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A B S T R A C T   

The inversion of inherent optical properties (IOPs) and chlorophyll a (Chla) is one of the key objectives in water 
color remote sensing, and hyperspectral remote sensing with rich spectral information makes precise inversion 
possible. In this study, we developed a semi-analytical estimation method for inland water IOPs based on the 
quasi-analytical algorithm (QAA). Considering the complex optical characteristics of inland waters, empirical 
parameter regional optimization was conducted. Furthermore, a dual-band joint inversion strategy and Gaussian 
function fitting method were utilized to optimize the solution processes for the backscattering coefficient of 
particles (bbp) and the absorption coefficient of phytoplankton pigments (aph), respectively. This approach 
overcomes the limitations of single-band bbp inversion in inland waters. In addition, it directly decomposes the 
absorption coefficient to obtain aph using a Gaussian function, which can reduce the intermediate steps and errors 
caused by indirect inversion. For Chla, we constructed a binary inversion model using aph(677) and remote 
sensing reflectance (Rrs), where the coefficient of determination (R2) exceeded 0.8. We also constructed an 
airborne hyperspectral image correction process, including vicarious calibration, atmospheric correction, and 
bidirectional reflectance distribution function (BRDF) correction, obtaining high-precision Rrs images. The 
ground models were successfully applied to the airborne hyperspectral images, mapping the spatial distribution 
of IOPs and Chla concentration in the study area. The experiments demonstrated that the proposed semi- 
analytical method using airborne hyperspectral imagery exhibits a good performance in terms of modeling ac-
curacy and mapping analysis, and successfully applied to long-term monitoring using satellite hyperspectral 
images, highlighting the significant potential of hyperspectral remote sensing for high-precision monitoring of 
regional water bodies.   

1. Introduction 

Remote sensing technology has the characteristics of large-scale and 
long-term monitoring and has been widely used in water environment 
monitoring. Due to the fact that the spectral characteristics of water 
bodies are mainly influenced by the water color, the use of optical 
remote sensing sensors for monitoring water bodies is also known as 
“water color remote sensing”. One of the key objectives of water color 
remote sensing is the retrieval of inherent optical properties (IOPs) and 
chlorophyll a (Chla) (Werdell et al., 2018). 

In addition to guiding the establishment of water color parameter 

retrieval models, IOPs also hold significant importance in revealing the 
role of water bodies in biogeochemical cycling processes. In the field of 
water color remote sensing, commonly used IOPs such as the absorption 
coefficient of phytoplankton pigments (aph) play a significant role in 
identifying the proportion of algae in water bodies, revealing the 
importance of water carbon cycling (Bricaud et al., 1995). The back-
scattering coefficient of water bodies holds significant potential in 
estimating the total suspended matter (TSM) content and particulate 
organic carbon (POC) (Allison et al., 2010), and also plays an important 
role in investigations of the optical properties of turbid inland waters 
and understanding the inherent mechanisms of transportation and 
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sedimentation of suspended particulate matter (Xu et al., 2021). 
Using remote sensing techniques to retrieve IOPs primarily relies on 

constructing the relationships between the absorption and backscat-
tering coefficients of various water constituents and apparent optical 
properties (AOPs), such as remote sensing reflectance (Rrs). The most 
commonly used methods include empirical (Lee et al., 1998) and semi- 
analytical (Gordon et al., 1988; Lee et al., 2002) methods. In addition, 
there are optimization algorithms (Zhan et al., 2003) and matrix 
inversion methods (Hoge and Lyon, 1996), etc. The optical character-
istics of the oceanic Case-I waters are predominantly dominated by Chla 
and phytoplankton, for which both empirical and semi-analytical 
methods have been extensively employed. Coastal and inland waters, 
categorized as Case-II waters, exhibit complex optical properties influ-
enced by multiple water components. Therefore, algorithms developed 

for Case-I waters cannot be directly applied to Case-II waters. Instead, 
parameter adjustments are necessary by considering the dominant 
regional optical characteristics (Ogashawara et al., 2016; Zhu and Yu, 
2012). However, due to the regional variation of the optical character-
istics of Case-II waters, there is an unavoidable contradiction between 
the universality and accuracy of the models. 

Chla is a crucial water color parameter that can intuitively reflect the 
ecological environment of water bodies and plays an important indica-
tive role in water environment monitoring. The optical properties of 
Case-I waters are relatively simple. By establishing a regression model 
based on the red and blue band ratio, good inversion results can be 
obtained, which is an approach that has been operationally utilized 
within water color remote sensing (Gordon and Morel, 1983). For 
coastal and inland Case-II waters, the spectral characteristics of Chla are 

Fig. 1. The geographical location of the study area. (a) The location of the of the study area in China’s administrative divisions. (b) Study area with sampling points 
and monitoring sites. The true color basemap is derived from Gaofen-6 satellite. 
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affected by other optically active substances, rendering Chla inversion 
models designed for Case-I waters inapplicable. Inversion algorithms 
based on three-band reflectance difference, four-band semi-analytical 
models, semi-analytical methods, and water optical property classifi-
cation methods have been utilized for Chla estimation in inland and 
coastal waters (Neil et al., 2019). In order to improve the generalization 
of the model, researchers have established segmented inversion models 
for different water optical characteristics or Chla concentration ranges, 
to improve the inversion accuracy for Chla (He et al., 2020; Liu et al., 
2020). 

Currently, research on inland water color monitoring often utilizes 
multispectral images obtained from land-resource satellites. Although it 
can provide rich image information for monitoring inland water bodies, 
limited by the spectral resolution, multispectral sensors cannot accu-
rately identify the sensitive features of water bodies under different 
optical characteristics. The airborne hyperspectral imagery has the 
characteristics of both a high-spatial resolution and a high-spectral 
resolution, giving them incomparable advantages over the traditional 
methods in the water quality monitoring of medium- and small-scale 
inland water bodies (Kim et al., 2022; Niu et al., 2021a). For inland 
water bodies, it is not only necessary to consider the impact of water 
optical characteristics, but it is also necessary to consider the differences 
in aerosol types. The multispectral bands of hyperspectral images also 
pose higher requirements for atmospheric correction. In the case of the 
widespread limitations in the water-atmospheric correction algorithms, 
land-atmospheric correction methods based on radiative transfer models 
are also used for water bodies, due to their ability to accurately simulate 
regional atmospheric conditions and the high spectral resolution (Xu 
et al., 2020). In addition, due to the bidirectional reflectance distribu-
tion function (BRDF) effects of water bodies and the different imaging 
conditions, the radiation intensity received by the different strips can be 
inconsistent, which affects the overall consistency of the imagery. 
Through BRDF correction, it is possible to significantly reduce the ra-
diation differences between overlapping areas of the imagery and 
improve the reliability of receiving water radiation signals (Tan et al., 
2020). 

