ G (z) ‖ 2 
)

+ arccos 

(
xG (ξ ) 

‖ x ‖ 2 ‖ G (ξ ) ‖ 2 
)]

(5) 

he SAM constraints are utilized to ensure better results and faster 

onvergence of the generated reconstructed spectra. Therefore, the 

ombined use of MSE and SAM constitutes the total spectral loss, 

hich makes the spectra consistent in both global and local. 

(3) Adversarial Loss: To improve the shortcomings of the GAN 

ramework, the Wasserstein GAN with gradient penalty (WGAN- 

P) preserves the advantages of the WGAN network in terms of 

mproved gradient updates while enabling a significant increase 

n training speed [38] .Thus, we introduce the WGAN-GP for both 

iscriminators to solve the gradient disappearance problem during 

earning. The objective function for the traditional WGAN-GP is de- 

ned as follows: 

L D = E z∼p z (z) [ D (G (z))] − E x ∼p(x ) [ D (x )] + λE z∼p penalty (z) [(∥∥∇ z D (G (z)) 
∥∥

2 
− 1 

)2 
]

(6) 

here Z ∼ p penalty (Z) is the penalty sample distribution and λ is 

he penalty coefficient. 

The VBIGAN model contains the Ds and Dl. Firstly, the E is 

dversarial learning with the Dl to match the prior distribution 

= N (0 , 1) in the latent distribution z ∼ p(z) , which facilitates

he background distribution learning. For the Dl, the input con- 

ains two distribution samples from the sample ξ = N (0 , 1) and 

 ∼ p(z) encoded by the E. Therefore, the objective function of the 

dversarial loss in the Dl is transformed as follows: 

L Dl = E z∼p(z) [ Dl(z)] − E ξ∼N (0 , 1) [ Dl(z)] + λE z∼p penalty (z) 
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[ ∥∥∇ z Dl(z) 
∥∥

2 
− 1 

] 
(7) 

 Gl = −E z∼p(z) [ Dl(z)] (8) 

y minimizing E and maximizing Dl on L Dl , the E can learn to rep-

esent the hyperspectral background distribution accurately, while 

enerate homogeneous background information. 

We designed the Ds, which can help the G to reconstruct more 

ccurate background spectra and increase the detail features. For 

he Ds, the input contains not only the real samples but also two 

enerated samples x Gξ and x Gz . Therefore, the objective function of 

he adversarial loss in the Ds is transformed as follows: 

 Ds = E z∼p(z) [ Ds (G (z))] + E ξ∼N (0 , 1) [ Ds (G (ξ ))] −E x ∼p(x ) [ Ds (x )]+ 

λE z∼p penalty (z) 

[ ∥∥∇ z Ds (G (z)) 
∥∥

2 
− 1 

] 
+ 

λE ξ∼N (0 , 1) 

[ ∥∥∇ z Ds (G (ξ )) 
∥∥

2 
− 1 

] 
(9) 

 Gs = −E z∼p(z) [ Ds (G (z))] − E ξ∼N (0 , 1) [ Ds (G (ξ ))] (10) 

here x Gz , x Gξ represents the generated samples of the latent vari- 

bles z, ξ . By minimizing G and maximizing Ds on L Ds , the G can

enerate more realistic spectra. Therefore, the Ds discriminates the 

eal data x and the two fake data x Gz and x Gξ . The G should use

oth x Gz and x Gξ to cheat the Ds. 

(4) Feature Mapping Loss: To obtain more stable generated 

ata, we utilize Euclidean distance measures between discrimina- 

ive features in the middle layer of the two discriminators, which 

s called feature matching losses [36] . The VBIGAN model is ex- 

ected to be tightly coupled, which can reduce the risk of mode 

ollapse. The data sample x and latent variables z must have the 

ame discrimination score in both the sample and latent discrim- 

nators: Dl(z) = Ds (x ) . Likewise, the latent variables z, ξ , and gen-

rated samples x Gz , x Gξ must have the same discrimination score 

n both the two discriminators: Dl(z) = Ds (G (z)) = Ds (G (ξ )) . How-

ver, the sample GAN and the latent GAN are somewhat indepen- 

ent, so the individual discriminant scores do not provide suffi- 

ient information for the proper coupling of the two GANs. Thus, 

e define the feature matching losses as follows: 

 f m −E = E x ∼p(x ) 

∥∥Ds h (x ) − Dl h (z) 
∥∥2 

2 
(11) 

 f m −G = E z∼p(z) 

∥∥Ds h (G (z)) −Dl h (z) 
∥∥2 

2 
+ E ξ∼N (0 , 1) 

∥∥Ds h (G (ξ )) −Dl h (z) 
∥∥2 

2 
(12) 

here Ds h is the last hidden layer of the Ds, and Dl h is that of the

l. L f m −E is the Euclidean distance between the extracted features 

f data after the Ds and the features of latent variables z via the 

l. L f m −E is an expected Euclidean distance between the discrimi- 

ative features of a data sample x and latent variables z. L f m −G is 

hat of the latent variables z, ξ and generated samples x Gz , x Gξ . As

hown in Fig. 3 (c) and (d), we compute the feature matching loss 

sing the third layer output feature of the Ds, Dl, where the output 

eatures Ds h and Dl h have the same feature dimension. The E uses 

 f m −E minimization to learn the inverse mapping of the G, prompt- 

ng the learning of accurate spectral features. For the latent sam- 

les, the Dl uses L f m −G minimization to learn feature matches with 

he Ds, which prompts more accurate learning of background dis- 

ribution. Thus, we construct feature matching losses in the middle 

ayer of the two discriminators to tightly couple the two GAN sub- 

etworks, to obtain more stable generated data. 

