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A B S T R A C T   

Spectral techniques play a key role in the estimation of large-scale soil parameters, but most of the current 
estimation models are data-driven models lacking a physical basis. Therefore, in this study, we developed a novel 
radiative transfer model named the soil multifactor radiative transfer (SMRT) model that predicts the soil spectra 
as a function of the soil organic matter (SOM), particle size distribution (PSD), and iron oxide content. The SMRT 
model explains the soil spectral features commonly used in the data-driven estimation models and can be used to 
explore the mechanisms by which soil-related parameters affect soil spectra according to the model parameters. 
A total of 79 soil profile datasets were used in the experiments conducted in this study. The reflectance of the soil 
after air-drying can ignore the effect of moisture, thereby ensuring that the main influences on the soil spectra are 
the SOM, iron oxide content, and PSD. The SMRT model performed very well in the spectral simulation (R2 =

0.9681, RMSE = 0.0266, MAE = 0.0160). The absorption and scattering coefficients of the SMRT model explain 
the radiative transfer mechanism for the color representation of black soil and laterite soil. The spectral features 
around 1910 nm and 2210 nm are caused by not only the soil moisture (SM) and clay mineral content, but 
several other factors, including the SOM, iron oxide content, and PSD. Overall, these findings show that the 
SMRT model has a superior ability to describe the soil radiative transfer processes. However, as the coefficients in 
the SMRT model are dependent on the soil properties, the coefficients should be calibrated by an optimization 
algorithm and cannot be constants, which leads to the requirement for soil samples to calibrate the coefficients in 
practical applications.   

1. Introduction 

Soil is a crucial component in many ecosystems and plays a key role 
in agricultural systems (Wei et al. 2021). A primary concern regarding 
soil is the analysis of the soil element content (Liu et al. 2020). Tradi
tional soil analysis is carried out using large-scale sample collection and 
laboratory analysis, which are both intensive and time-consuming (Anne 
et al. 2014, Chen et al. 2021, Tan et al. 2021). Soil spectral information 
can provide the combined information of multiple soil constituents 
(Sawut et al. 2018, Wang et al. 2018). It is now well established, from a 
variety of studies, that soil reflectance spectroscopy is an efficient, rapid, 
and wide-scale technique, compared with traditional laboratory analysis 

(Song et al. 2015, Peng et al. 2019). 
Much of the soil spectral analysis research has focused on predicting 

soil properties such as soil organic matter (SOM) (Wang et al. 2010, 
Angelopoulou et al. 2019), soil moisture (SM) (Zhang et al. 2020), 
texture (Benedet et al. 2020), nutrients (Cai et al. 2021), and heavy 
metals (Sun and Zhang 2017, Jeong et al. 2021, Yin et al. 2021). 
Although many studies of soil spectral analysis have achieved good re
sults based on data-driven models and have specified the sensitive 
wavelengths corresponding to soil properties, the physical mechanism 
theory is lacking in the estimation process (Chen et al. 2022). The pri
mary reason for this is that soil is a complicated object consisting of 
organic matter, minerals, water, and air, and its radiative transfer 
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processes are difficult to simulate. 
It is now established from a variety of studies that soil spectra are 

mainly affected by the soil-forming parent material (Demattê and da 
Silva Terra 2014), the SM (Koch et al. 2021), the SOM (Liu et al. 2018), 
the soil iron oxide, the particle size distribution (PSD) (Janik et al. 
2020), and the measurement conditions (Stenberg et al. 2010). There
fore, considering the main influencing factors for soil spectra, scholars 
have carried out a series of studies using physical radiative transfer (RT) 
models. The Hapke model, multi-flux model, and beam tracing (BT) 
model are commonly used to illustrate the soil RT process. The Hapke 
model assumes that the total radiance is decomposed into single and 
multiple scattering radiance. Jacquemoud et al. (1992) proposed the 
SOILSPECT model describing the directional reflectance spectra of wet 
soils and air-dried soils. Liang and Townshend (1996) improved the 
Hapke model and considered that the total radiance is the sum of three 
parts, i.e., single, double, and multiple scattering radiance, which 
significantly improved the simulation accuracy. Labarre et al. (2017) 
retrieved simulated soil surface roughness from multi-angular reflec
tance data by a Hapke-based model. Ding et al. (2022) compared the 
SOILSPECT model and the original Hapke model in fitting field soil and 
air-dried soil bidirectional reflectance and found that both models 
showed a good performance. Meanwhile, they also extended the Hapke 
model by incorporating the asymptotic RT model to estimate SM. 
However, the assumptions of the Hapke model constrain its application 
for the estimation of SM, and the model cannot explain the effects of 
SOM and soil iron oxide content on soil spectra. 

The Kubelka-Munk (KM) model was introduced into soil spectra by 
Barrón and Torrent (1986) for describing the soil spectral response of 
iron oxide content on color and to predict the hematite and goethite 
contents from soil spectra. Sadeghi et al. (2015) presented a KM-based 
physical model to estimate the SM from laboratory control variable 
experiments based on wet soil. The KM model simplifies the RT process 
by considering only the fluxes in the upper and lower directions. It also 
considers the soil absorption and scattering coefficients as a linear 
weighted sum of the multiple substances in the soil, meaning that it is of 
great importance in soil component estimation. 

The BT model, unlike the approximate and numerical solutions of the 
KM model, computes a solution to the RT process based on the reflected 
and refracted light, according to the Fresnel equations and Snell’s law, 
respectively. Bablet et al. (2018) proposed the multilayer radiative 
transfer model of soil reflectance (MARMIT) based on the light reflection 
and refraction in different mediums and assumed that natural wet soil is 
a layer of dry soil covered with a water film, to estimate SM content from 
soil spectral reflectance. Sadeghi et al. (2018) considered the air-dried 
soil total reflectance as the sum of the surface and volume reflectance 
and calculated these values using the BT model according to soil samples 
with different single particle sizes. They then extended the model by 
integration to describe the reflectance of nonuniform air-dried soil and 
concluded that the reflection spectra of soil mainly focus on the surface 
information, and that depth information rarely exceeds 1 mm, based on 
their experimental results (Norouzi et al. 2021). However, such studies 
remain narrow in focus as they dealt with only a single soil property by 
controlled variable experiments, without integrating the main influ
encing factors on the soil spectra. 

