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A B S T R A C T   

Chromium (Cr) pollution in soil can cause serious harm to both human health and the environment. Cr (VI) is of 
particular concern due to its strong carcinogenic, teratogenic, and mutagenic effects on humans. It can also lead 
to soil hardening and crop yield reduction. Recently, hyperspectral approaches have become a popular way of 
analyzing heavy metal pollution in soil, and are both convenient and cost-effective, compared with chemical 
analysis. However, the complex composition of soil makes it challenging to directly analyze the influence of 
heavy metals on soil spectra and achieve efficient and rapid identification of heavy metal contamination in soil. 
In this research, a simulation experiment was designed for soil Cr content. Threshold detection-Hilbert-Huang 
transform (TD-HHT) was implemented to remove the complex environmental noise of soil spectra, to extract 
the weak heavy metal information. The results showed that the TD-HHT amplitude fluctuates at different Cr 
concentrations, and heavy metal pollution can be directly detected from the amplitude curve at around 600 mg/ 
kg. To verify this threshold value, the correlation between the soil optical constant and the soil heavy metal 
concentration was explored through the bidirectional reflectance distribution function, based on the threshold 
validation-Hapke (TV-Hapke) model. At around 600 mg/kg, Cr can be directly detected using the soil radiative 
transfer model, which can be utilized to rapidly detect soil heavy metal pollution.   

1. Introduction 

The rise of industrialization and globalization has resulted in con-
sumption patterns increasement, giving rise to substantial waste pro-
duction and the release of diverse pollutants, which contributes to 
further damage on the environment and has hindered the progress in 
meeting the Sustainable Development Goals (SDGs) (UNEP, 2021). Soil 
constitutes a vital component of the overall environment, and the 
quality and safety of the soil environment is critical to maintain stable 
social and economic development and protect human health. Soil heavy 
metal pollution can have a serious impact on soil environmental quality. 
As a result of the extremely long degradation, without treatment, the soil 
heavy metal elements can lead to the deterioration of the soil environ-
ment and contamination of crops, as well as pose a threat to human 
health when these elements enter the food chain (Bolan et al., 2014). 
Heavy metal pollution is long-term, irreversible, non-degradable, and 

highly toxic. At present, the deterioration of the regional agricultural 
environment in China is very serious, and a large volume of Chromium 
(Cr) slag is unprotected, resulting in Cr slag dust being spread with the 
wind to the nearby soil and then into rivers, resulting in serious pollution 
of both soil and water bodies. Meanwhile, wastewater containing Cr is 
often arbitrarily discharged without treatment and, without effective 
control, Cr can even be found in city garbage and general waste (Zheng 
et al., 2017). Cr cannot be decomposed or degraded after entering the 
soil, and will always exist in the soil. Cr in soil exists in the form of Cr 
(III) and Cr (VI). The first form has a low concentration, poor activity, 
and represents a relatively minor hazard. Meanwhile, Cr (VI), which is a 
strong oxidant with high solubility and strong activity, and very toxic to 
animals and plants (Costa, 2003). In addition, its strong oxidation causes 
soil hardening and crop yield reduction. 

Although traditional soil quality monitoring is highly accurate, it 
cannot meet the current demand for large-scale environmental 
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monitoring because of its inherent disadvantages, such as the time 
consumption and cost. The application of hyperspectral technology in 
estimating soil composition has become widespread, attributed to its 
rapid, non-destructive, and non-contact characteristics (Viscarra Rossel 
and Behrens, 2010; Viscarra Rossel et al., 2016; Tan et al., 2020a,b; Ou 
et al., 2021). However, since the low concentration of heavy metal 
content in soil, the response in the spectra is extremely weak. Obtaining 
optimal spectra that reflect the true properties of the sample is also a 
challenging task, as the result of the experimental conditions, including 
instrument noise, and it is challenging to capture the effective infor-
mation of soil heavy metals directly. As a result, spectral preprocessing 
enhancement and spectral feature extraction are critical for soil heavy 
metal analysis with the hyperspectral technique. 

Preprocessing methods which can remove the spectral noise and 
baseline drift and highlight the characteristic bands of the spectra have 
been extensively applied and have been proven to be generally effective. 
Typical preprocessing methods include the continuum removal, multi-
plicative scatter correction, standard normal variate correction, first- 
order derivative, and second-order derivative (Susi and Byler, 1983; 
Fearn et al., 2009; Asadzadeh and de Souza Filho, 2016; Zhang et al., 
2019). When the mathematical transformation cannot capture the faint 
spectral differences, the spectrum can be converted to the frequency 
domain. In terms of frequency domain transformation, the predominant 
approach for detecting signal anomalies involves employing time-
–frequency analysis. This technique transforms signals from the tem-
poral domain to the frequency domain, enables the identification of 
abnormal signal characteristics and changes in information within the 
frequency domain. In recent years, wavelet transform, harmonic anal-
ysis, and other methods have been applied in soil moisture and organic 
matter analysis and estimation (Jiang et al., 2017; Wang et al., 2018). 
The threshold denoising method based on wavelet transform can be 
utilized to denoise the first derivative spectra of soil, where the ab-
sorption area is then extracted from the denoised derivative spectra to 
characterize the change of organic matter content, so as to realize the 
detection of soil organic matter derivative spectra (Liu et al., 2011). 
Until now, limited research has been conducted on the extraction of 
information and spectral detection of signals related to soil heavy metal 
pollution. Fu et al. (Fu and Yang, 2018) converted the soil spectra into 
sparse spectra based on the second-order difference method and com-
bined the sparse spectrum of soil and Gabor expansion theory to detect 
the weak differences of heavy metal stress spectra in different concen-
tration soils in the frequency domain. Utilizing HHT in time–frequency 
analysis, Fu et al. (Fu et al., 2019) examined soil contaminated with 
varying lead concentrations. Information mining of the soil spectra was 
achieved by analyzing the frequency spectrum of Intrinsic Mode Func-
tion (IMF) component. It was found that there are differences in IMF2 of 
soil spectra under different concentrations of Pb pollution. Yang et al. 
(Yang et al., 2018) mined Cu pollution information in soil spectra on 
HHT and the conclusions showed that the spectra time–frequency results 
were non-identical when polluted by different Cu content. However, 
these studies only describe that there exited differences between the 
spectra time–frequency results under different pollution and were un-
able to determine a specific identifiable heavy metal pollution stress 
threshold, and these methods for signal decomposition possess limita-
tions when elucidating the variation of reflectance in relation to the 
spectral mechanism. 