Most of the current water color remote sensing inversion models rely 
on ground-measured hyperspectral data to select sensitive bands and 
perform regression modeling. In the subsequent image inversion and 
mapping, due to the spectral resolution and band setting of the sensors, 
it is difficult for the optimal model on the ground to be directly trans-
ferred and applied to the imagery. The characteristic of multiple spectral 
bands in hyperspectral images can effectively compensate for this 
drawback. However, due to the different spectral resolutions and the 
different atmospheric disturbances suffered by sensor platforms, how to 
establish the spectral transfer process from “ground spectrum” to 
“airborne spectrum” and achieve the promotion of ground models to 
multi-source images is a major challenge in the application of hyper-
spectral water color imaging. 

In summary, this study was aimed at the demand for precise moni-
toring of inland lakes and small rivers, where a semi-analytical inversion 
algorithm was constructed with the help of ground-measured hyper-
spectral data. At the same time, in order to ensure the transferability of 
the model, this study addressed hyperspectral image calibration, the 
elimination of atmospheric effects and the radiation differences caused 
by multiple imaging conditions, the acquisition of high-precision water- 
leaving reflectance data, the application of the ground model to airborne 
hyperspectral images, and the accurate inversion and mapping analysis 
of IOPs and Chla. 

2. Materials 

2.1. Study area 

The study area for this experiment was located in the Yangtze River 
Delta Integration Development Demonstration Zone, situated at the 

junction of the city of Shanghai, Jiangsu province, and Zhejiang prov-
ince. This area is located in the center of the most densely populated and 
economically developed urban agglomeration in China. 

The flight area covered approximately 800 km2, and the center of the 
area was located at 31.02◦N, 120.89◦E. The water bodies considered in 
this study are part of the Taihu Lake basin and include Taipu River, 
Dianshan Lake, Yuandang Lake, and Fenhu Lake. Dianshan Lake is the 
largest freshwater lake in Shanghai, covering a total area of about 62 
km2. Taipu River is the largest artificial river in the Taihu Lake basin, 
and also serves as a significant source of drinking water. The 
geographical location of the study area is shown in Fig. 1. 

2.2. Data acquisition 

2.2.1. Airborne hyperspectral image acquisition 
The imaging spectrometer was the Airborne Multi-Modality Imaging 

Spectrometer (AMMIS) visible and near-infrared (VNIR) module devel-
oped by the Shanghai Institute of Technical Physics at the Chinese 
Academy of Sciences (Jia et al., 2021). The VNIR module features 
256 bands covering a range of 400–1000 nm, with a IFOV of 0.25 mrad. 
The airborne hyperspectral image data were obtained with the imaging 
spectrometer mounted on a fixed-wing aircraft. The spectrometer was 
placed on a Leica PAV80 gyro-stabilized platform, and the position and 
the orientation data were obtained using a POS AV610 system. 

The airborne hyperspectral data were obtained on June 15 and 16, 
2022, with a flight direction of east–west, a speed of 200–240 km/hour, 
and a flight altitude of 3000 m. The time span from 08:30 to 10:30 with a 
lower solar angle, which will largely avoid sun glint. Finally, a total of 15 
strips of images with a resolution of 0.75 m were obtained. 

2.2.2. Field measurements 
During the flight, water samples were quasi-synchronously collected 

at a depth of 50 cm, and the water spectra were measured using an ASD 
FieldSpec3 spectrometer. In addition, we also synchronously collected 
ground feature spectra for calibration. The radiance of a diffuse reflec-
tion standard board, the water surface, and the skylight were measured 
separately. The observation geometry refers to the NASA Ocean Optics 
Protocols for Satellite Ocean Color Sensor Validation document (Mueller 
et al., 2003). The remote sensing reflectance (Rrs) was calculated as 
follows: 

Rrs(λ) =
(Lw − rLsky)ρp

πLp
, (1)  

where Lw, Lsky, and Lp are the radiance of the water, sky, and the diffuse 
reflection standard board, respectively; ρp is the reflectance of the 
standard board; and r represents the reflectance of the skylight from the 
air–water interface (Mobley, 1999). 61 sets of sampling data were uti-
lized for the modeling. 

2.2.3. Laboratory tests 
After completing the water sample collection, the water samples 

were filtered using 47-mm Whatman GF/F glass-fiber filters, and Chla 
was extracted using the 90 % hot ethanol extraction method. Chla 
concentration was then calculated by measuring the absorbance at 665 
and 750 nm using an ultraviolet–visible spectrophotometer (Shimadzu 
UV-2700i). The absorption coefficients of phytoplankton pigments (aph) 
and detritus (ad) were determined using the quantitative filter technique 
(Mitchell, 1990). The measurement of CDOM required water to be re- 
filtered through a 0.22 µm Millipore membrane filter, and the absorp-
tion coefficients for CDOM (ag) were calculated using the spectropho-
tometer. The concentrations of Total Suspended Matter (TSM), 
Inorganic Suspended Matter (ISM) and Organic Suspended Matter 
(OSM) were determined using the gravimetric method (Wen et al., 
2022). 
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Fig. 2. Distribution of the maximum correlation between a(λ0) and Rrs.  

Fig. 3. Scatter plots of the predicted and measured values. (a) a(λ0). (b) bbp(550). (c) bbp(λ0). (d) aph(677).  
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3. Method 

3.1. IOP estimation using the proposed QAA_gauss model 

The proposed semi-analytical algorithm is based on the QAA algo-
rithm, and is combined with empirical formulas for regional parameter 
optimization and a Gaussian function fitting method to improve its 
applicability in the target water area. The proposed model is named the 
QAA_gauss model. 

The QAA_gauss model is divided into two parts. The first part derives 
the total absorption coefficient a(λ) and the backward scattering coef-
ficient bb(λ) using the improved algorithm based on regional parameter 
optimization. a(λ) consists of four parts: the pure water absorption co-
efficient (aw), aph, ad, and ag. After solving a(λ), the absorption co-
efficients corresponding to each water component can be decomposed. 
The second step is to decompose a(λ) to obtain aph(λ). The processing 
steps are briefly described as follows. 

3.1.1. Calculate a and bb 

Step 1: convert the Rrs to the subsurface remote sensing reflectance 
(rrs), following Lee et al. (2002): 

rrs(λ) =
Rrs(λ)

0.52 + 1.7 × Rrs(λ)
. (2)   

Step 2: according to the radiative transfer process, rrs can be 
described as a function of bb/(a + bb) (Gordon et al., 1988). Make u 

(λ) = bb/(a + bb), according to the empirical constant obtained by Lee 
et al. (2002), where u(λ) can be expressed in the following form: 

u(λ) =
− g0 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g2

0 + 4g1⋅rrs(λ)
√

2g1
, (3)  

where g0 = 0.089, g1 = 0.1245. 

Step 3: determine the reference wavelength λ0 and obtain the cor-
responding a(λ0). In the QAA algorithm, the reference wavelength 
λ0 requires us to consider the simulation effect of the backscattering 
coefficient. It is necessary to ensure that pure water dominates at the 
reference wavelength and that a(λ0) can be accurately estimated (Lee 
et al., 2002). Based on this, a Pearson correlation analysis is utilized 
to find the a(λ0) with the highest absolute correlation with Rrs, where 
λ0 is the reference wavelength. The correlation distribution is shown 
in Fig. 2. The highest absolute correlation is at 677 nm, which was 
selected as the reference wavelength. 