Up to this point, the composite loss function of the VBIGAN 

odel can be shown as follows: 

 θ = L G f + λ1 L MSE + λ2 L SAM 

(13) 

G 

6 
 θE 
= L Gb + L KL + λ1 L MSE + λ2 L SAM 

+ λ3 L f m −E (14) 

 θDs 
= L Ds (15) 

 θDl 
= L Dl + λ4 L f m −G (16) 

here each part is given the explicit expression above. λ1 , λ2 , λ3 , 

nd λ4 are set to 1, 0.8, 0.5, and 0.5, respectively, based on expe- 

ience and the results of several experiments. L θG 
represents the 

otal loss of the G, L θE 
represents the total loss of the encoder E 

nd to learn the background distribution, and L θDs 
and L θDl 

are re- 

ated to the total loss of the sample discriminator Ds and the latent 

iscriminator Dl. 

.3. Reconstruction error of the VBIGAN framework 

The VBIGAN framework undergoes an iterative training process, 

o we can use the trained model to detect abnormal targets. Firstly, 

he reconstructed background image X 

R ∈ R 

B ×mn can be obtained 

hrough the E and G trained network, with the input of all the 

mage pixels using (17): 

 

R = G (E(X )) (17) 

y the aforementioned reconstruction process of hyperspectral im- 

ges, the VBIGAN model can reconstruct the background spectra 

ccurately, while it is difficult to reconstruct the abnormal spec- 

ra. In addition, Fig. 4 shows the spectral reconstruction results on 

he Salinas and Gulfport datasets to visually represent the spectral 

eneration capability of the VBIGAN network. Eight representative 

bnormal pixels and eight representative background pixels were 

elected from each of the two datasets. For the background sam- 

les, the VBIGAN network model could accurately reconstruct the 

riginal spectra, and its generated spectra remained highly simi- 

ar to the original spectral profiles. For the abnormal samples, the 

enerated spectra of the VBIGAN network maintained the discrep- 

ncy with the original spectra. Therefore, the proposed network is 

ble to learn the background distribution properties more effec- 

ively, while making the background and anomaly targets become 

ore separated. 

Overall, we can use the l 2 norm between the original spectra 

nd the generated spectra to detect the targets, i.e., the reconstruc- 

ion error. The detection results are calculated as follows: 

 = 

∥∥x i, j − x R i, j 

∥∥
2 

(18) 

here d is detection result, x R 
i, j 

is the spectral at location (i, j) 

f X 

R . Therefore, the VBIGAN model uses reconstruction errors to 

onstruct an auxiliary target detector. 

Finally, to illustrate the VBIGAN network training and detection 

rocess, Table 1 shows the pseudo-code description of the pro- 

osed VBIGAN-AD algorithm. 

. Experiments 

.1. Datasets 

Five kinds of HSI datasets were used to verify the superior- 

ty of the proposed VBIGAN-AD algorithm, one of which was a 

ynthetic hyperspectral dataset and the other were real hyper- 

pectral datasets. The sensors, image sizes, anomaly pixels and 

ther parameters of the four data sets are shown in Table 2 . 

alinas was acquired by Airborne Visible/Infrared Imaging Spec- 

rometer (AVIRIS). The main background classes are plants, soils, 
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Fig. 4. Reconstructed results for different pixels in the Salinas and Gulfport datasets, where the solid lines are the original spectra and the dashed lines are the generated 

spectra. (a) and (b) are spectral curves of background and abnormal samples in the Salinas dataset, respectively. (c) and (d) are spectral curves of the background and 

abnormal samples in the Gulfport dataset, respectively. 

Table 1 

Pseudocode for the proposed algorithm. 

Algorithm VBIGAN-AD 

Input: HSI X = R (mn,b) 

Initialize: Network: encoder E, generator G, sample discriminator Ds, latent discriminator Dl 

Training of the VBIGAN Network: 

input x to E and encode to obtain z; 

input z, ξ to G and generate x Gz , x Gξ ; 

calculate the L MSE , L SAM using (4)–(5); 

input x , x Gz , x Gξ to Ds to obtain the discriminative probability, also obtain the feature vector; 

calculate the L Ds , L Gs using (9)–(10), update Ds using (15); 

input z, ξ to Dl to obtain the discriminative probability, also obtain the feature vector; 

calculate the L Dl , L Gl using (7)–(8), calculate the feature matching using (11)–(12); 

update Dl using (16); 

update G with the gradient using (13); 

update E with the gradient using (14). 

End 

the anomaly detection result using (17)–(18) 

Output: anomaly detection map 

Table 2 

Parameters Related on the Five Datasets. 