In this study, in order to explore this problem, we attempted to 
analyze the interaction process and distribution of light radiation on the 
surface of a soil medium with different heavy metal contents through a 
radiative transfer model (RTM). The optical properties of each compo-
nent of the soil determine the difference in the radiation transmission 
process of the incident light. The RTM provides an explicit connection 
between bidirectional reflectance and soil properties based on soil op-
tical properties (Huete and Escadafal, 1991; Palacios-Orueta and Ustin, 
1998). Sadeghi et al. (Sadeghi et al., 2015) developed a physically based 
soil water inversion model using the Kubelka-Munk theory, converting 

soil reflectance into a linear relationship model with soil water content. 
Yang et al. (Yang et al., 2011) integrated soil water content information 
into the SOILSPECT model, establishing the SWAP-Hapke model for 
inverting soil water content parameters under field conditions. Yao et al. 
(Yao et al., 2018) analyzed the impact of the different optical properties 
on the characteristics of soil duality through soil water content data 
from multiple angles, and performed quantitative inversion of the soil 
water content based on the Hapke model. Zhang et al. (Zhang et al., 
2020) proposed the novel SMR-Hapke soil moisture retrieval approach, 
which was verified on soil moisture data, and reduced it to a linear form, 
which has great potential for estimating soil moisture content. The 
Hapke model has found extensive application in the estimation of soil 
moisture. However, to the best of our knowledge, the Hapke model has 
not been used to explore the optical properties of soil heavy metals. 

This work is driven by the following motivations: 
The current soil heavy metal Cr monitoring methods require field 

sampling, chemical analysis and model building to obtain the heavy 
metal content, and thus cannot be used to achieve efficient and rapid 
identification of soil heavy metal contamination in a study area. 
Therefore, in the proposed approach, threshold detection Hilbert-Huang 
transform (TD-HHT) and the threshold validation Hapke (TV-Hapke) 
model are utilized to obtain a threshold for the efficient identification of 
Cr contamination using only spectra to achieve rapid soil heavy metal 
pollution analysis. 

The primary contributions of this study can be summarized as 
follows:  

(1) We detect a Cr pollution threshold for soil spectra with TD-HHT 
using characteristic bands.  

(2) We explore the optical properties of soil Cr and verify the Cr 
pollution threshold in soil spectra based on the TV-Hapke model. 

Section II is divided into two parts. The first part describes the 
experimental design, and the second part introduces the proposed 
method. Section III details the experimental results. Finally, we draw our 
conclusions in Section IV. Fig. 1 illustrates the flowchart of the research. 

2. Materials and methods 

2.1. Experimental design 

This experiment was devised with the artificial addition of Cr to soil. 
The metal compound CrCl3⋅6H2O was added based on the risk screening 
value and the risk intervention value stipulated in the soil environ-
mental quality risk control standard for soil contamination of agricul-
tural land (GB 15618–2018) (Regulation, 2018). If the soil Cr 
contamination of agricultural land exceeds the risk screening value (200 
mg/kg), there are potential risks to the quality and safety of agricultural 
products, as well as the overall health of crop growth and soil ecology. 
Therefore, it is essential to implement measures to ensure the safe uti-
lization of soil. If the soil Cr contamination in agricultural land exceeds 
the risk intervention value (1000 mg/kg), the edible agricultural prod-
ucts may fall short of meeting the quality and safety standards, and strict 
control measures should be taken, in principle. Therefore, in order to 
monitor Cr contamination, the added heavy metal values were set be-
tween the risk screening value and the risk intervention value. The 
concentrations of the artificially added Cr were 200, 300, 400, 500, 600, 
700, 800, 900, and 1000 mg/kg. 

2.2. Soil sample collection and treatment 

We collected several samples in Xuzhou, sent them to the laboratory 
to measure the soil heavy metal concentration using inductively coupled 
plasma-mass spectrometry (ICP-MS), and selected an uncontaminated 
soil sample to conduct experiment. 

Natural soil samples, belonging to cinnamon soil, were gathered at 
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the remote sensing experimental field, Xuzhou city, Jiangsu province. 
The climate of the experimental field is a warm temperate semi-humid 
monsoon climate. The experimental field has average annual tempera-
ture and precipitation of 14 ◦C and 847 mm, respectively. Following 
collection, the soil samples were carefully sealed and conveyed to the 
laboratory for subsequent analysis. In the laboratory, after removing any 
sundries in the soil samples, the soil samples underwent a process of 
drying, grinding, and sieving through a 100-mesh nylon sieve. As one of 
the important components of soil, soil organic matter significantly in-
fluences the characteristics of soil spectra. With the aim of exploring 
solely the effect of heavy metal on the soil spectra, the soil was calci-
nated in a muffle furnace at 600 ◦C for 8 h to remove organic matter. The 
value of the Cr concentration in the selected Cr-uncontaminated natural 
soil sample was found to be 76.2 mg/kg. 