In this paper, a novel physical model named the soil multifactor 
radiative transfer (SMRT) model is proposed to explain the soil spectral 
features commonly used in soil estimation models in terms of RT. The 
new model considers the various factors affecting soil spectra, such as 
SOM, iron oxide content, and PSD. The response mechanisms between 
the reflectance and SOM, iron oxide content, and PSD were investigated 
by analyzing the absorption and scattering coefficients of soil properties. 
In addition, unlike the control variable experiments often used in the 
previous studies, we used soil profile data, with consistent soil-forming 
parent materials and some differences in SOM and iron oxide content 
under the same profile, to give a more realistic picture of the soil spectra 
influencing mechanism. 

2. Method 

2.1. Soil multifactor radiative transfer (SMRT) model 

The SMRT model is derived based on the KM model and adequately 
considers the scattering and absorption coefficients of SOM, PSD, and 
soil iron oxide to describe the soil RT processes. Fig. 1 shows that the KM 
model ignores the complex phenomenon of reflection and refraction in 
the soil medium and only considers the light flux in two directions, i.e., 
downwards and upwards, perpendicular to the soil layer. 

The KM model, which is a rigorous radiative equation derivation, has 
good physical meaning in simple situations (Christy et al. 1995). 
Although the KM model assumes isotropic light scattering, it has been 
experimentally shown to achieve satisfactory results under the 
assumption of non-isotropic conditions. In the KM model, a pair of 
coupled differential equations are proposed to describe the radiance I 
and J as follows: 

dI(ξ,φ) = − (K + S)I(ξ,φ)dφ+ SJ(ξ,φ)dφ (1)  

dJ(ξ,φ) = (K + S)J(ξ,φ)dφ − SI(ξ,φ)dφ (2)  

where φ represents the depth in the layer; ξ represents the wavelength; 
and S and K represent the scattering and absorption coefficients, 
respectively (Vargas and Niklasson 1997). The analytical solution for the 
reflectance R and transmittance T can be given by Equations (3) and (4): 

R =

(
1 − β2)(exp(αd) − exp( − αd) )

(1 + β)2exp(αd) − (1 − β)2exp( − αd)
(3)  

T =
4β

(1 + β)2exp(αd) − (1 − β)2exp( − αd)
(4)  

where α ≡
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K(K + 2S)

√
, β ≡

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
K/(K + 2S)

√
, and d represents the soil 

layer depth. As the soil layer depth becomes thicker, the transmittance 
gradually tends to zero and the reflectance gradually increases and 
stabilizes to a fixed value, which is called the infinite reflectance 
R∞(Ciani et al. 2005). Thus, Equation (3) can be rewritten as follows: 

R∞ =
(1 − β)
(1 + β)

= 1+
K
S
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

K
S

)2

+ 2
K
S

√

(5) 

The scattering and absorption coefficients for mixed substances in 
KM models are often considered to be the proportionally weighted sum 
of the scattering and absorption coefficients for each substance. In this 
study, for soil samples under the same profile, it was assumed that the 
samples had a consistent soil-forming parent material and that the main 

Fig. 1. KM model illustration sketch.  
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factors affecting the spectra were the SOM, iron oxide content, PSD, and 
SM content. 

In this study, the soil used for the laboratory experiments was air- 
dried soil, so that the effect of SM could be ignored. Thus, given this 
assumption, the absorption coefficient KSoil and scattering coefficient 
SSoil of the total soil can be described as: 

KSoil = KPar(1 − θSom − θSIO)+KSomθSom +KSIOθSIO (6)  

SSoil = SPar(1 − θSom − θSIO)+ SSomθSom + SSIOθSIO (7)  

where K, S, and θ represent the absorption coefficient, scattering coef
ficient, and content, respectively, and the subscripts Par, SOM, and SIO 
represent soil particles, SOM, and soil iron oxide, respectively. KPar and 
SPar are calculated by accumulating the reflectance r and transmittance t 
of multiple monolayers of particles based on the BT model (Banninger 
and Fluhler 2004). Assuming that the intensity of the incident beam is 1, 
then a fraction of the beam is reflected into the air from the soil surface 
with reflectivity ρ, and another fraction enters the soil layer with an 
intensity of 1 − ρ. Due to soil layer absorption, the beam intensity at the 
interface of the medium will become (1 − ρ)τ after passing through the 
soil layer, where τ is the transmissivity. The intensity of the beam 
entering the air again after passing through the soil layer is (1 − ρ)2τ. 
Thus, the total reflectance r and transmittance t can be calculated as: 

r = ρ+(1 − ρ)2ρτ2 +(1 − ρ)2ρ3τ4 +⋯ = ρ+(1 − ρ)2ρτ2

1 − ρ2τ2 (8)  

t = (1 − ρ)2τ +(1 − ρ)2ρ2τ3 +⋯ =
(1 − ρ)2τ
1 − ρ2τ2 (9) 

The total reflectance r and transmittance t of a thin layer can be 
transformed into soil particles based on the Beer-Lambert law. 

τ = exp( − kφ) (10)  

r = ρ+(1 − ρ)2ρexp( − 2kφ)
1 − ρ2exp( − 2kφ)

(11)  

t =
(1 − ρ)2exp( − kφ)
1 − ρ2exp( − 2kφ)

(12)  

where k represents the linear absorption coefficient, and φ is the length 
of the beam inside the soil layer. According to the conclusions of Sadeghi 
et al. (2015), φ can be approximated as being equal to the particle size d. 