Referencing the three-band calculation form provided by the latest 
version of QAA_V6 (Lee et al., 2014) for turbid water bodies, the 
empirical formula is obtained through band optimization: 

a(λ0) = aw(λ0) − 24.447 ×
Rrs(510)

Rrs(496) + Rrs(527)
+ 13.131, (4)  

where aw(λ0) is the absorption coefficient of pure water at wavelength 
λ0. The scatter plot of the measured and predicted a(λ0) is shown in Fig. 3 
(a). 

Fig. 4. The correlation between the band ratio the in rrs and η. (a) η550. (b) η677.  

Table 1 
The Gaussian function parameterization settings for the main pigments. Chl: chlorophyll; PPC: photoprotective carotenoids; PSC: photosynthetic carotenoids; PE: 
phycoerythrin.  

Pigments 
(nm) 

Chla&c Chla Chl b&c Chl b PPC PSC PE Chl c Chla Chl c Chl b Chla 

Initial peak 409 437 457 467 491 527 552 585 620 639 658 676 
Initial standard deviation 15 15 15 15 15 15 15 15 15 15 15 15 
Initial height of peak 1 1 1 1 1 1 1 1 1 1 1 1 
Peak range -5–5 -5–5 -5–5 -5–5 -5–5 -5–5 -5–5 -5–5 -5–5 -5–5 -5–5 -5–5 
Standard deviation range 5–50 5–50 5–50 5–50 5–50 5–50 5–50 5–50 5–50 5–50 5–50 5–50 
Height range 0–2 0–2 0–2 0–2 0–2 0–2 0–2 0–2 0–2 0–2 0–2 0–2 
Final peak 407.3 438.2 453.5 468.8 492.3 525.8 553.0 584.9 618.3 648.9 664.7 679.3 
Final standard deviation 30.59 18.41 14.98 14.79 24.45 19.63 20.70 23.09 21.44 19.63 42.29 18.07 
Final height of peak 1.61 0.88 0.40 0.53 0.83 0.22 0.43 0.49 0.40 0.22 0.70 0.46  
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Step 4 and Step 5: calculate the backscattering coefficient of particles 
at the reference wavelength bbp(λ0). 

The backscattering coefficient is usually expressed as the sum of the 
backscattering coefficient of pure water bbw and the backscattering co-
efficient of particles bbp. bbp is generally considered to have a power 
function relationship with bbp(λ0) (Gordon and Morel, 1983). Therefore, 
bbp(λ0) and η are the key to calculating bb. 

bb(λ) = bbw(λ)+ bbp(λ0)

(
λ0

λ

)η

. (5) 

Due to the technical difficulties in measuring the backscatter coef-
ficient in turbid shallow water, bbp was not measured in this experiment. 
Based on the optical closure theory, the simulation of bbp using the 
measured absorption coefficient and reflectance has been successfully 
applied to the eutrophic water in Taihu Lake basin (Pan et al., 2015; 

Tzortziou et al., 2006). This study utilized the calculated u(λ) by Eq. (2) 
and the measured a(λ) to simulated particle backscatter coefficient as 
the reference particle backscatter coefficient, and the formula is as 
follows. 

bbp sim(λ) =
u(λ)ameasured(λ)

1 − u(λ)
− bbw(λ), (6)  

where the range of λ is from 400 to 700 nm. When λ is greater than 700 
nm, bbp_sim(λ) = bbp_sim(700). 

Previous studies have shown that for the near-infrared region where 
particles have lower light absorption, the power function fits well 
(Doxaran et al., 2009; Shi et al., 2014). However, using a single wave-
length for power function fitting has a significant deviation for the 
visible spectrum where particles absorb more light (Doxaran et al., 
2007). In addition, the absorption characteristics of different particles 
also have an impact on the scattering coefficient (Snyder et al., 2008). 
Therefore, we also added 550 nm as the second reference wavelength, 
which is an intermediate wavelength between visible and near-infrared, 
to better characterize the absorption characteristics of different parti-
cles. The corresponding backscattering coefficient of particles was 
calculated separately. 

bbp(λ0) was obtained by the semi-analytical formula in the QAA al-
gorithm, and bbp(550) was fitted by a linear empirical formula. The 
scatter plots of the measured and predicted bbp(550) and bbp(λ0) are 
shown in Fig. 3(b) and Fig. 3(c), respectively. 

bbp(550) = 25.739 × Rrs(527) − 0.0418 (7)  

bbp(λ0) =
u(λ0)a(λ0)

1 − u(λ0)
− bbw(λ0) (8)   

Step 6 and Step 7: calculate the power law exponent value η550 and 
η677 by searching for the optimal band ratio in rrs and establishing a 
quadratic function empirical equation. The correlation distribution 
maps between the band ratio in rrs and η550, η677 are shown in 
Fig. 4. For η550, the band ratio corresponding to the maximum 
correlation is (rrs425)/(rrs718). For η677 is (rrs425)/(rrs687). The 
empirical formulas are as follows. 

η550 = − 1.133 ×

[
rrs(425)
rrs(718)

]2

+ 5.053 ×
rrs(425)
rrs(718)

− 3.135 (9)  

η677 = − 1.575 ×

[
rrs(425)
rrs(687)

]2

+ 5.369 ×
rrs(425)
rrs(687)

− 1.780 (10)   

Table 2 
Steps of the QAA_gauss method to derive IOPs using Rrs.  

Step Property Formula Approach 

1 rrs rrs(λ) =
Rrs(λ)

0.52 + 1.7 × Rrs(λ)
.

Semi- 
analytical 

2 u(λ) 
u(λ) =

− g0 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

g2
0 + 4g1⋅rrs(λ)

√

2g1
,

g0 = 0.089, g1 = 0.1245 

Semi- 
analytical 

3 a(λ0) a(λ0) = aw(λ0) − 24.447×

Rrs(510)
Rrs(496) + Rrs(527)

+ 13.131,λ0 = 677 

Empirical 

4 bbp(550) bbp(550) = 25.739× Rrs(527) − 0.0418 Empirical 
5 bbp(λ0) 

bbp(λ0) =
u(λ0)a(λ0)

1 − u(λ0)
− bbw(λ0)

Analytical 

6 η550 
η550 = − 1.133×

[
rrs(425)
rrs(718)

]2
+ 5.053×

rrs(425)
rrs(718)

− 3.135 

Empirical 

7 η677 
η677 = − 1.575×

[
rrs(425)
rrs(687)

]2
+ 5.369×

rrs(425)
rrs(687)

− 1.780 

Empirical 

8 bbp(λ) 
bbp(λ) = S1⋅bbp(550)

(
550

λ

)η550
+

S2⋅bbp(677)
(

677
λ

)η677 

Optimization 

9 a(λ) 
a(λ) =

[1 − u(λ0)] × [bbw(λ) + bbp(λ0)]

u(λ0)

Analytical 

10 aph(677) aph(677) = − 0.901× a(550) + 1.290×

a(677) − 0.207 
Empirical 

11 aph(λ) 

aph(λ) = aph(677)×
∑i=1

12 ki(λ)e
−
(λ − μi)

2

2σ2
i  

Semi- 
analytical  

Table 3 
Model parameters and regression formulas.  