In the experiment, the controlled variable method was utilized to 
guarantee that the soil property was subject to only heavy metal stress. 
For each sample, 30 g of soil was placed in a conical flask and wetted 
with deionized water. The CrCl3⋅6H2O solution was then added to obtain 
the desired Cr concentration, additional water was added, and the 
sample was then placed in an oscillator for 24 h. After this, the material 
in the conical flask was placed in a forced air oven at 40 ◦C, covered with 
a hole-filled plastic wrap. When there was no more visible water, 
deionized water was added to the sample. This process was repeated 
twice and the soil was dried at 40 ◦C (Wu et al., 2007). After drying, 
grinding, and passing through a 100-mesh nylon sieve, the soil samples 
were placed into petri dishes, distributed evenly, and the soil surface 
was smoothed. The spectra of the artificially contaminated soil samples 
were then captured using an Analytical Spectral Devices (ASD) field 
spectrometer in a dark room. A 1000-lumen halogen lamp with a zenith 
angle of 45◦ was used as the light source. The detection fiber was placed 
vertically to the soil sample at a distance of 15 cm. The soil was placed in 
petri dish, which was set between light source and detection fiber. Each 
soil sample underwent five scans, and the resulting average spectrum 
was taken as the final spectrum. 

2.3. Theories and methods 

2.3.1. Threshold detection Hilbert-Huang transform (TD-HHT) 
When the mathematical transformation cannot capture the faint 

spectral differences, the spectrum can be converted to the frequency 

domain. The Hilbert-Huang transform (HHT) has been investigated for 
soil spectral analysis because of its advantage of being able to handle 
‘nonlinear’ and ‘nonstationary’ problems through Hilbert analysis. The 
TD-HHT process comprises two components: empirical mode decom-
position (EMD) and Hilbert transformation. 

EMD can adaptively decompose the spectra into a finite number of 
Intrinsic Mode Functions (IMFs). Two essential conditions for generating 
IMF components include: 1) ensuring the number of extreme points and 
zero-crossing points for IMF needs to be the same or differ by at most 
one; and 2) the mean value of the envelope, as determined by the local 
maximum and minimum points at any point of IMF, should be zero, i.e., 
the waveform of the entire curve must be locally symmetric. Assuming 
that the original spectrum is X(k), then the decomposition processes of 
EMD are as follows: 1) Extract all the local maximum and minimum 
points of the spectrum X(k) to be analyzed, and then use the cubic spline 
interpolation method to fit the maximum and minimum points to form 
the maximum envelope emax (k) and the minimum envelope emin(k). The 
mean value m of the extremum envelope is then obtained. 2) Subtract m 
from X(k) to obtain a new signal y1(k), where the signal y1(k) is in the 
form of IMF components. It is determined whether y1(k) is an IMF 
component according to the judgment criterion of the IMF component. If 
y1(k) does not meet the conditions, y1(k) is used as the original data, the 
above steps are repeated, and the filtering is continued until y1(k) meets 
the IMF conditions. At this time, y1(k), which is IMF1, is the first IMF 
component of X(k). 3) The remaining signal r1 (k) = X(k) − IMF1 is used 
as the original signal. IMFn and rn follows a similar procedure. The 
termination criterion is met when rn forms a monotonic curve. The 
original spectrum X(k) can be represented as: 

X(k) =
∑n

i=1
IMFi(k)+ ri(k) (1)  

where n signifies the number of iterations, IMFi stands for the ith IMF 
component during the iterative process, and ri corresponds to the ith 
residual spectrum. 

Assuming that the IMF component IMFi(k) is s(k), then its conjugate 
spectrum m(k) is calculated by Hilbert transformation performed on 
s(k): 

Fig. 1. Flowchart of the study.  
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m(k) =
1
π

∫ +∞

− ∞

s(τ)
k − τ (2)  

where k denotes the band number and τ is the integral variable. 
s(k) and m(k) are utilized to construct the analytical spectrum z(k): 

z(k) = s(k) + jm(k) = a(k)ejφ(k) (3)  

α(k) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

s(k)2
+ m(k)2

√

(4)  

φ(k) = arctan
m(k)
s(k)

(5)  

where α(k) denotes the instantaneous amplitude or energy of the 
analytical spectrum, while φ(k) signifies the instantaneous phase of the 
analytical spectrum. 

The instantaneous frequency of s(k) can be obtained from the 
instantaneous phase: 

ω(k) = dφ(k)
dk

# (6) 

If the amplitude is displayed on the plane of the frequency and band, 
the Hilbert spectrum H(ω, k) can be obtained. 

2.3.2. Threshold validation Hapke (TV-Hapke) model 
In addition to the signal decomposition method, in order to achieve 

Cr threshold detection, the RTM is introduced. The Hapke model, i.e., 
the bidirectional reflection model of the luminosity scattering properties 
on the surface of a dense medium, describes the interaction between 
light and the medium (Hapke, 2002), and can provide useful informa-
tion related to soil surface properties and physicochemical properties. 

In the TV-Hapke model, the radiant reflectance can be derived as: 

r(ui, ue, g, λ) =
ω(λ)

4
1

ui + ue
(p(g)[1 + B(g) ] + [H(ui)H(ue) − 1 ] )# (7)  

where ω(λ) is the soil Single Scattering Albedo (SSA).ω(λ) is defined as 
the probability that the photons would be scattered by the particle. ui 
and ue denote the cosine of the incidence angle and the emittance angle, 
respectively. The phase angle g represents the included angle between 
the incident light and the scattered light. P(g), which is a phase function, 
reflects the scattering characteristics of the soil particles and describes 
the spatial distribution of scattered light. The second-order Legendre 
polynomial phase function equation is: 

P(g) = 1 + bcosg +
c[3cos2(g) − 1 ]

2
+ b′cosg′ +

c′[3cos2(g′) − 1 ]
2

# (8)  

cosg = cosθicosθe + sinθisinθecosφ# (9)  

cosg′ = cosθicosθe − sinθisinθecosφ# (10)  

where θi, θe signifie the solar zenith angle and the view zenith angle, 
respectively, and φ denotes the relative azimuth between the sun and the 
observation direction. 