Due to the form of the measured particle size results, probability 
accumulation is used in this model instead of the integration form to 
describe soils with a nonuniform PSD under natural conditions (Norouzi 
et al. 2021). 

r* =
∑n

i
r(ρ, k, di)Pi (13)  

t* =
∑n

i
t(ρ, k, di)Pi (14)  

where Pi is the probability of particle size di. Thus, KPar and SPar are 
calculated by multiplying the absorption and scattering of a single level 
by the number of levels per unit depth N (Banninger and Fluhler 2004). 

KPar = N*(1 − r* − t*) (15)  

SPar = N*r* (16) 

The reflection spectra of soil mainly focus on the surface information, 
and the depth information rarely exceeds 1 mm (Norouzi et al. 2021). 
Thus, the unit of length in the model is standardized in millimeters, and 
the approximate value of N is 100, according to the average particle size 
of the soil. 

2.2. Solutions for the model parameters 

The soil particle optical coefficients (ρ and k), absorption coefficients 
(KSOM and KSIO), and scattering coefficients (SSOM and SSIO) need to be 
determined. Although the parameters can be solved by control variable 
experiments, the complexity makes the SMRT model impractical for 
future applications. To streamline the solution of the SMRT model, a 
genetic algorithm (GA) is used to fit the parameters. 

A GA is an optimization method based on the population, and is 
inspired by natural selection (Holland 1992). The new population is 
produced by iterative use of genetic operators on the individuals present 
in the population according to the chromosome representation, selec
tion, crossover, mutation, and fitness function computation. GAs have a 
superior global search capability because they can evaluate multiple 
individuals and produce multiple optimal solutions (Katoch et al. 2021). 
In the SMRT model, the RMSE of the simulated spectral reflectance is 
defined as the fitness function. 

In the laboratory experiments, two of the three samples under each 
profile were selected randomly to determine the model parameters, and 
the one remaining sample was used to verify the validity of the SMRT 
model. Fig. 3 provides an illustration of the SMRT model. 

2.3. Evaluation method 

To evaluate the performance of the SMRT model, the root-mean- 
square error (RMSE), root-mean-square error percentage (RMSEP), the 
coefficient of determination (R2), and the mean absolute error (MAE), 
which are expressed as shown in Equations (17)–(20), respectively, are 
used in this paper (Ou et al. 2021). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)
2

n

√

(17)  

Fig. 2. Sketch illustrating the reflection and transmission of soil particles, where ρ is the reflectivity and τ is the transmissivity.  
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RMSEP =
RMSE
yi max

*100% (18)  

R2 = 1 −
∑n

i=1(yi − ŷi )
2

∑n
i=1(yi − yi)

2 (19)  

MAE =

∑n
i=1|yi − ŷi |

n
(20)  

where yi is the observed spectral reflectance, yi max is the observed 
maximum of the spectral reflectance of all the samples, and ŷi is the 
spectral reflectance simulated using the SMRT model. 

3. Experimental data 

3.1. Study area 

To evaluate the capability of the SMRT model to describe the soil RT 
process, we relied on 79 soil profiles, each of which was sampled at three 
depths of 0–20 cm (surface layer), 50 cm (middle layer), and 100 cm 
(bottom layer), according to Chinese industry standards (HJ/T 
166–2004). The sampling area was in Yitong Manchu Autonomous 
County, Jilin province, China. A soil auger was used to collect the soil 
profile samples during May 1 to 5, 2019 (Fig. 4). Finally, 237 samples 
were desiccated, pulverized with a pestle, screened by a 0.15 mm sieve, 
and divided into four parts for measuring the laboratory spectra, PSD, 
SOM, and iron oxide content. 

Fig. 3. Illustration of the SMRT model.  
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3.2. Reflectance measurements 

Each soil sample was measured by the use of an ASD FieldSpec III Pro 
FR spectroradiometer with a 25◦ field of view in a darkroom. The 
spectroradiometer resolution is 2 nm in the visible and near-infrared 
(VNIR) range and 10 nm in the short-wave infrared (SWIR) range. The 
spectroradiometer and lamp were pre-warmed for 40 min prior to the 
measurements, which reduces systematic errors in the spectral mea
surements and the breakpoint effect caused by the two sensors. 

During the measurement process, the soil samples were placed in 
Petri dishes with a diameter of 9 cm and a depth of 2 cm. The surface of 
each soil sample was flattened to reduce the effect of shadows. A 1000- 
lumen halogen lamp with a zenith angle of 45◦ at a distance of 40 cm 
from the sample was used as the light source. The detection fiber probe 
was placed vertically to the soil sample at a distance of 15 cm for 
observation. The illumination and view angle were fixed to ensure 
consistency of the measured spectra, and a barium sulfate panel was 
used every 15 min to optimize the spectroradiometer. The average value 
of five measurements was considered as the final soil spectra, which 
minimizes systematic errors. Fig. 5 shows the range of the spectra and 
the average spectrum measured in the laboratory. 

3.3. Soil property measurement 

Laboratory tests were performed for the main factors of the soil 
spectra involved in the SMRT model, i.e., PSD, SOM, and soil iron oxide 
content. The soil PSD was measured using a Rise-2006 laser diffraction 
particle size analyzer, which covers a particle size of 0.05–800 μm. The 
soil iron oxide concentration was measured by inductively coupled 
plasma-mass spectrometry (ICP-MS), and the SOM content was 

measured by the potassium dichromate method. 

3.4. ICRAF-ISRIC spectral library 

The ICRAF-ISRIC soil spectral library contains spectra of 4438 air- 
dried soil samples and the associated property data. The samples are 
from 58 countries in Africa, Asia, Europe, North America, and South 
America, and cover a wide range of soil types (Garrity and Bindraban 

Fig. 4. Sampling point locations in the study area.  