Number of variables Input parameters Regression models 

a univariate 
inversion model: 
Chla = f(x) 

aph(677) linear: (ax + b) 
quadratic polynomial: (ax2 

+ bx + c) 
exponential function: (axb) 

Rrs(677) 
Rrs(a)/Rrs(b) 
[Rrs(a) − Rrs(b)]/[Rrs(a) +
Rrs(b)] 
(Rrs(a)-1 − Rrs(b)-1) × Rrs(c) 
Rrs(a)/[Rrs(a) − Rrs(b)]  

a binary inversion 
model: 
Chla = f(x, y) 

(aph(677), Rrs(a)/Rrs(b)) bivariate linear: (ax + by +
c) 
bivariate quadratic 
polynomial: 
(ax2 + bx + cy2 + dy + e) 
bivariate exponential 
function: (axb + cyd) 

(aph(677), [Rrs(a) − Rrs(b)]/ 
[Rrs(a) + Rrs(b)]) 
(aph(677), (Rrs(a)-1 − Rrs(b)- 

1) × Rrs(c)) 
(aph(677), Rrs(a)/[Rrs(a) −
Rrs(b)])  

Fig. 5. The mean values of bbp(λ).  
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Step 8: combined with the dual-band joint inversion strategy in Step 
4 and Step 5, the overall solution equation for the backscattering 
coefficient is as follows: 

bbp(λ) = S1⋅bbp(550)
(

550
λ

)η550

+ S2⋅bbp(677)
(

677
λ

)η677

, (11)  

where S1 and S2 are the model parameters obtained using the least- 
squares method. 

Step 9: after calculating all the parameters, a(λ) can be calculated 
through u(λ) in Step 2. 

a(λ) =
[1 − u(λ0)] × [bbw(λ) + bbp(λ0)]

u(λ0)
. (12)  

3.1.2. Aph Gaussian function simulation 
The QAA_V6 algorithm empirically estimates the ratio of aph and adg 

at 412 nm and 443 nm, and extends to the whole wavelength based on 
the exponential decay relationship between adg and the wavelength. 

However, due to the significant differences in particulate matter content 
in inland water bodies, estimating adg using spectral attenuation co-
efficients can lead to significant errors. 

There are multiple absorption peaks in aph, corresponding to the 
absorption of pigment substances such as chlorophyll, carotene, and 
phycoerythrin. Since the Gaussian shape can represent the absorption 
spectrum of a single photosynthetic component well, using a Gaussian 
function with the spectral absorption characteristics is an important way 
to simulate aph (Hoepffner and Sathyendranath, 1991). Referring to 
previous studies on the characteristic wavelengths of absorption peaks 
corresponding to pigment substances (Chase et al., 2013; Hoepffner and 
Sathyendranath, 1993), a Gaussian simulation function with 12 main 
pigments was constructed by setting the initial absorption peak wave-
length (μ), initial standard deviation (σ), and initial height of peak (k). 

a′
ph(λ) =

∑i=1

12
ki(λ)e

−
(λ− μi)

2

2σ2
i , (13)  

where aph
’ is the simulated aph, and i is the pigment substances. Here, we 

introduced aph(677) as a scaling factor to globally adjust the value of 

Fig. 6. Comparison of the mean a(λ) value. (a) The measured a(λ). (b) The calculated a(λ). The shaded area is one standard deviation around the mean value.  

Fig. 7. Distribution and accuracy of the calculated a(λ) obtained using the field-measured spectra. (a) Density scatter plot of the measured and calculated a(λ). (b) R2 

distribution of each band. 

C. Niu et al.                                                                                                                                                                                                                                      



International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103774

8

aph(λ). Based on the measured aph data, a constrained least-squares 
model was established by limiting the parameter range of the 
Gaussian function. The constraint formula is shown in Eq. (14), and the 
optimal Gaussian parameters were solved using the least-squares 
method. 

argmin

(

aph(λ, n) − aph(λ=677,n) ×
∑i=1

12
ki(λ)e

−
(λ− μi )

2

2σ2
i

)

,

s.t. 0⩽k⩽2, − 5⩽μ⩽5, 5⩽σ⩽50

(14)  

where n is the number of samples, aph(λ,n) is the measured aph data of 

Fig. 8. Scatter plot distribution of the calculated and measured a(λ).  
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sample n, and aph(λ=677,n) is the measured aph(677) of sample n. The 
Gaussian function parameterization settings for the main pigments and 
parameter range limitations are listed in Table 1. 

3.1.3. a(λ) decomposition based on aph simulation 
In order to establish the relationship between a(λ) and aph(λ), the 

linear relationship between a(λ) and aph(677) should be determined 
first. Because a(677) is mainly dominated by aw and aph, while a(550) is 
dominated by particulate matter, the total absorption coefficients at 550 
nm and 677 nm were utilized to construct a binary linear equation to 
obtain aph(677). The scatter plot is shown in Fig. 3(d). 

aph(677) = − 0.901 × a(550) + 1.290 × a(677) − 0.207. (15)  

Substituting the optimization parameters calculated by Eq. (14), the 
Gaussian-simulated aph obtained from a(λ) is calculated in Eq. (16). 
Finally, the inversion steps of the QAA_gauss method are shown in 
Table 2. 

aph(λ) = aph(677) ×
∑i=1

12
ki(λ)e

−
(λ− μi)

2

2σ2
i . (16)  

3.2. Airborne hyperspectral image correction 

When applying the established ground model to an airborne hyper-
spectral image, the accuracy of the atmospheric correction directly af-
fects the model performance. Especially for inland water bodies, not 
only does the attenuation of the sensor’s calibration coefficient need to 
be considered, but also the impact of atmospheric condition changes and 
the BRDF at the different imaging times. Based on this, we constructed 
an image correction process consisting of vicarious calibration, atmo-
spheric correction, and BRDF correction, to achieve precise water- 
leaving radiation information acquisition. The hyperspectral image 
correction was implemented using the MODerate resolution atmo-
spheric TRANsmission (MODTRAN) radiative transfer model (Berk 
et al., 1989) and Python programming language. 

3.2.1. Vicarious calibration 
In this study, we utilized a reflectance-based vicarious calibration 

method to calibrate the airborne hyperspectral imaging spectrometer. 
During the flight, the reflectance of the ground features, as well as 
meteorological parameters were synchronously measured. The radiance 
value of the sensor at the entrance pupil was calculated using the 
MODTRAN model, thereby solving the calibration coefficient. The 
calculation process refers to Niu et al., (2021b), where, after obtaining 
the measured surface reflectance ρs, the top of atmosphere radiance can 
be expressed as follows: 

L = Lp +
ρs

1 − Sρs
F, (17) 

where Lp is the path radiance, S is the spherical albedo of the at-
mosphere, and F is the product of the total downward solar radiation and 
the atmospheric transmittance. These parameters can be solved using 
the MODTRAN model. ρs uses the measured water bodies, bare soil and 
grassland. After this, the relationship between the DN value and the 
entrance pupil radiance could be established, and the calibration coef-
ficient could be obtained using the least-squares method. 