B(g) is the backscatter function, which represents the effect of 
backscatter on the reflected light: 

B(g) =
B0

1 + (1/h)tan(g/2)
(11)  

where g is the scattering angle,h is the half-width parameter of the hot 
spot effect, and B0 signifies the intensity size of the hot spot effect. 

H(x) is the multiple scattering function: 

H(x) =
1 + 2x

1 + 2x
̅̅̅̅̅̅̅̅̅̅̅̅
1 − ω

√ (12) 

which x represents ui and ue. 

3. Results 

3.1. Spectral threshold detection 

The CrCl3⋅6H2O solution was added to the soil samples in accordance 
with the experimental design. After the sample preparation, the spectra 
were measured the ASD spectrometer in a dark room. The soil spectra 
under different Cr concentrations are shown in Fig. 2. Cr-O represents 
the original soil spectra without additional contamination, and the 
contamination levels of the Cr-200, Cr-300, Cr-400, Cr-500, Cr-600, Cr- 
700, Cr-800, Cr-900, and Cr-1000 samples were set as 200, 300, 400, 
500, 600, 700, 800, 900, and 1000 mg/kg, respectively. Between 510 
nm and 800 nm, the spectral curves rise with a large slope. After 800 nm, 
the spectral curves rise only slowly. The spectral curves start to decrease 
from 2150 nm. There are obvious absorption peaks at 1400 nm, 1900 
nm, and 2200 nm, with the 1400 nm and 1900 nm peaks corresponding 
to prominent water vapor absorption bands. The peaks at 1400 and 
1900 nm can be attributed to the stretching vibration of the molecular 
H2O and OH groups in the adsorbed H2O (Bishop et al., 1994; Srasra 
et al., 1994), and the 2200 nm peak can be attributed to stretching vi-
bration and bending vibration of AlOH, OH and organic matter (Post and 
Noble, 1993; Wight et al., 2016). 

The spectra exhibit minor variations with varying heavy metal 
contents, making it challenging to extract subtle information related to 
heavy metals. Therefore, the spectra were mathematically transformed, 
primarily to enhance the existing spectra and detect the key information 
regarding heavy metal pollution. Fig. 3 shows the preprocessed spectra 
after first-order derivative (FD), second-order derivative (SD), logarithm 
of the reciprocal transformation (LR), and continuum removal (CR) 
processing. 

In Fig. 3, it is clear that the FD reflectance, SD reflectance, and LR 
reflectance with different Cr contents are too similar to distinguish the 
different contents. The CR reflectance is distinctly different in the 
characteristic bands with different contents, but it can be challenging to 
distinguish between the varied concentrations of heavy metals directly, 
making it difficult to monitor soil heavy metal pollution rapidly and 
efficaciously. The presence of soil heavy metal pollution has the po-
tential to induce localized alterations in spectra. Finding out the points 
that lead to mutations in the soil spectra is the key to solving the problem 
of mining the weak information of heavy metal pollution. In contrast to 
the spectral domain approach, the frequency domain method has the 
capability to decompose spectra in multiple dimensions, allowing for a 
comprehensive exploration of the detailed characteristics across various 
frequencies. According to signal theory, the soil light spectrum belongs 
to a ‘nonlinear unstable’ signal, for which Hilbert transformation cannot 
be directly applied. EMD can decompose the spectral signal into IMFs, 

Fig. 2. Soil spectra with different levels of Cr contamination.  
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providing an effective means to minimize the impact of noise in the 
original signal, and then Hilbert transformation and frequency spectrum 
analysis can be performed. 

There are subtle differences in the soil spectra with the different Cr 
pollution levels, but the key point of soil pollution spectra cannot be 
fully expressed, nor can identifiable pollution thresholds be identified. 
In the experiment, EMD decomposition was performed on the 10 soil 
spectra samples, and 12 IMF components were obtained, but effective 
information could not be obtained from the IMF components. The Hil-
bert transformation was applied to calculate the frequency rate of each 
IMF component. 

Fig. 4 shows the soil spectra frequency under different concentra-
tions of Cr pollution. In Fig. 4, the frequency curves of IMF1 to IMF7 
represent the high-frequency component, and the curves are messy. It is 
difficult to distinguish the curves for the different pollution levels and to 
extract useful information from these IMF components. The frequency 
curves from IMF8 onwards become smooth. The two curves of IMF8 and 
IMF9 continue to fluctuate within a small range. It can be seen from 
IMF8 to IMF11 that the trend of the curves is relatively similar. As a 
result, it is difficult to distinguish the differences between the different 
heavy metal concentrations. 

To delve deeper into the distinctions among soil spectra corre-
sponding to varying concentrations of heavy metals, and to explore a 
discernable threshold for soil heavy metal spectra, the amplitude curves 
were calculated and drawn. Fig. 5 shows the soil amplitude spectra 
under different concentrations of Cr pollution. 

The amplitude curves of IMF1 to IMF7 represent the high-frequency 
component, and these curves fluctuate violently and irregularly. It is 
difficult to distinguish the curves of the different pollution levels and to 
extract useful information from these IMF components. The amplitude 
curves of IMF9 and IMF10 are relatively straight lines. The curves of 
IMF11 show an upward trend, but the slope gradually decreases, and 
there is little difference between the curves of the different heavy metal 
concentrations. These amplitude curves do not show enough 

differentiation to distinguish the different Cr concentrations. It is clear 
that the curves of IMF12 show different trends with the various con-
centrations. Consequently, IMF12 is taken for further investigation in 
Fig. 6. 