Fig. 5. Soil spectra.  
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2004). The soil spectra were recorded using a FieldSpec FR spectror
adiometer at wavelengths of 350–2500 nm. As the ICRAF-ISRIC spectral 
library does not provide soil PSD data, which is one of the critical pa
rameters in the SMRT model, we employed the soil texture estimation 
data provided by Rossel et al. (2016) as the substitute soil PSD data. Soil 
texture data can be derived from soil PSD data (Shirazi and Boersma 
1984), which means that soil PSD can be simply replaced by soil texture 
data when calculating the absorption and scattering coefficients of soil 
particles. Accordingly, the particle size di in Equations (13) and (14) in 
the SMRT model was simplified to the clay, silt, and sand average par
ticle size. Soil profile data which had the same soil-forming parent 
material were selected from the ISRIC spectral library to validate the 
SMRT model. Finally, 328 effective soil profiles from 46 countries were 
selected, with a total of 2401 soil samples. Table 1 lists the number of 
soil profiles and soil samples for each country. Fig. 6 shows the range of 
the selected spectra and the average spectrum. 

4. Results 

4.1. Soil property analysis 

As shown in Fig. 7 a, the PSD shapes in the study area are mainly 
near-Gaussian and bimodal. Fig. 7 b shows that the soil taxonomy in the 
study area is mainly silt, silt loam, and silt clay loam, according to the 
United States Department of Agriculture (USDA) classification system, 
which divides the soil particle size into clay (≤2 μm), silt (2–50 μm), and 
sand (50–2000 μm). 

Fig. 8 shows the PSD and spectra of the three layers of soil samples 
under one profile. The three layers of soil samples in this profile have 
similar SOM and iron oxide contents, and their spectra only correlate 
with the PSD. The mean particle size of the surface layer soil is signifi
cantly higher than that of the middle and bottom layers of the soil, so 
that the surface layer soil sample has the lowest spectral reflectance. The 
mean particle sizes of the middle and bottom layers are similar, but the 
fraction of the middle layer of soil is slightly higher in the larger particle 
size than the bottom layer, which results in the lower spectral reflec
tance for the middle layer. This phenomenon is compatible with the 
observation that the soil PSD affects the overall reflectance of the soil 
spectrum, and that the larger the soil particle size, the lower the spectral 
curve (Sadeghi et al. 2018). 

Table 2 lists the chemical laboratory analysis results for the SOM and 
iron oxide contents. The soil iron oxide concentration increases with soil 
depth, and the SOM content decreases with the depth of soil, which is 
because soil iron oxide is mainly derived from the soil-forming parent 
material, and SOM is dependent on the formation of decaying surface 
humus. 

As shown in Fig. 9, the three-dimensional spatial distribution map 

was produced using a kriging interpolation algorithm and overlaid with 
digital elevation model (DEM) data to better represent the distribution 
of the SOM and iron oxide contents of the soil profile for the whole study 
area. The DEM data were obtained from the ASTGTM2 DEM with a 30 m 
spatial resolution. The iron oxide content in the soil profile is correlated 
with topography, with the areas of high topography showing less vari
ation than the areas of low topography. In contrast, the changes in SOM 
content are not significantly related to topography. 

4.2. Spectral simulation performance of the SMRT model 

The soil profile samples from each sampling site were used for in
dependent modeling to ensure that the main influences on the labora
tory spectra of the soil were only the SOM content, iron oxide content, 
and PSD. As the parameters fitted by the GA algorithm are not analytical 
solutions but acceptable local optima, the simulated spectra were noisy 
and needed to be denoised by Savitzky-Golay (SG) filtering. Fig. 10 
shows an example of the simulated and denoised spectra of a soil sample. 

Table 3 lists the spectral simulation accuracies of the different 
models. For the SMRT model, the simulation accuracy for the training 
set isR2 = 0.9841, RMSE = 0.0189, and MAE = 0.0101, and the accuracy 
for the test set is R2 = 0.9343, RMSE = 0.0375, and MAE = 0.0279. The 
simulation accuracies for the training and test sets are similar, which 
indicates that the SMRT model can adequately characterize the soil 
spectra. Fig. 11 shows a scatter plot of the reflectance simulation by the 

Table 1 
Statistics on the number of soil profiles and soil samples for each country.  

Country Profiles Samples Country Profiles Samples Country Profiles Samples 

Australia 19 158 India 3 16 Oman 1 5 
Benin 3 21 Indonesia 25 167 Pakistan 4 26 
Botswana 2 11 Ireland 4 24 Peru 12 75 
Brazil 23 169 Italy 6 33 Philippines 2 10 
Cameroon 1 7 Jamaica 2 14 Poland 9 56 
China 28 222 Japan 2 25 Romania 3 27 
Colombia 15 93 Kenya 15 98 Rwanda 1 6 
Congo 1 5 Malaysia 11 87 Samoa 2 11 
Cuba 16 94 Mali 5 43 Spain 13 92 
Ecuador 8 46 Mozambique 6 37 Sweden 1 5 
France 3 20 Namibia 3 18 Turkey 4 22 
Gabon 4 22 Netherlands 12 101 Uruguay 7 37 
Germany 5 43 Nicaragua 6 49 Zambia 6 76 
Ghana 1 10 Niger 1 12 Zimbabwe 4 47 
Greece 2 11 Nigeria 18 193    
Hungary 7 45 Norway 2 12     

Fig. 6. Range of the selected spectra and the average spectrum.  

F. Wu et al.                                                                                                                                                                                                                                      



International Journal of Applied Earth Observation and Geoinformation 118 (2023) 103250

7

SMRT model. The points are in the region of the 1:1 line, which indicates 
that the SMRT model performs well in simulating the soil spectra. The 
spectral simulation accuracies of the KM and BT models considering a 
single factor are much lower than the accuracy of the SMRT model 
because the KM and BT models do not accurately describe the soil RT 
process under multi factors. 