Dataset Sensor Spatial resolution Image Size Bands Wavelengths Anomaly pixels Anomaly ratio 

Salinas AVIRIS 3.7m 120 × 120 204 400–2500 nm 25 0.17% 

Pavia ROSIS 1.3m 100 × 100 102 430–860 nm 43 0.29% 

Gulfport AVIRIS 3.4m 100 × 100 191 400–2500 nm 60 0.60% 

Los Angeles AVIRIS 7.1m 100 × 100 205 400–2500 nm 87 0.87% 

Urban HYDICE 1m 80 × 100 162 370–2510 nm 21 0.26% 
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tc., while the abnormal targets are buildings. We randomly se- 

ected 25 target locations. Synthetic abnormal spectra z is gen- 

rated by z = f × t + (1 − f ) × b, where f is the abundance frac-

ion, t and b are the anomaly and background spectra, respectively. 

he synthetic data and ground-truth map are shown in Fig. 5 (a). 

he Pavia dataset consists of images from the Reflection Optical 

ystem Imaging Spectrometer (ROSIS). The main background cate- 

ories are bridges, water and bare soil, and the anomalies are vehi- 

les. For the Gulfport dataset, the main background categories are 

irfield and plants, and the targets are three different scales aircraft 

11] . The main background categories on the Los Angeles dataset 

re buildings, runways, vegetation, water, and bare soil, while the 

nomaly is two aircraft [11] . For the Urban dataset, the main back- 

round categories are asphalt, plant and soil, and the abnormal tar- 

ets are vehicles. 

.2. Experimental setup 

(1) Comparison Methods: Eleven popular methods of anomaly 

etection have been utilized as contrast methods, including GRX 

8] , LSMAD [13] , CRD [17] , OSP-AD [16] , SDA-SF [21] , RGAE [22] ,

uto-AD [23] , DeepLR [24] , BiGAN [39] , FBGAN [36] , and SC-AAE 

25] . The GRX, LSMAD, CRD and OSP-AD algorithms use different 
7

ackground modeling algorithms. The SDA-SF, RGAE, Auto-AD and 

eepLR are deep learning algorithms. The BiGAN, FBGAN and SC- 

AE are GAN-based anomaly detection algorithms. 

(2) Parameter Settings: All algorithms for traditional detection 

lgorithms were computed on Python 3.8.0, where the deep learn- 

ng algorithms are carried out on a GeForce RTX 3070, with Torch- 

PU 1.9.0 and CUDA 11.3. We used an Adam optimizer to optimize 

he VBIGAN network. Also, we defined the initial learning rate as 

.0 0 01. The batch size was the total number of image pixels and 

he number of epochs was 10 0 0. The penalty coefficient in (7) and 

9) was chosen as α = 0 . 5 empirically. 

For the baseline methods, optimal parameters were required for 

ach algorithm. For the LSMAD method, the rank r was set to 28, 

nd the cardinality k was set to 0.002. For the CRD algorithm, the 

egularization parameter was set to 10 −6 and the inner and outer 

ouble window sizes were set as shown in Table 3 . In the OSP-

D algorithm, the two key parameters p and m values are shown 

n Table 3 . The network structure parameters of the Auto-AD al- 

orithm were set as recommended in [23] . The hyperparameters 

f BiGAN, FBGAN and SC-AAE are consistent with the VBIGAN net- 

ork. 

(3) Evaluation Metrics: 3-D receiver operating characteris- 

ic(ROC) curves [40] , the area under the curve (AUC)scores [40] , 
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Fig. 5. Five hyperspectral datasets, the first row are the pseudo-color maps and the second row are the corresponding ground-truth maps of each datasets. (a) Salinas. (b) 

Pavia. (c) Gulfport. (d) Los Angeles. (e) Urban. 

Table 3 

Parameters Related on the Five Datasets. 

Dataset CRD OSP-AD RGAE SDA-SF DeepLR 

Salinas w out = 9 , w in = 7 p = 8 , m = 6 λ = 10 −2 , S = 50 pca = 20 γ = 10 lr = 3 λ = 1 . 0 μ = 0 . 5 

Pavia w out = 11 , w in = 3 p = 5 , m = 4 λ = 10 −3 , S = 100 

Gulfport w out = 13 , w in = 3 p = 14 , m = 10 λ = 10 −3 , S = 150 

Los Angeles w out = 15 , w in = 13 p = 8 , m = 5 λ = 10 −2 , S = 300 

Urban w out = 7 , w in = 5 p = 9 , m = 8 λ = 10 −2 , S = 150 

Fig. 6. The anomaly detection maps on the Salinas dataset. (a) GRX. (b) LSMAD. (c) CRD. (d) OSP-AD. (e) SDA-FC. (f) RGAE. (g) Auto-AD. (h) DeepLR. (i) BiGAN. (j) FBGAN. 