Fig. 6(b) is the locally enlarged image of the IMF12 amplitude. It can 
be seen that the amplitude has different variation tendencies, with 
obvious absorption peaks from 600 nm to 940 nm. Based on the varia-
tion tendency, these amplitude curves can be categorized into two 
distinct groups. In the first group, the curves of Cr-O, Cr-300, Cr-400, Cr- 
500, and Cr-900 (the bold curves in Fig. 6) protrude obviously outward. 
In the other group, by contrast, these curves fluctuate gently, the four 
curves have Cr contents of greater than 600 mg/kg, and only one curve 
has a Cr content of less than 600 mg/kg. The correct rate is 80 %. 
Therefore, the results of the modeling experiment indicate that when the 
Cr content surpasses 600 mg/kg, Cr pollution can be detected from the 
amplitude curve of 600–940 nm with TD-HHT. Therefore, a key issue of 
heavy metal pollution determination is the identification of the effective 
spectral information. 

Besides, another soil sample from Fujian Province was employed to 
evaluate the method validity. It was a Cr-contaminated soil sample 
which was determined using inductively coupled plasma optical emis-
sion spectrometer (ICP-OES) with Cr concentration of 14500 mg/kg. 
These samples were made by adding a certain amount of soil matrix. The 
design contents of heavy metal were the same as that of another soil 
samples, which were 200, 300, 400, 500, 600, 700, 800, 900, and 1000 
mg/kg. The soil spectra under different Cr concentrations were shown in 
Fig. 7. 

The reflectance steadily increases from the initial point up to 480 nm, 
followed by a brief decline before resuming its upward trend. Distinct 
absorption peaks are observed at 1400 nm, 1900 nm, and 2200 nm. 
These soil samples were conducted with TD-HHT. The amplitude curves 
of IMF12 were taken for further investigation in Fig. 8. 

It can be seen that the amplitude has different variation tendencies 
between 610 nm and 830 nm. Based on the observed trends, these 

Fig. 3. Reflectance of the mathematically transformed results. (a) FD reflectance (b) SD reflectance (c) LR reflectance (d) CR reflectance.  
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amplitude curves can be divided into two distinct groups. In the group of 
Cr content less than 600 mg/kg, the curves of Cr-400, Cr-500 (the bold 
curves in Fig. 8) protrude outward. For the group of Cr content greater 
than 600 mg /kg, by contrast, these curves fluctuate gently. Besides, 
there are two curves that cannot be classified (Cr-200 and Cr-300). 
Hence, the correct rate is about 77.8 %, which is similar with another 
soil sample. 

In Fig. 6 and Fig. 8, the curves show differences between 600 nm and 
940 nm, and the absorption characteristics of the soil spectra are related 
to the electronic transition of metal ions. Cr, being a transition metal 
with an unfilled d-shell, experiences energy level splitting of its d-or-
bitals within a crystal field. The movement of an electron from a lower 

level to a higher one leads to the absorption of electromagnetic energy, 
contributing to the distinctive absorption features of heavy metals in the 
spectra (Wu et al., 2007; Chen et al., 2022). In addition to the above 
reasons, in this range, the absorption characteristics are associated with 
goethite, hematite, Fe3+, and ferric oxide, as described in previous 
studies (Hunt, 1977; Scheinost, 1998; Stenberg et al., 2010). 

3.2. Spectral threshold validation 

It is difficult to explain the change principle of reflectance with soil 
properties from the spectral mechanism level only by the signal 
decomposition method, and the essential characteristics of soil spectra 

Fig. 4. The soil spectra frequency under different concentrations of Cr pollution. (a), (b) … (i) stand for IMF1, IMF2 … IMF12, respectively.  
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cannot be deeply understood. The RTM explores the interaction process 
and distribution of light radiation on the surface of the soil medium, and 
can thus characterize the soil composition and soil surface structure. 
Furthermore, to validate the accuracy of the identification threshold and 
explore the optical properties of soil with the RTM, a laboratory-based 
bidirectional reflectance distribution function experiment was 
designed. In the design process, in order to meet the geometric condi-
tions of the observation of directional reflectance, the experimental 
device was fixed on a circular base, and the semicircular zenith arc arm 
was used to fix the light source. The quarter-shaped zenith arm was 
utilized to hold the fiber optic probe. The two zenith arc arms were 
connected by a turntable, and both were engraved with angles, which 

could slide freely according to the experimental requirements. The 
relative azimuth angle, light source zenith angle, and view zenith angle 
were set as 0–360◦, 0–90◦, and 0–90◦, respectively. The multi-angle 
reflectance was measured by setting different observation geometries. 
The experimental device is shown in Fig. 9. 

The sample was placed in the central position of the device, and the 
distance between the optical fiber probe and the sample was kept at 10 
cm, to avoid the influence of the shadow of the probe itself. The light 
source zenith angle was 30◦, and the view zenith angles of the spec-
trometer probe were varied over 10◦, 20◦, 30◦, 40◦, and 50◦ for each 
orientation. The relative azimuth angles of the light source and view 
were 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦. Each sample was 

Fig. 5. The soil spectra amplitude under different concentrations of Cr pollution. (a), (b) … (i) stand for IMF1, IMF2 … IMF12, respectively.  
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Fig. 6. (a) The IMF12 amplitude of soil spectra under different concentrations of Cr pollution. (b) Locally enlarged image of (a).  

Fig. 7. Soil spectra with different levels of Cr contamination.  

Fig. 8. (a) The IMF12 amplitude of soil spectra under different concentrations of Cr pollution. (b) Locally enlarged image of (a).  

Fig. 9. Diagram of the bidirectional reflectance distribution function experi-
mental device. 
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measured five times under each combination of angles. After removing 
the obvious abnormal spectra, the directional reflectance at the position 
was determined by calculating the average value. Fig. 10 shows the 
multi-angle soil spectra with Cr contamination. 