Fig. 12 shows the RMSEP of each band for all the samples. The 
RMSEP values decrease with the increasing wavelength up to 1000 nm 
in the visible range, while the RMSEP values are generally stable over 
1000–2500 nm. The main reason for this is that the SMRT model is more 

capable of resolving the effects of soil particles in the SWIR wavelength 
than in the VNIR wavelength (Sadeghi et al. 2018). The superior spectral 
simulation accuracy provides the foundation for explaining the soil 
spectral features using the model parameters. 

4.3. Spectral simulation results based on the ICRAF-ISRIC spectral library 

The soil profile samples for each sampling site were used for inde
pendent modeling to ensure the consistency of the absorption and 
scattering coefficients. Table 4 lists the results corresponding to the 

Fig. 7. A. the soil psds. b. the soil taxonomy.  

Fig. 8. PSDs and spectra of the three soil samples under one profile. a. PSDs. b. Spectra.  

Table 2 
The distributions of the SOM and soil iron oxide contents in the soil profile.   

SOM (g/kg) Soil iron oxide (g/kg)  

Mean Max Min Sd Mean Max Min Sd 

Surface  21.5721  37.9694  5.0861  6.9086  23.9814  36.7841  14.0854  4.3585 
Middle  12.9541  26.3186  3.3106  5.9451  29.3236  48.7907  18.9651  6.2895 
Bottom  11.5308  32.8971  1.5213  6.5495  30.7537  56.4263  14.6641  7.4191 
Total  15.3523  37.9694  1.5213  7.8315  28.0196  56.4263  14.0854  6.7829  

F. Wu et al.                                                                                                                                                                                                                                      
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SMRT model based on the ICRAF-ISRIC spectral library. The overall 
accuracies of the simulated spectra are R2 = 0.8428, RMSE = 0.0605, 
and MAE = 0.0408 for all the soil samples. The country with the highest 
spectral simulation accuracy is Sweden, with R2 = 0.9898, RMSE =
0.0085, and MAE = 0.0065, and the country with the lowest accuracy is 
Jamaica. The particle size di in the SMRT model has been simplified to 
the estimated soil texture data, which caused a low accuracy in the 
spectral simulation. Fig. 13 illustrates the scatter plot corresponding to 
the measured reflectance and the simulated reflectance based on the 
SMRT model. The scatter plot shows a high correlation between the 

simulated reflectance and measured reflectance, with the points largely 
concentrating on the 1:1 line. In general, the SMRT model performs well 
with respect to the simulation of the ICRAF-ISRIC spectral library, which 
demonstrates the high generalization of the SMRT model. 

5. Discussion 

5.1. Features of the parameters based on the sampling data 

The average of the SMRT model parameters for all the samples was 
calculated and smoothed to highlight the parameter features. The scat
tering and absorption coefficients of SOM in the SMRT model are shown 
in Fig. 14, where there is a very significant difference between KSom and 
SSom in the visible fraction. The combination of high scattering co
efficients and low scattering absorption result in an increase in the ab
sorption effect of light and a decrease in the scattering effect as the SOM 
content of the soil increases, which ultimately leads to a darker soil color 
(Ladoni et al. 2009). In addition, we define a band in which both KSom 
and SSom are at the peak or trough of the wave as an effective feature 

Fig. 9. Three-dimensional spatial distribution maps for SOM and soil iron oxide overlaid with DEM data. a. SOM. b. Soil iron oxide.  

Fig. 10. Simulated spectrum (red line) and denoised spectrum (blue line) of a 
soil sample. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

Table 3 
The spectral simulation accuracies of the different models.  

Model Training set Test set 

R2 RMSE MAE R2 RMSE MAE 

KM model  0.9793  0.0218  0.0154  0.6531  0.0802  0.0635 
BT model  0.9767  0.0231  0.0158  0.6602  0.0794  0.0613 
SMRT model  0.9841  0.0189  0.0101  0.9343  0.0375  0.0279  

Fig. 11. Scatter plot of the reflectance simulation by the SMRT model.  
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band. KSom increases before 630 nm, while SSom decreases, after which 
coefficient both tend to stabilize, which explains why the absorption 
feature band often used in SOM estimation studies is 630 nm (He et al. 
2009, Stevens et al. 2013). Meanwhile, there are also significant peaks 
and troughs in KSom and SSom around 1840 nm, 1915 nm, 2130 nm, 2210 
nm, and 2270 nm, implying that these bands are also effective feature 
bands, which are commonly used for SOM estimation (Madejova and 
Komadel 2001, Xu et al. 2020). 

Table 5 presents a summary of the spectral feature wavelength as
signments for the soil components, which can be used to explain the 
spectral features. SOM is a complicated combination with different 
compositions, so that the spectral feature wavelengths vary in different 
study areas. The main influential components of SOM for the spectral 
features are likely to be methyl, polysaccharides, and carbohydrates. 

Table 6 lists the feature bands commonly used in SOM estimation. 
The feature bands used for estimating SOM are primarily concentrated 
around 350–780 nm, and the SMRT model shows that there are obvious 
features in the visible range with generally high absorption coefficients 
and low scattering coefficients. 

Fig. 15 shows the relationship between the SOM absorption coeffi
cient KSom and scattering coefficient SSom, which clearly reveals that KSom 
and SSom have a very high linear relationship (Pearson correlation co
efficient = − 0.9363) and a high fitting accuracy (R2 = 0.8767). 

As shown in Fig. 16, soil iron oxide shows a high absorption coeffi
cient in the 350–550 nm range, and several studies have shown that the 
absorption features in this part of the spectrum are mainly caused by the 
ferrihydrite, goethite, hematite, and ferric oxide in the soil (Richter et al. 
2009). There are also significant peaks and troughs around 1415 nm, 
1915 nm, 2125 nm, 2210 nm, and 2270 nm, which are effective feature 
bands that are commonly used for soil iron oxide estimation. The ab
sorption coefficient decreases and the scattering coefficient increases 
rapidly in the red wavelength range (550–750 nm). Thus, as the iron 
oxide in the soil increases, the scattering in the red wavelength range is 
enhanced and the soil color appears red, as in laterite soil. 