(k) SC-AAE. (l) VBIGAN-AD. 
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nd box-whisker plot [13] are employed to evaluate the perfor- 

ance of the algorithm. The 3-D ROC curve is plotted by the prob- 

bility of detection P D , the false alarm rate P F , and threshold τ . The

D-ROC curves (P D , P F ) , (P D , τ ) and (P F , τ ) are utilized to evalu-

te the anomaly detection algorithm.Meanwhile, AUC (D,F ) , AUC (D,τ ) , 

UC (F,τ ) , the target detectability AUC T D , the background suppress- 

bility AUC BS , the overall detection probability AUC ODP are utilized 

o quantitatively evaluate. A higher value of AUC (D,F ) , AUC (D,τ ) 

nd AUC T D means a better detection performance. A smaller value 

f AUC (F,τ ) or a higher value of AUC BS indicates a better abil- 

ty to suppress the background. A higher value of AUC ODP indi- 

ate more robustness and stability of the algorithm. Therefore, 

he AUC (D,F ) , AUC (F,τ ) and AUC ODP are the preferred evaluation 

riterion, followed by the other AUC values. Box-whisker plot is 

rimarily used to evaluate the separation of the anomaly and 

ackground. 
8

.3. Detection performance 

We quantitatively analyzed and evaluated the afore-mentioned 

nomaly detection algorithms. As shown in Figs. 6–10 , the two- 

imensional detection maps of the afore-mentioned algorithms 

n five datasets are visualized. The detection maps on the Sali- 

as dataset are shown in Fig. 6 . The GRX, LSMAD and RGAE al- 

orithms had difficulty detecting anomalies with low fraction of 

bundance. Although SDA-FC and BiGAN were able to detect ab- 

ormal pixels with different proportions of abundance fractions, 

hey contained more background false positives. The CRD, OSP- 

D, Auto- AD, DeepLR and SC- AAE algorithms showed better back- 

round suppression performance while failed to detect the anoma- 

ies. The proposed VBIGAN-AD algorithm could effectively suppress 

he background and accurately reflected abnormal pixels with dif- 

erent proportions of abundance fractions. 
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Fig. 7. The anomaly detection maps on the Pavia dataset. (a) GRX. (b) LSMAD. (c) CRD. (d) OSP-AD. (e) SDA-FC. (f) RGAE. (g) Auto-AD. (h) DeepLR. (i) BiGAN. (j) FBGAN. (k) 

SC-AAE. (l) VBIGAN-AD. 

Fig. 8. The anomaly detection maps on the Gulfport dataset. (a) GRX. (b) LSMAD. (c) CRD. (d) OSP-AD. (e) SDA-FC. (f) RGAE. (g) Auto-AD. (h) DeepLR. (i) BiGAN. (j) FBGAN. 

(k) SC-AAE. (l) VBIGAN-AD. 

Fig. 9. The anomaly detection maps on the Los Angeles dataset. (a) GRX. (b) LSMAD. (c) CRD. (d) OSP-AD. (e) SDA-FC. (f) RGAE. (g) Auto-AD. (h) DeepLR. (i) BiGAN. (j) 

FBGAN. (k) SC-AAE. (l) VBIGAN-AD. 
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Fig. 7 showed the detection results on the Pavia dataset which 

roved that the CRD, SDA-FC, RGAE, BiGAN and SC-AAE were ca- 

able to accurately identify the vehicle targets. The targets were 

ixed with the complex background and noise. There were missed 

argets in the results of GRX, LSMAD, OSP-AD and FBGAN. The vi- 

ualization results demonstrated that the VBIGAN-AD had better 
9 
uppression of the background. The detection maps on the Gulf- 

ort and Los Angeles datasets are shown in Figs. 8 to 9 . For the

ulfport dataset, GRX, CRD, RGAE algorithm showed that the back- 

round was constrained at low levels, but the three aircrafts could 

ot be detected distinctly. Although the LSMAD and VBIGAN-AD 

ould detect three aircrafts on different scales, the detection abil- 
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Fig. 10. The anomaly detection maps on the Urban dataset. (a) GRX. (b) LSMAD. (c) CRD. (d) OSP-AD. (e) SDA-FC. (f) RGAE. (g) Auto-AD. (h) DeepLR. (i) BiGAN. (j) FBGAN. 

(k) SC-AAE. (l) VBIGAN-AD. 

Fig. 11. 3-D ROC curves and 2-D ROC curves of the Salinas dataset. (a) 3-D ROC curves. (b) 2-D ROC curves (P D , P F ) . (c) 2-D ROC curves (P D , τ ) . (d) 2-D ROC curves (P F , τ ) . 

Fig. 12. 3-D ROC curves and 2-D ROC curves of the Pavia dataset. (a) 3-D ROC curves. (b) 2-D ROC curves ( (P D , P F ) . (c) 2-D ROC curves (P D , τ ) . (d) 2-D ROC curves (P F , τ ) . 
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ty for small-scale aircrafts was slightly weaker. The VBIGAN-AD 

etected the edges of the aircraft and maintained target integrity 

n the Los Angeles dataset. The OSP-AD, RGAE and FBGAN could 

etter suppress the background, while the building roofs had been 

rongly identified as anomalies, and the target pixels could not 

e detected effectively. The BiGAN had difficulty suppressing the 

ackground in two aircraft datasets. For the detection results on 

he Urban dataset, the GRX, SDA-FC, RGAE and BiGAN had false 

larm targets, and VBIGAN-AD algorithm could effectively suppress 

he background and accurately detect anomalies. 