From Eq. (7) to Eq. (12), there are six parameters to be settled:ω, h, b,
c, b′, and c′. The model parameters at each wavelength were calculated 
by fitting the multi-angle reflectance data. The model parameters were 
calculated using a nonlinear genetic algorithm, and the cost function δ2 

was defined to judge the performance of the optimization: 

δ2 =
∑n

k=1
[Rk − R(i, ek, gk) ]

2
# (13)  

where Rk is the bidirectional reflectance measured at the angle combi-
nation i,ek,gk, R

(
i, ek, gk

)
is the reflectance calculated by the model, and n 

is the total number. 
The SSA (ω), which is a function of the optical constant, is mainly 

affected by the mineral composition, size, composition, structure, and 
other properties of soil particles, and is the only parameter related to 
wavelength in the model, reflecting the internal optical characteristics of 
soil particles. Therefore, the SSA was taken as the analysis object to 
study its distribution with different soil heavy metal contents. From the 
analysis in Fig. 6 of Section 3.1, it was found that most curves reach a 
peak at 760 nm. For effective heavy metal threshold identification, we 
considered the difference between the SSA of adjacent samples at 760 
nm (Fig. 11). 

Fig. 11 illustrates that the SSA difference peaks at sample five, 
indicating the largest difference between Cr-500 and Cr-600. When the 
Cr content in soil exceeds 600 mg/kg, Cr pollution can be identified from 
the SSA curve. Fig. 12 displays the SSA curves for different levels of Cr 
pollution. 

It can be seen from Fig. 12 that the curves can be divided into two 
groups, each with a consistent trend. The high SSA group indicates low 
heavy metal contents, while the low SSA group indicates heavy metal 
contents exceeding 600 mg/kg. Consistent with the findings for TD- 
HHT, Cr pollution can be detected from 600 mg/kg. CrCl3 crystals are 
dark green in color, with a low reflectance in the visible region 
(400–710 nm). In the short-NIR region (710–900 nm), the reflectance 
curves rise rapidly, and then decrease sharply after 1200 nm. These 
spectral reflectance features of Cr are determined by its chemical 
properties and coordination structures, and are related to the off-core 
electron arrangement. The electronic structure formula of Cr3+ is 
1s22s22p63s23p63d3, and its 3d orbital is not filled with electrons (d is 
the orbital type, and the d-orbital can hold up to 10 electrons). When 
white light irradiates CrCl3, the electrons in the 3d orbital acquire light 
energy, and under the action of the crystal field, the 3d orbital will split 

the energy levels. The electron jump (d-d jump) from the low-energy d- 
orbital to the high-energy d-orbital is generated. The energy difference is 
generally 1.99 × 10-19 to 5.96 × 10-19J, and the wavelength is between 
300 nm and 1000 nm, so CrCl3 selectively absorbs the light in the visible 
region (Liu et al., 1994; Cheng et al., 2018). 

The current soil heavy metal Cr monitoring methods require field 
sampling, laboratory testing, spectral measurement, and model building 
to obtain the heavy metal distribution tend, and thus cannot be used to 
achieve rapid and efficacious identification of soil heavy metal 
contamination. This method enables rapid analysis of soil heavy metal 
contamination in the study area using only spectroscopy and without 
chemical analysis, and identifies areas that may exceed the heavy metal 
thresholds, so that areas exceeding the heavy metal thresholds can be 
intensively sampled or monitored in subsequent studies. 

4. Conclusion 

In this study, we explored and verified the Cr contamination detec-
tion threshold for soil spectra. First of all, a simulation experiment with 
different soil Cr contents was designed based on the soil environmental 
quality risk control standard, to obtain gradient spectra. TD-HHT 
transformation was then introduced to conduct time–frequency 

Fig. 10. Multi-angle soil spectra with Cr contamination.  

Fig. 11. SSA difference of adjacent samples under Cr pollution (sample one is 
the SSA difference of Cr-O and Cr-200, sample two is the SSA difference of Cr- 
200 and Cr-300, etc.). 

Fig. 12. The SSA under different concentrations of Cr pollution.  
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analysis. The Hilbert transformation curve of IMFs obtained by EMD 
with the TD-HHT algorithm can remove the complex environmental 
noise of soil spectra and effectively detect the differences between soil 
contaminated with different heavy metal concentrations. When the Cr 
content in soil reaches about 600 mg/kg, the heavy metal pollution can 
be identified between 600 and 900 nm from the amplitude curve. In 
addition to the signal decomposition method, the TV-Hapke model was 
utilized to verify the conclusion. The correlation between the soil optical 
constant and soil heavy metal was explored, and it was found that the 
optical constant SSA with different Cr contents also behaves differently 
at this value. This research centered on examining the theoretical 
foundation of the model and validating its viability through experiment 
conducted in optimal indoor conditions. 

In our future research, we will attempt to verify the application of the 
proposed method on other heavy metals, further on other samples. At 
present, this method is aimed at heavy metal information mining and 
pollution threshold identification in laboratory soil spectra. We will 
overcome current application limitations which result from the complex 
imaging conditions and mixed pixels of remote sensing images, and so 
on, and apply the proposed method in airborne and satellite hyper-
spectral images. This method will provide a novel way for the direct 
detection of soil Cr pollution from hyperspectral remote sensing tech-
nology, and effectively expand the application of hyperspectral remote 
sensing technology in soil heavy metal pollution monitoring. It improves 
the efficiency of localization and early warning monitoring of soil heavy 
metal pollution, provides technical support for the emergency investi-
gation of soil heavy metal pollution, and realizes the rapid classification 
of soil heavy metal pollution levels, which provides important applica-
tion for soil pollution prevention and control. 

CRediT authorship contribution statement 

Lihan Chen: Writing – original draft, Methodology, Data curation. 
Kun Tan: Writing – review & editing, Resources, Conceptualization. 
Xue Wang: Writing – review & editing, Methodology. Yu Chen: Su-
pervision, Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

We express our gratitude to Prof. Jihong Dong in China University of 
Mining and Technology and Prof. Erkai He in East China Normal Uni-
versity for generously providing the original soil samples. This research 
is jointly supported by the Shanghai Municipal Science and Technology 
Major Project (No. 22511102800), National Natural Science Foundation 
of China (No. 42171335),and National Civil Aerospace Project of China 
(No. D040102). 