The scattering coefficient for soil iron oxide increases with the 
wavelength up to 750 nm, and then stabilizes between 750 nm and 1915 
nm, except around 1415 nm, where the scattering coefficient is lower 
(Krupnik and Khan 2019). As shown in Table 5, the main influential 
components of soil iron oxide for the spectral features are likely to be 
goethite, hematite, and hydroxyl. 

Barrón and Torrent (1986) prepared hematite and synthetic goethite 
samples and measured the spectra at 400–700 nm. The absorption and 
scattering coefficients of iron oxide was then obtained by fitting the KM 
model. The absorption and scattering coefficients of soil iron oxide 

between 400 and 700 nm in the current study show similar trends to 
those of goethite. Ciani et al. (2005) obtained the absorption and scat
tering coefficients of goethite using the dilution method, which are 
similar to the results of the current study. 

Fig. 17 shows the relationship between the soil iron oxide absorption 
coefficient KSIO and scattering coefficient SSIO. Although the fitting pa
rameters are not as accurate as those for SOM, they also show a high 
accuracy (Pearson correlation coefficient = − 0.9601, R2 = 0.9214). 

Fig. 18 shows the values of the reflectance ρ and linear absorption 
coefficient k in the SMRT model as a function of wavelength. The 
reflectance ρ increases gradually with increasing wavelength, while the 
linear absorption coefficient k decreases with increasing wavelength up 
to 1500 nm, and then increases gradually after 1500 nm. The trends in 
the reflectance ρ and linear absorption coefficient k with wavelength are 
similar to those found by Sadeghi et al. (2015), and the linear absorption 
coefficients are significantly higher around 1415 nm, 1915 nm, and 
2210 nm. 

Fig. 19 illustrates the relationship between the reflectance and the 
linear absorption coefficient. The Pearson correlation coefficient be
tween the reflectance and the linear absorption coefficient is − 0.6657, 

Fig. 12. The RMSEP of each band for all of the soil samples.  

Table 4 
Accuracies of the spectral simulation by the SMRT model based on the ICRAF- 
ISRIC spectral library.  

Country Training set Test set 

R2 RMSE MAE R2 RMSE MAE 

Australia  0.8891  0.0514  0.0357  0.8874  0.0499  0.0345 
Benin  0.9585  0.0236  0.0165  0.9610  0.0236  0.0173 
Botswana  0.8790  0.0409  0.0296  0.8639  0.0381  0.0248 
Brazil  0.9287  0.0451  0.0299  0.9292  0.0452  0.0327 
Cameroon  0.9803  0.0064  0.0043  0.9082  0.0137  0.0113 
China  0.9052  0.0450  0.0304  0.8730  0.0515  0.0352 
Colombia  0.9165  0.0433  0.0251  0.8986  0.0469  0.0334 
Congo  0.9850  0.0106  0.0075  0.9197  0.0261  0.0165 
Cuba  0.7338  0.0808  0.0539  0.5519  0.1062  0.0754 
Ecuador  0.8598  0.0432  0.0332  0.8568  0.0412  0.0303 
France  0.9292  0.0463  0.0361  0.8859  0.0554  0.0413 
Gabon  0.9286  0.0352  0.0216  0.7409  0.0652  0.0454 
Germany  0.7940  0.0652  0.0530  0.8097  0.0616  0.0480 
Ghana  0.9566  0.0276  0.0233  0.9764  0.0197  0.0162 
Greece  0.9406  0.0291  0.0236  0.9142  0.0355  0.0218 
Hungary  0.8903  0.0443  0.0330  0.8491  0.0493  0.0405 
India  0.9157  0.0438  0.0306  0.8529  0.0572  0.0463 
Indonesia  0.8693  0.0561  0.0379  0.8230  0.0612  0.0383 
Ireland  0.8407  0.0564  0.0433  0.8940  0.0454  0.0342 
Italy  0.9727  0.0245  0.0181  0.9162  0.0429  0.0299 
Jamaica  0.8128  0.0803  0.0544  0.5407  0.0968  0.0684 
Japan  0.7293  0.0482  0.0360  0.7559  0.0436  0.0328 
Kenya  0.9386  0.0318  0.0235  0.9112  0.0381  0.0258 
Malaysia  0.7380  0.0794  0.0524  0.7184  0.0886  0.0546 
Mali  0.8229  0.0613  0.0475  0.8383  0.0564  0.0419 
Mozambique  0.7617  0.0646  0.0439  0.8494  0.0452  0.0297 
Namibia  0.8816  0.0458  0.0280  0.9414  0.0297  0.0231 
Netherlands  0.7458  0.0814  0.0608  0.7061  0.0840  0.0662 
Nicaragua  0.7287  0.0785  0.0609  0.7660  0.0695  0.0547 
Niger  0.9886  0.0160  0.0118  0.9861  0.0178  0.0118 
Nigeria  0.8495  0.0566  0.0406  0.8474  0.0579  0.0415 
Norway  0.8293  0.0501  0.0364  0.9164  0.0367  0.0259 
Oman  0.5850  0.0849  0.0741  0.8233  0.0496  0.0422 
Pakistan  0.9118  0.0302  0.0243  0.8732  0.0337  0.0255 
Peru  0.8799  0.0570  0.0379  0.8004  0.0724  0.0494 
Philippines  0.9853  0.0120  0.0103  0.9679  0.0174  0.0136 
Poland  0.8705  0.0481  0.0356  0.7269  0.0708  0.0501 
Romania  0.7673  0.0594  0.0512  0.6809  0.0729  0.0624 
Rwanda  0.8933  0.0328  0.0260  0.9538  0.0191  0.0154 
Samoa  0.9875  0.0131  0.0100  0.9743  0.0173  0.0132 
Spain  0.7616  0.0710  0.0448  0.7422  0.0758  0.0513 
Sweden  0.9670  0.0150  0.0132  0.9898  0.0085  0.0065 
Turkey  0.8492  0.0580  0.0458  0.8055  0.0667  0.0494 
Uruguay  0.8598  0.0515  0.0401  0.8790  0.0478  0.0346 
Zambia  0.8892  0.0502  0.0363  0.8297  0.0640  0.0466 
Zimbabwe  0.8818  0.0551  0.0381  0.8825  0.0567  0.0366 
All_countries  0.8707  0.0555  0.0375  0.8428  0.0605  0.0408  
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which represents weak negative correlation. As the linear absorption 
coefficient k and the particle reflectance ρ are the inherent properties of 
a soil particle, there is no correlation between these two parameters. 