The ROC curves on the five datasets are displayed in 

igs. 11–15 . The ROC curves of (P D , P F ) and (P D , τ ) are near the

pper right corner, which indicates a higher detection perfor- 

ance;the ROC curves of (P F , τ ) is near the lower left corner, 
10 
hich indicates a better ability to suppress the background. From 

he ROC curves of (P D , P F ) on the five datasets, the VBIGAN-AD 

lgorithm significantly outperformed the other algorithms. In ad- 

ition, the VBIGAN-AD achieved a detection probability of 80% 

r more with a much lower false alarm rate. For the Gulfport 

nd Los Angeles datasets, although the ROC curves of (P D , P F ) for

BIGAN-AD and the other algorithms cross over, the ROC curve for 

BIGAN-AD remained in the upper right corner overall. The five 

eep learning-based detection algorithms showed similar perfor- 

ance in terms of the ROC curves of (P D , τ ) , which were essen-

ially on top of the traditional algorithms. From the representation 

f the ROC of (P F , τ ) on the five datasets, the VBIGAN-AD was lo-

ated at the optimal position in the lower left corner, which in- 

icated the algorithm was able to keep the background at a rela- 
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Fig. 13. 3-D ROC curves and 2-D ROC curves of the Gulfport dataset. (a) 3-D ROC curves. (b) 2-D ROC curves (P D , P F ) . (c) 2-D ROC curves (P D , τ ) . (d) 2-D ROC curves (P F , τ ) . 

Fig. 14. 3-D ROC curves and 2-D ROC curves of the Los Angeles dataset. (a) 3-D ROC curves. (b) 2-D ROC curves (P D , P F ) . (c) 2-D ROC curves (P D , τ ) . (d) 2-D ROC curves 

(P F , τ ) . 

Fig. 15. 3-D ROC curves and 2-D ROC curves of the Urban dataset. (a) 3-D ROC curves. (b) 2-D ROC curves (P D , P F ) . (c) 2-D ROC curves (P D , τ ) . (d) 2-D ROC curves (P F , τ ) . 
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ively low level. For the RGAE, Auto-AD, DeepLR and SC-AAE, sig- 

ificant differences existed on the five datasets. Although the ROC 

urves of (P D , τ ) for BiGAN obtained the best performance, the ROC 

urves of (P F , τ ) verified that BiGAN had difficulty in suppressing 

ackground. All in all, the proposed VBIGAN-AD is equally good 

t suppressing the background while detecting the targets, further 

emonstrating the excellent robustness of the proposed algorithm. 

As shown in Fig. 16 , the red and cyan boxes of the box-whisker

lots indicate anomalies and the background respectively, and the 

ap between the two boxes indicates the degree of separation from 

argets and background. For the Salinas dataset, the GRX, LSMAD 

nd BiGAN had wider background ranges, and the background of 

he GRX algorithm overlapped with the anomalies. The VBIGAN- 

D showed a better separation between the background and the 

nomalies. The box-whisker plots from the Pavia dataset shown 
11 
hat the algorithms could suppress the background well besides 

RD, and the VBIGAN-AD exhibits better detection performance. 

he cyan boxes were crossed with red boxes for the GRX, OSP-AD 

nd FBGAN on the Gulfport and Los Angeles datasets, which indi- 

ated that these methods had difficulty in distinguishing the back- 

round and anomalies. The LSMAD, SDA-SF, RGAE, and VBIGAN- 

D achieved separation. From the results of the Urban dataset, the 

ackground of the RGAE overlapped with the outliers, and the oth- 

rs performed well. 

Furthermore, the AUC scores and time consumption for each 

etection algorithm of the five datasets are shown in Tables 5–8 . 

or the Salinas dataset, VBIGAN-AD obtained the highest AUC (D,F ) , 

nd AUC T D with 0.9996, 1.4337, respectively. The AUC (D,τ ) of BiGAN 

as the highest, but the AUC (F,τ ) and AUC BS value of BiGAN were 

he poorest. Although the proposed algorithm obtained subopti- 
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Fig. 16. Box-whisker plots for the different methods. (a) Salinas. (b) Pavia. (c) Gulfport. (d) Los Angeles. (e) Urban. 

Table 4 

AUC scores and time consumption of the comparison methods on the Salinas dataset. 

Method AUC (D,F ) AUC (D,τ ) AUC (F,τ ) AUC TD AUC BS AUC ODP Inference time/s FLOPs/G 

GRX 0.8073 0.2143 0.0314 1.0216 0.7759 1.1829 0.81 - 

LSMAD 0.9501 0.3692 0.0144 1.3193 0.9357 1.3547 10.27 - 

CRD 0.9638 0.3012 0.0069 1.2647 0.9566 1.2942 3.48 - 

OSP-AD 0.9560 0.4098 0.0032 1.3658 0.9528 1.4066 790.43 - 

SDA-SF 0.9675 0.2408 0.0101 1.2083 0.9573 1.2307 1.49 1.71 

RGAE 0.9290 0.3689 0.0157 1.2980 0.9134 1.3532 1.75 0.58 

Auto-AD 0.9836 0.4307 0.0126 1.4143 0.9709 1.4181 5.61 8.59 

DeepLR 0.9558 0.4212 0.0184 1.3770 0.9375 1.4028 2.84 3.92 

BiGAN 0.8720 0.5372 0.1077 1.4092 0.7644 1.4295 1.41 3.17 

FBGAN 0.9348 0.4291 0.0173 1.3639 0.9175 1.4118 1.44 3.30 

SC-AAE 0.9656 0.3723 0.0050 1.3379 0.9606 1.3672 18.52 0.50 

VBIGAN-AD 0.9996 0.4338 0.0049 1.4337 0.9951 1.4299 3.84 1.89 
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al results for the AUC (F,τ ) ) score, the AUC BS obtained the highest 