3.2.2. Atmospheric correction 
After vicarious calibration, the top of atmosphere radiance data can 

be calculated using the calibration coefficient. We utilized the MOD-
TRAN radiative transfer model for atmospheric correction based on the 
meteorological parameters and observation geometry acquired from 
different stirp, and obtained surface reflectance data. The normalized 
difference water index (NDWI) was utilized for the water extraction. Rrs 
was finally calculated by dividing the surface reflectance of the water 
body by π. The calculation formula is as follows. 

Rrs =
L − Lp

π[F + (L − Lp)S]
. (18) 

In subsequent model applications, due to the differences in spectral 
channel settings, the optimal ground-based model cannot be directly 
applied to images. Firstly, the Savitzky-Golay filter was utilized to 
eliminate spectral noise. In addition, considering the characteristics of 
the high correlation between adjacent bands of hyperspectral images, 
the spectral channels were resampled to be consistent with the ground- 
measured spectral channels. 

Table 4 
Inversion accuracy for a(λ).  

Wavelength R2 MSE MAE 

440  0.6263  0.0277  0.1341 
480  0.2601  0.0234  0.1214 
520  0.6019  0.0069  0.0643 
560  0.7680  0.0027  0.0415 
610  0.4183  0.0047  0.0553 
670  0.8010  0.0052  0.0556 
Overall  0.9627  0.0117  0.0886  

Fig. 9. Gaussian function simulation and accuracy of the calculated aph(λ). (a) 
The Gaussian function curve and simulated aph(λ). (b) R2 distribution for aph(λ). 
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3.2.3. BRDF correction 
Water bodies are affected by the BRDF effect, resulting in significant 

radiation differences under different sensor viewing angles and solar 
zenith angles, leading to the destruction of image consistency and a 
significant brightness gradient in the mosaicked image. To this end, we 
utilized a kernel-based BRDF correction model to eliminate the BRDF 
effect. 

ρ(θv, θs,Δφ) = fiso + fvolKvol(θv, θs,Δφ)+ fgeoKgeo(θv, θs,Δφ), (19)  

where f is the model coefficient; Kvol and Kgeo are the volumetric and 
geometric kernels, respectively; and Ross-Thick and Li-Sparse kernels 
are utilized to construct a calibration model (Wanner et al., 1995). 

3.3. Chla inversion model 

Due to the strong absorption characteristics of Chla in the red bands, 
aph(677) are selected to invert Chla. However, the increase in the pro-
portion of detritus particles (Cleveland, 1995) and the pigment pack-
aging effect (Lohrenz et al., 2003; Stuart et al., 1998) will lead to a non- 
linear relationship between aph and Chla. In this case, we additionally 
utilized the spectral characteristics of Rrs, established a binary inversion 
model, where the input parameters of the inversion model included x: 
aph(677) (highly correlated with Chla) and y: Rrs. To reduce the errors 
caused by incomplete atmospheric correction, we conducted multiple 

Fig. 10. The overall mosaicked image of the water bodies in the study area. RGB color composition with 639.02 nm, 550.87 nm and 460.64 nm.  

Table 5 
Comparison of the accuracy of aph(λ).  

Wavelength Algebraic decomposition Gaussian function simulation 

R2 MSE MAE R2 MSE MAE 

440  − 0.0832  0.1141  0.2980  0.7860  0.0225  0.1240 
550  0.2144  0.0074  0.0707  0.2490  0.0071  0.0663 
670  0.7428  0.0098  0.0810  0.8017  0.0076  0.0730 
Overall  0.2282  0.0366  0.1335  0.8037  0.0090  0.0785  

Fig. 11. Distribution and accuracy of the calculated Rrs(λ). (a) Density scatter plot. (b) R2 distribution for each band.  
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band ratio calculations on Rrs (Hu et al., 2012). The input Rrs included 
four types, i.e., the band ratio: Rrs(a)/Rrs(b), the two-band difference 
ratio: [Rrs(a) − Rrs(b)]/[Rrs(a) + Rrs(b)], the three-band algorithm: 
(Rrs(a)-1 − Rrs(b)-1) × Rrs(c), and the advanced three-band algorithm: 
Rrs(a)/[Rrs(b) − Rrs(c)] (Neil et al., 2019). In addition, we also used a 
univariate inversion model with Rrs or aph(677) for comparison. The 
regression models were the commonly used regression model. The 
specific model parameters and regression formulas are listed in Table 3. 

3.4. Model evaluation 

The IOPs and Chla inversion model performance were evaluated by 
the coefficient of determination (R2), the mean squared error (MSE), and 
the mean absolute error (MAE). 

R2 = 1 −
∑n

i=1(ŷi − yi)
2

∑n
i=1(yi − yi)

2 (20)  

MSE =
1
n
∑n

i=1
(ŷi − yi)

2 (21)  

MAE =
1
n
∑n

i=1
|ŷi − yi| (22)  

where yi is the measured value, ŷi is the predicated value, and n is the 
number of samples. The higher the R2 value and the lower the MSE and 
MAE values, the higher the accuracy of the model. 

4. Results 

4.1. Inversion results for the IOPs obtained using field-measured spectra 

4.1.1. bbp(λ) 
The inversion of bbp(λ) utilized an optimized method with dual-band, 

while single-band inversion was conducted using 550 nm and 677 nm, 
respectively. The mean values of the simulated bbp(λ) and the bbp(λ) 
inverted from the three different models are shown in Fig. 5. The 
simulated bbp(λ) exhibits certain fluctuations in the range of 500 to 600 
nm, which cannot be characterized well by a single band. The overall R2 

values using bbp550 and bbp677 are 0.8962 and 0.9257, respectively; the 
MSE values are 0.019 and 0.014, respectively; and the MAE values are 
0.096 and 0.081, respectively. By utilizing dual-band for the optimiza-
tion, the variation characteristics can be characterized well, and its 
mean curve is highly consistent with the simulated bbp(λ). The overall R2 

value reaches 0.9649, and the MSE and MAE are reduced to 0.006 and 
0.056, respectively, which is a significant improvement when compared 
to the traditional power function fitting method with a single band. 

4.1.2. a(λ) 
Fig. 6 Shows a comparison of the mean values between the measured 

a(λ) and calculated a(λ), where the shaded area is one standard devia-
tion around the mean value. From the graph, it can be seen that the 

Fig. 12. Scatter plot distribution of the calculated and measured Rrs(λ).  

Table 6 
Inversion accuracy for Rrs(λ).  

Wavelength R2 MSE MAE 

425  0.4356  0.0000164  0.0033 
496  0.6890  0.0000146  0.0031 
510  0.6798  0.0000149  0.0032 
527  0.6659  0.0000148  0.0031 
687  0.8065  0.0000081  0.0023 
718  0.7852  0.0000053  0.0017 
Overall  0.9498  0.0000096  0.0023  
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calculated a(λ) has a high consistency with the overall trend of the 
measured values. Fig. 7(a) shows the overall scatter distribution of the 
measured and calculated values, which is distributed near the 1:1 line. 
The overall R2 is 0.9627 and the MSE and MAE are 0.0117 and 0.0886, 
respectively. Fig.7(b) shows the R2 distribution of each band. The 
inversion accuracy is relatively high near 420 nm, 550 nm, and 670 nm, 
with R2 values over 0.6 and some bands reaching 0.8. Here, six repre-
sentative bands were selected for evaluation. The scatter plot distribu-
tion and accuracy evaluation are provided in Fig. 8 and Table 4, 
respectively. 