References 

Asadzadeh, S., de Souza Filho, C.R., 2016. A review on spectral processing methods for 
geological remote sensing. Int. J. Appl. Earth Obs. Geoinf. 47, 69–90. 

Bishop, J.L., Pieters, C.M., Edwards, J.O., 1994. Infrared spectroscopic analyses on the 
nature of water in montmorillonite. Clay Miner. 42, 707–716. 

Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., 
Kirkham, M.B., Scheckel, K., 2014. Remediation of heavy metal (loid)s contaminated 
soils - to mobilize or to immobilize. J. Hazard. Mater. 266, 141–166. 

Chen, L., Lai, J., Tan, K., Wang, X., Chen, Y., Ding, J., 2022. Development of a soil heavy 
metal estimation method based on a spectral index: combining fractional-order 

derivative pretreatment and the absorption mechanism. Sci. Total Environ. 813, 
1–12. 

Cheng, H., Wan, Y., Chen, Y., Wan, Q., Shi, T., Shen, R., Guo, K., Hu, J., 2018. Study on 
the characteristics and mechanism of visible and near infrared reflectance spectra of 
soil heavy metals. Spectrosc. Spectr. Anal. 38 (3), 771–778. 

Costa, M., 2003. Potential hazards of hexavalent chromate in our drinking water. 
Toxicol. Appl. Pharmacol. 188 (1), 1–5. 

Fearn, T., Riccioli, C., Garrido-Varo, A., Guerrero-Ginel, J.E., 2009. On the geometry of 
SNV and MSC. Chemom. Intel. Lab. Syst. 96 (1), 22–26. 

Fu, P.J., Yang, K.M., 2018. A spectroscopic second-order differential gabor expansion 
method for copper, Lead pollution detection in soil. Spectrosc. Spectr. Anal. 38 (10), 
3245–3253. 

Fu, P., Yang, K., Cheng, L., Wang, M., 2019. HHT identification and BC-PLSR prediction 
model of soil Lead pollution Spectrum. Spectrosc. Spectr. Anal. 39 (5), 1543–1550. 

Hapke, B.J.I., 2002. Bidirectional reflectance spectroscopy: 5. The Coherent Backscatter 
Opposition Effect and Anisotropic Scattering. 157 (2), 523–534. 

Huete, A.R., Escadafal, R., 1991. Assessment of biophysical soil properties through 
spectral decomposition techniques. Remote Sens. Environ. 35 (2–3), 149–159. 

Hunt, G.R., 1977. SPECTRAL signatures of particulate minerals in the visible and near 
infrared. Geophysics 42, 501–513. 

Jiang, X., Ye, Q., Lin, Y., Li, X., 2017. Inverting study on soil water content based on 
harmonic analysis and hyperspectral remote sensing. Acta Opt. Sin. 37 (10), 
300–310. 

Liu, W., Chang, Q., Guo, M., Xing, D., Yuan, Y., 2011. Extraction of first derivative 
Spectrum features of soil organic matter via wavelet de-noising. Spectrosc. Spectr. 
Anal. 31 (1), 100–104. 

Liu, H., Li, B., Sun, J., 1994. Study on eleetronic structure and d-d excited energies of Cr3 
+ complexes. Acta Phys. Chim. Sin. 10 (11), 978–985. 

Ou, D., Tan, K., Lai, J., Jia, X., Li, J., 2021. Semi-supervised DNN regression on airborne 
hyperspectral imagery for improved spatial soil properties prediction. Geoderma 385 
(X), 114875. 

Palacios-Orueta, A., Ustin, S.L., 1998. Remote sensing of soil properties in the Santa 
Monica Mountains I. Spectral Analysis. Remote Sensing of Environment. 65 (2), 
170–183. 

Post, J.L., Noble, P.N., 1993. The near-infrared combination band frequencies of 
dioctahedral smectites, micas, and illites. Clays Clay Minerals. 41 (6), 639–644. 

Regulation, S.A.M., 2018. Soil environmental quality risk control standard for soil 
contamination of agricultural land. Ministry of Ecological Environment of the 
people’s Republic of China, Beijing, pp. 1–7. 

Sadeghi, M., Jones, S.B., Philpot, W.D., 2015. A linear physically-based model for remote 
sensing of soil moisture using short wave infrared bands. Remote Sens. Environ. 164, 
66–76. 

Scheinost, A.C., 1998. Use and limitations of second-derivative diffuse reflectance 
spectroscopy in the visible to near-infrared range to identify and quantify fe oxide 
minerals in soils. Clay Clay Miner. 46 (5), 528–536. 

Srasra, E., Bergaya, F., Fripiat, J.J., 1994. Infrared spectroscopy study of tetrahedral and 
octahedral substitutions in an interstratified illite-smectite clay. Clays Clay Minerals. 
42 (3), 237–241. 

Stenberg, B., Rossel, R.A.V., Mouazen, A.M., Wetterlind, J.J.A..IA., 2010. Visible and 
near infrared spectroscopy in soil science. Adv. Agron. 107, 163–215. 

Susi, H., Byler, D.M., 1983. Protein structure by fourier transform infrared spectroscopy: 
second derivative spectra. Biochem. Biophys. Res. Commun. 115 (1), 391–397. 

Tan, K., Ma, W., Chen, L., Wang, H., Du, Q., Du, P., Yan, B., Liu, R., Li, H., 2020a. 
Estimating the distribution trend of soil heavy metals in mining area from HyMap 
airborne hyperspectral imagery based on ensemble learning. J. Hazard. Mater. 401, 
123288. 