core of 0.9951, which proved the superiority of the background 

uppression. The proposed algorithm on the Pavia dataset achieved 

he highest values of AUC (D,F ) and AUC T D , which were 0.9990 and 

.2756, respectively, while AUC BS got the suboptimal value. For the 

wo airfield datasets, the VBIGAN-AD obtained the highest AUC 

core for AUC (D,F ) , AUC (D,τ ) , AUC T D , AUC ODP . The optimal or sub-

ptimal value of AUC BS was obtained by the proposed algorithm 

espectively, which demonstrated the ability of the proposed algo- 
12 
ithm to suppress the background. Moreover, the proposed algo- 

ithm achieved suboptimal values for AUC (D,τ ) and AUC BS , and the 

ighest values for the AUC (D,F ) , AUC T D , AUC ODP scores on the Urban 

ataset. Experimental results demonstrated the outperformance of 

he proposed algorithm to handle hyperspectral anomaly detection 

ith anomalies embedded background. In summary, the VBIGAN- 

D shows a superior detection performance and can suppress the 

ackground well, achieving effective separation of anomalies and 

ackground. 
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Table 5 

AUC scores and time consumption of the comparison methods on the Pavia dataset. 

Method AUC (D,F ) AUC (D,τ ) AUC (F,τ ) AUC TD AUC BS AUC ODP Inference time/s FLOPs/G 

GRX 0.9944 0.1858 0.0232 1.1802 0.9712 1.1627 0.72 - 

LSMAD 0.9946 0.1999 0.0118 1.1945 0.9828 1.1881 4.59 - 

CRD 0.9756 0.2948 0.0918 1.2704 0.8838 1.2030 16.71 - 

OSP-AD 0.9725 0.1276 0.0016 1.1001 0.9709 1.1260 687.91 - 

SDA-SF 0.9934 0.2425 0.0179 1.2359 0.9755 1.2247 1.53 1.71 

RGAE 0.9721 0.1982 0.0095 1.1703 0.9626 1.1886 0.99 0.29 

Auto-AD 0.9972 0.1589 0.0010 1.1560 0.9961 1.1579 5.35 7.79 

DeepLR 0.9980 0.1437 0.0018 1.1417 0.9961 1.1419 2.79 3.72 

BiGAN 0.9929 0.2673 0.0339 1.2602 0.9590 1.2334 1.34 2.23 

FBGAN 0.9826 0.1405 0.0079 1.2756 0.9746 1.1325 1.35 2.36 

SC-AAE 0.9839 0.2051 0.0068 1.1890 0.9771 1.1983 19.97 0.21 

VBIGAN-AD 0.9990 0.2765 0.0120 1.2756 0.9870 1.2645 3.83 1.23 

Table 6 

AUC scores and time consumption of the comparison methods on the Gulfport dataset. 

Method AUC (D,F ) AUC (D,τ ) AUC (F,τ ) AUC TD AUC BS AUC ODP Inference time/s FLOPs/G 

GRX 0.9526 0.0736 0.0248 1.0262 0.9278 1.0489 0.60 - 

LSMAD 0.9515 0.1302 0.0552 1.0818 0.9304 1.1090 6.15 - 

CRD 0.9097 0.0325 0.0092 0.9423 0.9007 1.0235 17.82 - 

OSP-AD 0.8429 0.0642 0.0099 0.9072 0.8332 1.0544 221.71 - 

SDA-SF 0.9781 0.1554 0.0318 1.1350 0.9653 1.1293 1.10 1.19 

RGAE 0.9801 0.0461 0.0077 1.0263 0.9726 1.0384 0.82 0.38 

Auto-AD 0.9700 0.1243 0.0369 1.0944 0.9333 1.0875 4.82 5.90 

DeepLR 0.9661 0.0762 0.0281 1.1424 0.9382 1.0482 2.64 2.60 

BiGAN 0.8647 0.1944 0.0983 1.0592 0.7666 1.0962 1.05 2.12 

FBGAN 0.9568 0.1106 0.0348 1.0674 0.9221 1.0758 1.07 2.21 

SC-AAE 0.9756 0.0771 0.0062 1.0528 0.9696 1.0710 13.14 0.33 

VBIGAN-AD 0.9872 0.1589 0.0157 1.1462 0.9715 1.1433 2.80 1.25 

Table 7 

AUC scores and time consumption of the comparison methods on the Los Angeles dataset. 