4.1.3. aph(λ) 
The first step in using a(λ) decomposition to obtain aph(λ) is to 

construct a Gaussian simulation function. The measured aph677 was 
utilized to obtain the parameters of the Gaussian simulation function. 
The simulation diagram based on the Gaussian function is shown in 
Fig. 9(a).The simulation accuracy R2 of each band is shown in the red 
curve in Fig. 10. It can be seen that the simulation accuracy is high. 
Except for the lower R2 value in the range of 500–600 nm, the R2 value 

for all the other bands exceeds 0.9. 
After that, the calculated a(λ) and the regression relationship in Eq. 

(14) were utilized to simulate aph(λ). The simulation accuracy is shown 
in the blue curve in Fig. 10, which is consistent with the distribution 
trend of the red curve. Except for the lower accuracy at 500 nm to 600 
nm, the R2 of all the other bands exceeds 0.6, and reaches above 0.8 near 
675 nm. The R2 value for the calculated aph is 0.8037. 

In addition, we compared the algebraic decomposition methods 
proposed in the QAA_V6 algorithm to decompose a(λ). The ratio rela-
tionship ξ, ζ of adg and aph at 412 nm and 443 nm, and the exponential 
decay slope S of adg, were obtained using empirical formulas through 
band optimization, finally obtaining aph(λ). The simulation accuracy R2 

of each band is shown in the green curve in Fig. 9(b). It can be seen that 
the R2 value of this method is negative before 500 nm, which means that 
the fitting accuracy is very poor. We selected 440 nm, 550 nm, and 670 
nm for the evaluation of the two different decomposition methods. The 
evaluation results are listed in Table 5. 

Fig. 13. Distribution and accuracy of the calculated bbp(λ) obtained using the airborne hyperspectral images. (a) Density scatter plot. (b) R2 distribution for 
each band. 

Fig. 14. Distribution and accuracy of the calculated a(λ) obtained using the airborne hyperspectral images. (a) Density scatter plot. (b) R2 distribution for each band.  
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4.2. Correction results for the airborne hyperspectral images 

After image correction, we obtained the Rrs data for the study area. 
The overall mosaicked image of the water bodies is shown in Fig. 10. We 
evaluated the image Rrs using the measured Rrs data. The density scatter 
plot of the measured and calculated Rrs(λ) is shown in Fig. 11(a). The 
overall R2 value is 0.9498. The R2 distribution of each band is shown in 
Fig. 11(b). In the range of 500 nm to 800 nm, the R2 value is greater than 
0.6, especially in the range of 600 nm to 700 nm, where the R2 value is 
greater than 0.75. The highest accuracy is near 670 nm, with R2 reaching 
a maximum of 0.8403. In addition, the IOP inversion bands were 
selected for evaluation. The scatter plot and accuracy evaluation are 
provided in Fig. 12 and Table 6, respectively. Except for the relatively 
low R2 value at 425 nm, all the other bands exceed 0.65, and reach 
0.8065 at 687 nm. 

4.3. Inversion results for the IOPs obtained using the airborne 
hyperspectral images 

After completing the image correction, the QAA_gauss model was 
applied to the airborne hyperspectral images, and the inversion results 
for bbp(λ), a(λ), and aph(λ) were obtained. The density scatter plots and 
the R2 distribution for all bands are shown in Figs. 13-15. The overall 
inversion accuracy for the three IOPs is high, and the scatter points are 
uniformly distributed near the 1:1 line. However, in some green and 
blue bands, especially around 400–500 nm, the inversion accuracy of R2 

is relatively low, and the corresponding IOPs values are relatively large, 
resulting in a certain dispersion in high-value areas of the scatter plot. 

The overall R2 of bbp(λ) is 0.7520, and the distribution is in the range 
of 0.2 to 1.2. Due to the approximate exponential distribution, the 
variation is significant in the shorter wavelength, leading to the distri-
bution divergence shown in Fig. 13(a). As shown in Fig. 13(b), the 
overall R2 variation is relatively small, with the lowest accuracy in the 
shorter wavelength, and the highest accuracy near 670 nm, reaching 
over 0.6. 

The inversion accuracy for a(λ) is relatively high, with the overall R2 

reaching 0.9590, and it can be seen from the distribution of the scatter 
point density in Fig. 14(a) that the scatter points are uniformly distrib-
uted around the 1:1 line. The R2 distribution shown in Fig. 14(b) is 
relatively consistent with the distribution for the ground model, and a 
high inversion accuracy has been achieved near 440 nm, 550 nm, and 
670 nm. The R2 at 670 nm reaches 0.65. 

The overall R2 of aph(λ) is 0.7727, with a relatively concentrated 
distribution in the range of 0.2 to 0.4. From Fig. 15(b), it can be seen that 
the R2 accuracy exceeds 0.6 in the band range of 400 nm to 510 nm, and 
615 nm to 695 nm, with the highest accuracy reaching 0.7568 at 672 
nm. 

We selected 440 nm, 550 nm, and 670 nm for quantitative evalua-
tion. The accuracy is listed in Table 7. The inversion maps are shown in 
Fig. 16. 

4.4. Inversion results for Chla 

The Chla inversion model was established based on the ground- 
measured aph(677) and Rrs. After completing the inversion model, we 
utilized the aph(677) obtained in Section 4.3 and the Rrs images as input 
parameters for the Chla inversion and mapping. The inversion results for 
a total of ten models with different input parameter combinations are 
shown in Table 8. When using aph(677) and Rrs(510)/[Rrs(556)-Rrs(673)]
as bivariates for the binary linear model construction, the ground 
spectral inversion accuracy R2 is 0.8139, and the hyperspectral imagery 
inversion result is the highest, reaching 0.7520. The Chla concentration 
spatial distribution result is shown in Fig. 17. The concentration of Chla 
in the river channels is significantly lower than that in the lakes and 
reservoirs. The Chla concentration in the study area is below 20 μg/L, 
with a Chla concentration of about 12 μg/L in Dianshan Lake and about 
5 μg/L in the Taipu River. 

Fig. 15. Distribution and accuracy of the calculated aph(λ) obtained using the airborne hyperspectral images. (a) Density scatter plot. (b) R2 distribution for 
each band. 

Table 7 
Inversion accuracy for the IOPs at 440 nm, 550 nm, and 670 nm obtained using 
the airborne hyperspectral images.  