In contrast, the absorption and scattering coefficients of soil particles 

Fig. 13. Scatter plot of the reflectance simulation by the SMRT model based on 
the ICRAF-ISRIC spectral library. 

Fig. 14. The SOM absorption coefficient KSom and scattering coefficient SSom of 
each band. 

Table 5 
Feature wavelength assignments for soil components in the literature (Ben-Dor 
et al. 1997, Rossel and Behrens 2010).  

Soil component Wavelength (nm) 

SOM Aromatics 825, 1100, 1650 
Amine 751, 1000, 1500, 2060 
Carbohydrates 1449, 1930, 2381 
Amides 1524, 2033 
Methyl 1703–1852, 2307–2469 
Phenolics 1961 
Polysaccharides 2137 
Cellulose, lignin, 
starch, pectin 

1260, 1367, 1468, 1660, 1730, 1769, 1780, 
1932, 1950, 2142, 2331, 2337 

Urea, oil 2030, 2070, 2310, 2380 
Soil iron 

oxide 
Goethite 434, 480, 650, 920 
Hematite 404, 444, 529 
Hydroxyl 1400  

Table 6 
Summary of the feature wavelengths for estimating SOM.  

Reference Wavelength (nm) Method 

He et al. 
(2009) 

587, 845, 863, 905, 1500, 1681, 1740, 2137, 
2187 

Linear regression 

Liu et al. 
(2014) 

350–800, 1900 Partial least 
squares regression 

Hong et al. 
(2019) 

410, 500, 510, 530, 570, 580, 590, 670, 690, 
710, 750, 810, 820, 830, 930, 940,950, 
1400, 1920, 2390 

Memory-based 
learning 

Xu et al. 
(2020) 

800, 1000, 1100, 1200, 1420, 1500, 1800, 
1920, 2000, 2100, 2200, 2350 

Partial least 
squares regression 

Meng et al. 
(2021) 

488, 531, 598, 1485, 1511, 1536 Random forest 

Ou et al. 
(2021) 

570, 670, 750, 890, 1100, 2210 Semi-supervised 
deep neural 
network regression  

Fig. 15. Correlation between the SOM absorption coefficient KSom and scat
tering coefficient SSom. 

Fig. 16. The soil iron oxide absorption coefficient KSIO and scattering coeffi
cient SSIO of each band. 
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calculated from the linear absorption coefficient k and the particle 
reflectance ρ have a strong correlation. Fig. 20 shows the values of the 
soil particle absorption coefficient KPar and scattering coefficient SPar in 
the SMRT model as a function of wavelength. The absorption coefficient 
KPar and linear absorption coefficient k show similar trends for 
350–2500 nm, as do the scattering coefficient SPar and reflectance ρ, 
which is mainly because the absorption and scattering coefficients of the 
soil particles are calculated cumulatively for multiple single particles. 

However, unlike a single particle, the absorption and scattering co
efficients of soil particles have a strong correlation. As shown in Fig. 21, 
KPar and SPar have a very high linear relationship (Pearson correlation 
coefficient = − 0.9778) and a high fitting accuracy (R2 = 0.9561). 

In infinitely thick soils, the RT process can be summarized as an 
absorption effect and a scattering effect, which are antagonistic. Thus, 
the absorption and scattering coefficients of SOM, soil particles, and iron 
oxide calculated by the SMRT model all have a very strong negative 
correlation, which laterally verifies the accuracy of the SMRT model in 
describing the spectral response mechanism of soils. 

5.2. Features of the parameters based on the ICRAF-ISRIC spectral library 

Fig. 22 shows the relationship between the absorption and scattering 
coefficients of SOM, soil iron oxide, and soil particles, respectively. The 
absorption and scattering coefficients of soil particles have a strong 
negative correlation. In contrast, the absorption and scattering co
efficients of SOM and soil iron oxide show a weak negative correlation. 
The correlation between the absorption and scattering coefficients is 
inferior to the results described in Section 5.1. As the ICRAF-ISRIC 
spectral library covers a wider range of soil types around the world 
(Cao et al. 2020), the correlation between the absorption and scattering 
coefficients is of more universality. 

5.3. Spatial variation of the absorption and scattering coefficients based 
on the ICRAF-ISRIC spectral library 

As the absorption and scattering coefficients are wavelength 
dependent, it is impossible to list all the absorption and scattering co
efficients of soil samples in the ICRAF-ISRIC spectral library. The ab
sorption and scattering coefficients of the feature bands for SOM (630 
nm) and soil iron oxide (750 nm) were chosen to investigate their spatial 

Fig. 17. Correlation of the soil iron oxide absorption coefficient KSIO and 
scattering coefficient SSIO. 

Fig. 18. The particle reflectance ρ and linear absorption coefficient k of 
each band. 

Fig. 19. Correlation between the particle reflectance ρ and linear absorption 
coefficient k. 