Method AUC (D,F ) AUC (D,τ ) AUC (F,τ ) AUC TD AUC BS AUC ODP Inference time/s FLOPs/G 

GRX 0.8404 0.1841 0.0516 1.0245 0.7888 1.1325 0.84 - 

LSMAD 0.9317 0.1116 0.0146 1.0433 0.9171 1.0970 6.61 - 

CRD 0.9216 0.1906 0.0356 1.1121 0.8860 1.1550 63.94 - 

OSP-AD 0.8105 0.0978 0.0054 0.9083 0.8051 1.0924 256.58 - 

SDA-SF 0.9348 0.1641 0.0247 1.0989 0.9100 1.1394 1.08 1.19 

RGAE 0.9309 0.0547 0.0083 0.9856 0.9227 1.0464 0.89 0.41 

Auto-AD 0.8642 0.1237 0.0313 0.9879 0.8329 1.0924 4.97 5.98 

DeepLR 0.8926 0.1235 0.0145 1.0161 0.8781 1.1089 2.67 2.64 

BiGAN 0.7385 0.2688 0.1385 1.0053 0.6001 1.1283 1.03 2.21 

FBGAN 0.9069 0.0585 0.0133 0.9655 0.8936 1.0452 1.06 2.30 

SC-AAE 0.9398 0.1175 0.0106 1.0531 0.9292 1.1069 12.64 0.34 

VBIGAN-AD 0.9803 0.1728 0.0151 1.1531 0.9652 1.1577 2.81 1.32 

Table 8 

AUC scores and time consumption of the comparison methods on the Urban dataset. 

Method AUC (D,F ) AUC (D,τ ) AUC (F,τ ) AUC TD AUC BS AUC ODP Inference time/s FLOPs/G 

GRX 0.9848 0.2383 0.0344 1.2231 0.9505 1.2040 0.43 - 

LSMAD 0.9897 0.2020 0.0230 1.1916 0.9667 1.1790 3.67 - 

CRD 0.9864 0.2873 0.0260 1.2737 0.9604 1.2613 2.81 - 

OSP-AD 0.9053 0.2240 0.0074 1.1292 0.8979 1.2166 150.78 - 

SDA-SF 0.9837 0.2395 0.0281 1.2232 0.9556 1.2114 0.84 0.95 

RGAE 0.7723 0.1954 0.0965 0.9677 0.6758 1.0989 0.21 0.26 

Auto-AD 0.9843 0.3111 0.0207 1.2954 0.9635 1.2904 4.06 4.59 

DeepLR 0.9837 0.2866 0.0214 1.2703 0.9623 1.2652 2.42 2.61 

BiGAN 0.9121 0.5082 0.1621 1.4303 0.7523 1.3537 0.86 1.54 

FBGAN 0.8305 0.1183 0.0369 0.7937 0.7937 1.0814 0.84 1.62 

SC-AAE 0.9688 0.2625 0.0159 1.3555 0.9530 1.2466 9.96 0.24 

VBIGAN-AD 0.9937 0.3979 0.0158 1.3916 0.9764 1.3821 2.25 0.90 

(

t

e

F

f

S

B

w

V

h

p

Moreover, Tables 5 to 8 listed the inference time and the FLOPs 

floating point operations) of the detection algorithms.It is cleared 

hat the CRD, LSMAD and OSP-AD algorithms took longer infer- 

nce time, making these algorithms much less applicable.The SDA- 

C and RGAE based on AE had less computational complexity and 

ewer model parameters. Auto-AD obtained the highest FLOPs and 
13 
C-AAE had the longest inference time. The inference phase in the 

iGAN, FBGAN, VBIGAN just included the encoding and generating 

hich had less time consuming. Overall, the time consumption of 

BIGAN-AD is in a reasonable range of computational costs and 

as an excellent detection performance, which has important ap- 

lication prospects. 
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Table 9 

Comparison of AUC (D,F ) scores on each part of the VBIGAN framework. 

Subnetwork 

Parts 

Salinas Pavia Gulfport Los Angeles Urban 
E G Ds Dl VI 

AE 
√ √ × × × 0.9642 0.9956 0.9643 0.9448 0.9901 

VAE 
√ √ × × √ 

0.9562 0.9940 0.8808 0.9055 0.9133 

GAN_Ds 
√ √ √ × × 0.9859 0.9964 0.9553 0.9590 0.9925 

GAN_Dl 
√ √ × √ × 0.9657 0.9950 0.9125 0.9620 0.9856 

GAN_Ds_VI 
√ √ √ × √ 

0.9882 0.9968 0.9692 0.9763 0.9893 

GAN_Ds_ Dl 
√ √ √ √ × 0.9714 0.9974 0.9528 0.9706 0.9912 

VBIGAN 

√ √ √ √ √ 

0.9989 0.9990 0.9872 0.9803 0.9937 

Table 10 

Comparison of AUC (F,τ ) scores on each part of the VBIGAN framework. 

Subnetwork 

Parts 

Salinas Pavia Gulfport Los Angeles Urban 
E G Ds Dl VI 

AE 
√ √ × × × 0.0326 0.0347 0.0327 0.0789 0.0719 

VAE 
√ √ × × √ 

0.0685 0.0370 0.0591 0.0723 0.0855 

GAN_Ds 
√ √ √ × × 0.0171 0.0116 0.0202 0.0669 0.0136 

GAN_Dl 
√ √ × √ × 0.0227 0.0382 0.0289 0.0268 0.0395 

GAN_Ds_VI 
√ √ √ × √ 

0.0175 0.0129 0.0134 0.0155 0.0241 

GAN_Ds_ Dl 
√ √ √ √ × 0.0198 0.0145 0.0213 0.0189 0.0162 

VBIGAN 

√ √ √ √ √ 

0.0049 0.0120 0.0157 0.0151 0.0158 

Table 11 

Comparison of AUC scores for VBIGAN networks with different losses. 