Tan, K., Wang, H., Chen, L., Du, Q., Du, P., Pan, C., 2020b. Estimation of the spatial 
distribution of heavy metal in agricultural soils using airborne hyperspectral imaging 
and random forest. J. Hazard. Mater. 382, 120987. 

Unep, 2021. Measuring Progress of environment and the SDGs. United Nations 
Environment Programme. 

Viscarra Rossel, R.A., Behrens, T., 2010. Using data mining to model and interpret soil 
diffuse reflectance spectra. Geoderma 158 (1–2), 46–54. 

Viscarra Rossel, R.A., Behrens, T., Ben-Dor, E., Brown, D.J., Dematte, J.A.M., 
Shepherd, K.D., Shi, Z., Stenberg, B., Stevens, A., Adamchuk, V., Aichi, H., 
Barthes, B.G., Bartholomeus, H.M., Bayer, A.D., Bernoux, M., Bottcher, K., 
Brodsky, L., Du, C.W., Chappell, A., Fouad, Y., Genot, V., Gomez, C., Grunwald, S., 
Gubler, A., Guerrero, C., Hedley, C.B., Knadel, M., Morras, H.J.M., Nocita, M., 
Ramirez-Lopez, L., Roudier, P., Campos, E.M.R., Sanborn, P., Sellitto, V.M., 
Sudduth, K.A., Rawlins, B.G., Walter, C., Winowiecki, L.A., Hong, S.Y., Ji, W., 2016. 
A global spectral library to characterize the world’s soil. Earth Sci. Rev. 155, 
198–230. 

Wang, Y., Zhang, L., Wang, H., Gu, X., Zhuang, L., Duan, L., Li, J., Li, J., 2018. 
Quantitative inversion of soil organic matter content based on continuous wavelet 
transform. Spectrosc. Spectr. Anal. 38 (11), 3521–3527. 

Wight, J.P., Ashworth, A.J., Allen, F.L., 2016. Organic substrate, clay type, texture, and 
water influence on NIR carbon measurements. Geoderma 261, 36–43. 

Wu, Y., Chen, J., Ji, J.-F., Gong, P., Liao, Q.-L., Tian, Q., Ma, H., 2007. A mechanism 
study of reflectance spectroscopy for investigating heavy metals in soils. Soil Sci. 
Soc. Am. J. 71, 918–926. 

Yang, K.M., Wang, G.P., Fu, P.J., Zhang, W., Wang, X.F., 2018. A model on extracting the 
pollution information of heavy metal copper ion based on the soil spectra analyzed 
by HHT in time-frequency. Spectrosc. Spectr. Anal. 38 (2), 564–569. 

Yang, G.J., Zhao, C.J., Huang, W.J., Wang, J.H., 2011. Extension of the hapke 
bidirectional reflectance model to retrieve soil water content. Hydrol. Earth Syst. Sci. 
15 (7), 2317–2326. 

L. Chen et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S1569-8432(24)00113-4/h0005
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0005
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0010
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0010
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0015
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0015
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0015
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0020
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0020
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0020
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0020
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0025
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0025
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0025
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0030
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0030
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0035
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0035
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0040
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0040
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0040
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0045
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0045
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0050
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0050
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0055
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0055
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0060
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0060
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0065
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0065
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0065
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0070
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0070
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0070
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0075
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0075
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0080
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0080
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0080
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0085
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0085
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0085
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0090
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0090
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0095
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0095
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0095
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0100
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0100
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0100
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0105
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0105
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0105
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0110
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0110
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0110
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0115
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0115
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0120
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0120
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0125
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0125
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0125
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0125
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0130
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0130
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0130
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0135
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0135
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0140
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0140
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0145
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0145
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0145
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0145
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0145
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0145
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0145
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0145
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0145
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0150
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0150
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0150
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0155
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0155
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0160
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0160
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0160
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0165
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0165
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0165
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0170
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0170
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0170


International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103759

11

Yao, Y. M., Liu, Y., Gao, M. F. and Chen, Z. X. (2018). Hyperspectral Inversion of Soil 
Moisture Content Based on SOILSPECT Model. 7th International Conference on 
Agro-Geoinformatics (Agro-Geoinformatics), George Mason Univ, Ctr Spatial 
Informat Sci & Syst, Hangzhou, PEOPLES R CHINA. 

Zhang, S., Shen, Q., Nie, C., Huang, Y., Wang, J., Hu, Q., Ding, X., Zhou, Y., Chen, Y., 
2019. Hyperspectral inversion of heavy metal content in reclaimed soil from a 
mining wasteland based on different spectral transformation and modeling methods. 

Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy. 211, 
393–400. 

Zhang, Y., Tan, K., Wang, X., Chen, Y., 2020. Retrieval of soil moisture content based on 
a modified hapke photometric model: a novel method applied to laboratory 
hyperspectral and Sentinel-2 MSI data. Remote Sens. (Basel) 12 (14), 1–21. 

Zheng, S., Qiu, J., Zheng, C., Zhan, G., Bao, Y., Zhang, W., Liu, W., He, W., 2017. Review 
on remediation technologies on chromium contaminated soil. Henan Sci. Technol. 9, 
157–158. 

L. Chen et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S1569-8432(24)00113-4/h0180
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0180
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0180
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0180
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0180
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0185
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0185
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0185
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0190
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0190
http://refhub.elsevier.com/S1569-8432(24)00113-4/h0190

	A rapid soil Chromium pollution detection method based on hyperspectral remote sensing data
	1 Introduction
	2 Materials and methods
	2.1 Experimental design
	2.2 Soil sample collection and treatment
	2.3 Theories and methods
	2.3.1 Threshold detection Hilbert-Huang transform (TD-HHT)
	2.3.2 Threshold validation Hapke (TV-Hapke) model


	3 Results
	3.1 Spectral threshold detection
	3.2 Spectral threshold validation

	4 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