Fig. 20. Soil particle absorption coefficient KPar and scattering coefficient SPar 

of each band. 
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variation. Table 7 lists the statistics for the absorption and scattering 
coefficients of SOM and soil iron oxide. The coefficient of variation (C. 
V.) shows that the variation in SOM is significantly greater than that in 
soil iron oxide. The absorption and scattering coefficients are dependent 
on the composition, and the composition of SOM is more complex than 
that of soil iron oxide, which causes differences in the spatial variation of 

the coefficients of SOM and soil iron oxide. 
The global Moran index (Moran’s I) is introduced to measure the 

spatial heterogeneity of the coefficients. As listed in Table 8, all the 
coefficients have small Moran’s I values, with p-values greater than 0.1, 
indicating that the coefficients are randomly distributed and there is no 
significant spatial autocorrelation. 

5.4. The reduced-parameter SMRT model 

According to the above results, the high correlation of the absorption 

Fig. 21. Correlation between the soil particle absorption coefficient KPar and 
scattering coefficient SPar. 

Fig. 22. Correlation between the absorption and scattering coefficients based on the ICRAF-ISRIC spectral library. a. SOM. b. Soil iron oxide. c. Soil particles.  

Table 7 
The statistics for the absorption and scattering coefficients.   

Max Min Mean Sd C.V. 

K_Som  87.4574  32.8273  56.5206  9.7591  0.1726 
S_Som  72.3924  8.7099  40.3152  10.0794  0.2501 
K_SIO  75.8630  25.3473  50.8401  7.9503  0.1563 
S_SIO  67.2922  28.4951  48.4885  7.0754  0.1459  

Table 8 
The global Moran’s I statistics for the absorption and scattering coefficients.   

Moran’s I Z-score P-value 

K_Som  − 0.0172  − 0.9848  0.3247 
S_Som  0.0099  0.9071  0.3644 
K_SIO  0.0051  0.5659  0.5714 
S_SIO  0.0076  0.7472  0.4548  
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and scattering coefficients for SOM and soil iron oxide makes it possible 
to further simplify the model by reducing the number of model pa
rameters. Based on the results of the sampling point data, the scattering 
coefficients for SOM and soil iron oxide can be expressed as: 

SSom = − 1.27KSom + 108.71 (21)  

SSIO = − 0.61KSIO + 70.95 (22) 

The parameters remaining to be solved in the SMRT model are then 
the soil particle optical coefficients (ρ and k), and absorption coefficients 
(KSOM and KSIO), which greatly decreases the complexity, compared with 
the previous six parameters. 

Table 9 lists the results for the simplified SMRT model, where the 
spectral simulation accuracy is similar to that of the original SMRT 
model. 

However, the absorption and scattering coefficients depend on the 
composition of the soil constituents, and the above relationships for 
absorption and scattering coefficients only represent the characteristics 
in the study area. 

As the ICRAF-ISRIC spectral library covers a global range of soil 
types, the correlations between the absorption and scattering co
efficients in the ISRIC spectral library will have greater universality. 
Thus, based on the results of the ICRAF-ISRIC spectral library, the 
scattering coefficients for SOM and soil iron oxide can be expressed as: 

SSom = − 0.48KSom + 71.73 (23)  

SSIO = − 0.29KSIO + 62.99 (24) 

As shown in Table 10, the spectral simulation accuracies are over 0.8 
in R2 for both datasets. The parameters in Equations (23) and (24) are 
more representative and general, which means that they can be used as 
empirical values to reduce the number of SMRT model parameters. 

6. Conclusion 

The SMRT model takes full account of the main influencing factors 
for soil spectra, i.e., the PSD, SOM content, and iron oxide content. 
Although the model makes some simplifying assumptions, such as 
ignoring the diffraction and dispersion of light, assuming light isotropy, 
etc., to improve the robustness, the experimental results showed that the 
model achieved a high simulation accuracy for the different types of soil 
spectra in the study area. In addition, the soil profile dataset used in the 
experiments can illustrate the practical application of the SMRT model, 
compared to controlled variable experiments in the laboratory, while 
ensuring that the soil-forming parent material is consistent under a soil 
profile and that the main influences on the soil spectra are only PSD, 
SOM content, and iron oxide content. 

The derived parameters of the SMRT model provide a theoretical 
basis for indicator content estimation using soil spectra. The absorption 
and scattering coefficients in the model further corroborate the physical 
mechanism of the sensitive spectral features of the soil indicators in 
previous studies. The spectral feature wavelength bands identified in 
this study agree with the general wavelength ranges but were not the 
same as the previous study findings, and the reason for this is that the 
effect of soil components on the spectra is not a single wavelength band 
but a specific range of effects. Thus, the similar feature range indicates 
that the SMRT model can correctly explain the spectral features through 
the spectral mechanism. The SMRT model parameters also explain the 
color representation of black soil and laterite soil from the RT process. 

Further analysis of the model parameters indicated that the spectral 
features around 1910 nm and 2210 nm are specific. These two spectral 
features are often interpreted as being caused by the SM and clay min
eral content (St. Luce et al. 2014). Analysis of the absorption and scat
tering coefficients demonstrated that the spectral features around 1910 
nm and 2210 nm are not only caused by these two factors, but several 
factors, including the SOM, iron oxide content, and PSD. However, the 

concentration of SM and clay minerals is much higher than that of SOM 
and iron oxide, resulting in the spectral features of clay minerals and 
moisture masking the other factors, which has led to the data-driven 
models used in the previous studies only illustrating the effects of 
moisture and clay minerals. 

This study focused on the theoretical aspects of the model and 
verified its feasibility under optimal indoor experimental conditions. 
However, as the coefficients in the SMRT model are dependent on the 
soil properties, the coefficients cannot be constants. The requirement to 
calibrate the model parameters by samples in practical applications 
limits the application of the SMRT model. Future studies should combine 
DEM data and soil texture data to address more severe conditions in 
hyperspectral imagery, such as topographic shadow effects, mixed 
image elements, and so on, which will help the model overcome the 
current application limitations and expand its application to hyper
spectral imagery. 
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