Loss Term Salinas Pavia Gulfport Los Angeles Urban 

SAM FM AUC (D, F ) AUC (F, τ ) AUC (D, F ) AUC (F, τ ) AUC (D, F ) AUC (F, τ ) AUC (D, F ) AUC (F, τ ) AUC (D, F ) AUC (F, τ ) 

× × 0.9897 0.0152 0.9941 0.0131 0.9765 0.0185 0.9781 0.0266 0.9851 0.0241 √ × 0.9944 0.0120 0.9974 0.0160 0.9811 0.0136 0.9793 0.0138 0.9902 0.0185 

× √ 

0.9961 0.0085 0.9968 0.0129 0.9842 0.0183 0.9852 0.0204 0.9894 0.0192 √ √ 

0.9996 0.0049 0.9990 0.0120 0.9872 0.0157 0.9803 0.0151 0.9937 0.0158 
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.4. Ablation experiments 

1) Influence of the different subnetworks of VBIGAN framework 

To verify the background learning ability and anomaly detection 

erformance of each part in the VBIGAN framework, seven differ- 

nt sets of network structures are utilized to analyze the differ- 

nt combinations of encoder E, generator G, sample discrimina- 

or Ds, latent discriminator Dl, and variational inference VI. The 

ubnetworks of VBIGAN are named as AE, VAE, GAN_Ds, GAN_Dl, 

AN_Ds_VI and GAN_Ds_ Dl, which are consisted of different mod- 

les and listed in Table 11 . Moreover, the settings of epochs, op- 

imizer and learning rate are fixed all networks. AUC (D,F ) and 

UC (F,τ ) are utilized to evaluate the detection performance of the 

odel. 

AUC (D,F ) and AUC (F,τ ) of the various networks are reported in 

ables 2–11 . Firstly, the AUC (D,F ) of the AE was obvious higher than 

hat of the VAE. The detection accuracy of the model could be fur- 

her enhanced in GAN_Ds_VI, and suboptimal values of AUC (D,F ) 

ere obtained for the Salinas, Gulfport, and Los Angeles datasets. 

he GAN_Ds_ Dl achieved the secondly highest detection accuracy 

n Pavia dataset. Combining the network framework of E, G, Ds, 

l and the variational inference, the VBIGAN obtained the high- 

st AUC (D,F ) values on the five datasets. From the AUC (F,τ ) scores 

btained by the basic network model, VBIGAN, with a higher de- 

ection accuracy, showed its superiority on the abnormal discrimi- 

ation and background suppression. 

2) Influences of the different losses in VBIGAN network 

To verify the effects of spectral angle mapping (SAM) and fea- 

ure matching (FM) loss on the anomaly detection performance of 

he VBIGAN network, we define four forms of VBIGAN network 

odels. The first one is the prototype VBIGAN network without 

pectral angle mapping and feature matching loss. The second and 

hird models are VBIGAN networks with the introduction of spec- 
14 
ral angular distance and feature matching loss, respectively. The 

ourth model is a prototype VBIGAN network that contains both 

pectral angle mapping and feature matching loss. We only used 

UC (D,F ) and AUC (F,τ ) to evaluate the detection performance and 

he suppression background performance of the model, respec- 

ively. The fourth model is a prototype VBIGAN network that con- 

ains both spectral angle mapping and feature matching loss. 

As shown in Table 11, taking the prototype VBIGAN network 

s the benchmark, the AUC (D,F ) and AUC (F,τ ) could be further 

mproved by using the networks with spectral angular distance 

nd feature matching losses, respectively. In addition, after adding 

pectral angle mapping loss, the detection accuracy was slightly 

mproved by introducing feature matching loss. Further, the use of 

pectral angle mapping and feature matching common constrained 

elps the VBIGAN network model to achieve better detection per- 

ormance. Overall, the VBIGAN model is the best structure that 

eets the anomaly detection expectations by adding a common 

onstraint of spectral angle distance and feature matching. 

. Conclusion 

In this article, a variational background inference based on GAN 

VBIGAN) framework is proposed for hyperspectral anomaly detec- 

ion. We develop a background modeling research in both model 

esign and loss construction to address the problems of inaccu- 

ate background learning and spectral reconstruction. Firstly, to 

void the turbulence of abnormal samples while enhancing the 

tability of network learning, we propose the VBIGAN framework 

ased on variational inference. The VBIGAN framework establishes 

wo coupled GAN sub-networks, and separates the anomaly from 

he background using reconstruction error autonomously. Then, 

he composite loss function is designed to effectively ensure the 

table learning of background distribution characteristics. Experi- 
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ents showed that the VBIGAN method achieves excellent detec- 

ion performance on all hyperspectral datasets.The results of the 

BIGAN various subnetworks from ablation experiments indicate 

hat VBIGAN is of more robust to anomalies with a lower false 

larm rate. From the contrast experiments on five datasets, the de- 

ection performance demonstrates the superiority of VBIGAN in de- 

ecting anomalies and suppressing background. 

In the future, hyperspectral clustering and image segmentation 

ethods can be investigated to extract pure background sample 

lements for network training, which can improve the performance 

f detecting backgrounds. In addition, a spatial convolution module 

ill be introduced to extract the spatial-spectral features, and to 

mprove the recognition of abnormal targets. 
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