Wavelength (nm) IOPs R2 MSE MAE 

440 nm bbp(λ)  0.4258  0.0757  0.1986 
a(λ)  0.4128  0.0477  0.1840 
aph(λ)  0.7193  0.0296  0.1361 

550 nm bbp(λ)  0.4538  0.0271  0.1240 
a(λ)  0.5093  0.0074  0.0706 
aph(λ)  0.4250  0.0054  0.0575 

670 nm bbp(λ)  0.6349  0.0078  0.0667 
a(λ)  0.6565  0.0081  0.0771 
aph(λ)  0.7557  0.0093  0.0792 

Overall bbp(λ)  0.7520  0.0386  0.1311 
a(λ)  0.9590  0.0212  0.1051 
aph(λ)  0.7727  0.0108  0.0768  
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Fig. 16. The inversion maps of IOPs for the study area.  

Table 8 
Inversion results for Chla.  

Input parameters Inversion model Ground spectra Hyperspectral imagery 

R2 MSE MAE R2 MSE MAE 

aph(677) 29.548x − 3.031 0.6978 7.7240 2.2207 0.6440 7.7240 2.1374 
− 35.833x2 + 58.24x − 7.56 0.6984 7.6054 2.2172 0.6750 6.8842 2.0172 
28.663x-1.259 0.6710 8.2411 2.4089 0.6517 7.5563 2.1789 

Rrs(677) − 466.23x + 17.8998 0.5121 12.2209 2.8492 0.5100 10.6310 2.5293 
14975.98x2 − 1226.35x + 26.65 0.5678 10.8263 2.6560 0.4325 12.3128 2.6646 
0.0374x-1.344 0.5147 12.1569 2.9708 0.2787 15.6512 3.1411 

Rrs(672)
Rrs(563)

− 40.019x + 30.308 0.7852 5.3810 1.6847 0.6765 7.0185 2.1140 
19.852x2 − 62.735x + 36.425 0.7862 5.3549 1.6708 0.6671 7.2226 2.1192 
1.168x-2.872 0.7323 6.7046 1.9774 0.5374 10.0375 2.4142 

Rrs(563)-Rrs(673)
Rrs(563) + Rrs(673)

48.916x − 6.3345 0.7854 5.3754 1.6743 0.6640 7.2897 2.1189 
− 18.719x2 + 59.536x − 7.676 0.7858 5.3644 1.6728 0.6714 7.1292 2.1145 
78.543x1.930 0.7728 5.6915 1.7555 0.6223 8.1949 2.1785 

Rrs(510)
Rrs(556)-Rrs(673)

− 6.278x + 20.503 0.7768 5.5906 1.7431 0.6939 6.6411 2.1761 
2.865x2 − 18.924x + 33.038 0.8165 4.5959 1.5229 0.6964 6.5870 1.9991 
21.982x1.894 0.7936 5.1686 1.7139 0.6160 8.3319 2.2331 

(
1

Rrs(562)
−

1
Rrs(671)

) × Rrs(664) 34.694x − 8.434 0.7956 5.1195 1.6585 0.6765 7.0202 2.0949 
10.916 x2 + 24.699− 6.337 0.7962 5.1050 1.6630 0.6685 7.1917 2.1009 
39.804x2.289 0.7885 5.2966 1.7242 0.6318 7.9894 2.1687 

aph(677), 
Rrs(672)
Rrs(563)

11.267x − 28.20y + 19.617 0.8159 4.6113 1.5674 0.7257 5.9518 1.8215 
− 9.480x2 + 19.572x − 18.834y2 − 5.355y + 11.427 0.8197 4.5170 1.5688 0.7423 5.5922 1.8386 
0.677x-3.024 + 11.822y1.439 0.7565 6.0996 1.9358 0.6103 8.4552 2.1569 

aph(677), 
Rrs(563)-Rrs(673)

Rrs(563) + Rrs(673)

10.895x + 34.532x − 6.136 0.8127 4.6923 1.5839 0.7129 6.2303 1.8456 
− 8.209x2 + 18.923x-63.264y2 + 68.275y − 11.67 0.8208 4.4897 1.5614 0.7469 5.4908 1.8282 
9.202x1.449 + 61.805y2.02 0.7889 5.2876 1.7231 0.6639 7.2923 1.9810 

aph(677), 

(
1

Rrs(562)
−

1
Rrs(671)

) × Rrs(664) 

9.739x + 25.568y − 7.637 0.8164 4.5990 1.5693 0.7195 6.0865 1.8548 
− 11.833x2 + 20.01x-13.737y2 + 36.915y − 11.582 0.8218 4.4644 1.5564 0.7380 5.6855 1.8679 
6.139x1.314 + 33.628y2.392 0.7957 5.1179 1.6935 0.6609 7.3566 2.0308 

aph(677), 
Rrs(510)

Rrs(556)-Rrs(673)

12.025x − 4.282y þ 12.185 0.8139 4.6621 1.5956 0.7520 5.3810 1.8284 
− 10.687x2 + 15.52x + 2.199y2 − 14.711y + 23.617 0.8283 4.2995 1.4968 0.7308 5.8403 1.8790 
3.692x1.347 + 19.609y− 1.93 0.7957 5.1167 1.7037 0.6340 7.9421 2.1627  
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5. Discussion 

5.1. Analysis of the model accuracy 

The QAA_gauss model proposed in this paper focuses on the water 
color characteristics of the study area, optimizes the reference wave-
lengths and semi-empirical parameters using measured data, and con-
structs a regional optimized IOP inversion algorithm. The model can 
effectively invert the IOPs, including bbp(λ), a(λ), and aph(λ). From the 
IOPs and Chla concentration distribution obtained from the airborne 
hyperspectral images, it can be seen that the proposed model can ach-
ieve good results for the lakes, reservoirs, and rivers with varying optical 

characteristics in the study area. 
Due to the complex optical characteristics of inland water bodies, the 

visible bands lose sensitivity to bbp(λ), resulting in significant errors in 
bbp(λ) inversion (Shi et al., 2019). In addition, a large number of 
measured results also indicate that the backscattering characteristics of 
inland water bodies may not exhibit exponential characteristics (Lin 
et al., 2018). The use of a dual-band joint inversion strategy can effec-
tively alleviate the low accuracy using a single band. At the same time, 
the dual-band approach can better characterize the distribution char-
acteristics of bbp(λ) in regional water bodies. 

We compared the correlation between bbp and organic–inorganic 
particulate matter, and found distinct differences in the correlations 
among various types of particulate matter shown in Fig. 18. For OSM, its 
correlation with bbp(λ) increases in the range 400–550 nm, reaches its 
peak near 550 nm. After 550 nm, the correlation gradually decreases. 
Different from OSM, ISM shows a consistent upward trend with 
increasing wavelength, which indicates that the use of dual-band has 
potential for estimating concentration of different particle types and 
revealing the influence of particles on bbp(λ). Since the backscattering 
coefficient is influenced by the interaction of inorganic and organic 
particulate matter, and the strong absorption characteristics of organic 
particles can affect bbp (Shi et al., 2014), the inversion accuracy of the 
bbp(λ) is relatively low in the blue and green spectra before 550 nm, 
which are highly correlated with organic particles. This also leads to a 
significantly lower R2 of a(λ) in this region compared to the region after 
550 nm. 

In the QAA algorithm, empirical ratio estimation is utilized to 
decompose a(λ), and the ratio parameters ξ, ζ of adg and aph need to be 
calculated separately. In addition, empirical formulas are also required 
to obtain the exponential decay slope S of adg. Although we optimized 
the empirical parameters using the measured IOPs, the results show that 
the calculated aph(λ) does not fit well before 500 nm. In addition to the 
accumulation of errors caused by the large number of steps required for 
the empirical ratio solution, the use of a single empirical shape or single 
slope as an empirical model of adg can cause significant errors within a 
shorter wavelength range (Werdell et al., 2013; Zhang et al., 2015). The 

Fig. 17. The Chla concentration spatial distribution for the study area.  

Fig. 18. The correlation between the backscatter coefficient and organic and 
inorganic suspended matter. 
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proposed aph(λ) decomposition method based on a Gaussian function 
utilizes aph(677) to simulate the full spectral range of aph(λ). By directly 
constructing a linear relationship between a(λ) and aph(677), the overall 
inversion accuracy is effectively improved. This indicates that the 
method based on a Gaussian function can effectively represent the ab-
sorption characteristics of aph(λ). Since the prediction accuracy is not 
affected by adg, this can ensure the stability of the overall prediction 
accuracy of aph(λ). 

In the inversion modeling of Chla, it can be found that, when using a 
single variable for the modeling, aph(677) has a relatively high corre-
lation with Chla, and the inversion accuracy R2 is greater than 0.6. Using 
only a single Rrs band for modeling is not effective, the single band be 
affected by incomplete atmospheric correction, resulting in significant 
errors (Ruddick et al., 2001). After performing the dual-band or three- 
band mathematical operations, the inversion accuracy is significantly 
improved. However, the characteristics of Rrs may not directly reflect 
changes of Chla, which may lead to misjudgment using purely empirical 

Fig. 19. The inversion maps of IOPs at 670 nm for the study area using satellite hyperspectral imagery. (a)–(c) November 18, 2021. (d)–(f) December 25, 2022. (g)– 
(i) March 6, 2023. 

Fig. 20. The Chla concentration spatial distribution for the study area using satellite hyperspectral imagery. (a) November 18, 2021. (b) December 25, 2022. (c) 
March 6, 2023. 

Table 9 
Inversion accuracy for Chla using satellite hyperspectral imagery.  

Image 
acquisition date 

Station 
name 

Measured 
value 
(ug/L) 

Inversion 
value 
(ug/L) 

Mean 
absolute 
error 
(%) 

2021/11/18 North 
Huxin  

9.27  11.09  19.8274 

South 
Huxin  

14.70  12.13  17.4714 

2022/12/25 North 
Huxin  

14.69  12.59  14.2743 

South 
Huxin  

9.83  9.22  6.1953 

2023/03/06 North 
Huxin  

13.06  10.52  19.4410 

South 
Huxin  

9.50  8.62  9.2736  
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models (Lee et al., 2020). Compared to the univariate inversion model, 
the R2 value of the bivariate inversion model using both aph(677) and Rrs 
is increased by about 10 %. A possible reason for this is that the de-
pendency relationship (ratio relationship) between aph and Chla can 
affect the accuracy of algorithms using Rrs, especially in a relatively 
small range of Chla of about 5 to 10 mg/m3 (Gilerson et al., 2010). In 
addition, the proportion of detritus particles in a small Chla concen-
trations and the pigment packaging effect also limited the accuracy of 
using a single aph for inversion. The inversion model that considers both 
aph and Rrs can compensate for the shortcomings of the univariate 
inversion and improve the inversion accuracy. 

However, due to the significant differences in the optical properties 
of different inland water bodies, the empirical formula parameters 
proposed in this paper may not be applicable to other water bodies. In 
future research, introducing optical classification of water optical 
characteristics should be considered and different regions should be 
modeled separately (Jiang et al., 2020). 

5.2. Application using satellite hyperspectral imagery 

Due to the high cost of obtaining airborne hyperspectral images, we 
only obtained single-temporal image data in this study, so that we could 
not conduct a temporal analysis. In recent years, spaceborne hyper-
spectral sensors have developed rapidly, and hyperspectral satellites 
with a high spatial resolution and width, have achieved success in 
monitoring inland water bodies(Liu et al., 2022). 

To further validate the applicability of the model, we utilized ZY1- 
02D and ZY1-02E Advanced Hyperspectral Imager (AHSI) for long- 
term monitoring. The AHSI VNIR sensor covers a spectral range of 
400–1000 nm, with a total of 76 bands. We selected cloud-free images 
covering our main research area, which were obtained on November 18, 
2021, December 25, 2022, and March 6, 2023, respectively. We applied 
the proposed model to invert IOPs and Chla. The inversion maps of IOPs 
at 670 nm and Chla are shown in Fig.19 and Fig. 20, respectively. 

To quantitatively evaluate the inversion accuracy, we assess the 
inversion quantitative accuracy by the Chla monitoring data on two 
monitoring stations (North Huxin and South Huxin) in the Dianshan 
Lake at the satellite imaging time from the Shanghai Environmental 
Monitoring Center, as shown in Fig. 1. The comparison results between 
the measured values and the inversion values are reported in Table 9. 
The mean absolute errors are all less than 20 %, with an average error of 
about 14.4 %, proving the applicability of the model to hyperspectral 
satellite imagery. 

Due to the lack of sampling data at the satellite imaging time, we 
were unable to evaluate the inversion accuracy of IOPs. In addition, 
limited by the meteorological conditions in the study area and revisit 
interval of hyperspectral satellite, only a small portion of hyperspectral 
data can be used for inversion applications. This poses challenges for 
long-term monitoring, however, with the ongoing development of 
hyperspectral satellites, the sources of hyperspectral data are becoming 
more abundant and accessible. In the future, a long-term application 
analysis could be considered using satellite hyperspectral image data. 

6. Conclusion 

In this paper, a semi-analytical approach for estimating inland water 
IOPs has been proposed, which was applied to key lakes, reservoirs, and 
rivers in the Yangtze River Delta Integrated Demonstration Zone. The 
model is based on the QAA algorithm, and the measured IOPs and Rrs are 
employed for optimizing the regional empirical parameters. At the same 
time, the solving process of bbp and aph is optimized using a dual-band 
joint inversion strategy and a Gaussian function fitting method, which 
can obtain high-precision IOPs. At the same time, an inversion model is 
constructed for Chla, which takes into account both aph and Rrs. The 
proposed method has a better accuracy than the univariate inversion 
model. 

In order to apply the ground model to airborne hyperspectral images, 
a high-precision water reflectance inversion process was constructed. 
Based on the radiative transfer model for water bodies, combined with 
the measured atmospheric parameters and measured reflectance 
spectra, the water-leaving reflectance of the airborne hyperspectral 
images was obtained, ensuring the effect of the ground model. Finally, 
the spatial mapping of the IOPs and Chla was completed, which will be 
of great significance for subsequent water quality analyses. The exper-
iment demonstrated that the proposed semi-analytical method exhibits 
good performance, and has been successfully applied to long-term 
monitoring using satellite hyperspectral images, highlighting the sig-
nificant potential of hyperspectral remote sensing for high-precision 
monitoring of regional water bodies. 
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