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A B S T R A C T   

The difference of the spatio-spectral features of multi-sensor image causes big difficulty in change detection 
because of the difficulties of the feature extraction. Unlike the traditional approaches that mainly relying on 
manually feature design, the advances of deep learning-based methods in deep feature extraction provide new 
alternatives for multi-sensor imagery change detection. Specifically, the incorporation of multi-scale information 
from remote sensing images holds paramount importance in change detection, consistently applied in the design 
of various deep learning models. This study investigated a change detection approach utilizing a mixed inter
leaved group convolutional network (MIGCNet) on multi-sensor remote sensing imagery, with a specific focus on 
fine-grained kernel space and multi-scale feature analysis within convolution operations. The proposed MIGC
Net, with parallel branches as the fundamental architecture, can distinguish the change information effectively 
by the proposed mixed interleaved group convolution (MIGC) module, which combined mixed convolution with 
interleaved group convolution. Meanwhile, multi-loss supervision is utilized to promote the performance of the 
proposed MIGCNet. Experimental results demonstrate the outperformance of the MIGCNet to handle change 
detection with multi-sensor images on urban area. Considering different datasets, the Overall Accuracy and 
Kappa Coefficient are reaching 0.97 and 80.67%, respectively, and the miss detection rate and the false alarm 
rate are as low as 0.17 and 0.18, respectively.   

1. Introduction 

Remote sensing is a technology that enables the characterization of 
the Earth’s surface through both active and passive methods, allowing 
observation without direct contact (Hemati et al., 2021). The unparal
leled and rapid progress in sensor technology has provided a great 
impetus for the use of remote sensing applications in various fields (Ban 
and Yousif, 2016). As an important research direction, change detection 
(CD) aims to extract differences in land cover features through 
multi-temporal observations (Lu et al., 2004; Seydi and Hasanlou, 2021; 
Singh, 1989). Numerous applications have widely applied based on CD 
technology, such as nature disaster assessment (Brunner et al., 2010), 
urban growth monitoring (Xiao et al., 2016), and land-cover 

investigation (Mubea and Menz, 2012). 
Most of the investigations have been focused on remote sensing CD 

from single data source, however, the ability for a single sensor to ac
quire the target scene periodically is tightly bound by the satellite 
revisiting period and imaging quality (Wang et al., 2019; Wu et al., 
2013), while collaborative observation using multiple sensors provides 
high-frequency, multi-modal remote sensing imagery, which fulfills the 
requirement for massive high-quality data in land-cover change moni
toring. The use of different sensors increases the probability of being 
able to interpret the study area under cloudless conditions, which en
sures the possibility and accuracy of CD (Zhao et al., 2017). 

Decades of research have been dedicated to change detection. 
Traditional CD methods can be divided into three main categories 
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(Zhang et al., 2020): 1) image arithmetic operation-based approaches, 
such as change vector analysis (Chen and Chen, 2016), refer to separate 
changed pixels from unchanged pixels by determining an appropriate 
threshold; 2) image transformation-based methods, for instance, prin
cipal component analysis (PCA) (Celik, 2009), transform the image 
spectral combinations into a specific feature space to identify the 
changed pixels; and 3) image classification based-methods. In partic
ular, with the widespread use of machine learning methods, the accu
racy of CD methods based on classification algorithms has been 
considerably improved (Li et al., 2018). Early methods mainly use in
dependent pixels as the detection units for capturing the different 
characteristics by exploring the pixel spectral differences. With the 
development of high spatial resolution remote sensing imagery, 
object-oriented image analysis (OBIA) technology has been introduced 
into high-resolution remote sensing image change detection (Lv et al., 
2020). Compared to the traditional pixel-based CD methods, OBIA en
hances the detection process by incorporating information from image 
objects. It takes into account spectral, textural, and geometrical features 
of pixels, effectively suppress the influence of salt-and-pepper noise 
(Chen et al., 2014; Hussain et al., 2013; Lv et al., 2020; Tan et al., 2019). 
For example, an object-oriented method with uncertainty analysis was 
investigated by (Hao et al., 2016) to detect the changes in 
high-resolution images. 

However, due to the different data distributions, it is difficult to 
compare the multi-sensor images directly in the original low- 
dimensional feature space. As a result, change detection on multi- 
sensor remote sensing images is more challenging than single-sensor 
images change detection. In recent years, deep learning-based 
methods have been developed in various fields, such as image analysis 
(Hong et al., 2023), point cloud registration (Wu et al. 2022a, 2022b), 
especially in CD of remote sensing images (Wang et al., 2023). DL-based 
CD methods can learn the latent relationships between single or multi 
sensor images with the powerful capability of deep feature extraction 
(Habibollahi et al., 2022; Wang et al., 2021), such as multi-dimensional 
convolution neural network (CNN) (Seydi et al., 2020), ACE-Net (Lup
pino et al., 2021), and Y-Net (Wang et al., 2022a). The deep learning 
model unifies the images from originally different domains based on 
their depth characteristics, facilitating convenient comparisons 
(Andresini et al., 2023; Wu et al., 2021b; Yuan et al., 2021; Zhang et al., 
2018). Recently, a novel network architecture known as the Transformer 
has been introduced and applied to the change detection task, primarily 
owing to its attention mechanism (Bandara and Patel, 2022; Wang et al., 
2022b). Furthermore, the graph neural network (GNN), characterized 
by its unique graph structure, proves to be well-suited for handling data 
with intricate spatial relationships and has also been explored for pro
cessing remote sensing data (Wang et al., 2024; Zhou et al., 2023). 

For multi-sensor image CD, Liu et al. adopted a deep convolutional 
coupling network for the change detection using radar and optical im
ages (Liu et al., 2016), while Wang et al. (2020) proposed a hybrid 
convolutional module to detect changes on multi-sensor optical images. 
These proposed network architectures were implemented by leveraging 
the concept of using blocks of layers as structural units and incorpo
rating multi-path information processing. Seydi et al. (2020) designed a 
CNN-based CD network which composed of parallel channels for 
exploiting the spatial and channel information. These channels contain 
three parts: the first and second channels extract deep feature on two 
temporal images, and the third channel obtains change information on 
differencing and staking imagery. Recently, building change detection 
on multi-sensor remote sensing images was implemented using a deep 
learning-based framework that incorporates multi-feature fusion (Li 
et al., 2023). 

In fact, one of the main challenges in processing multi-sensor images 
comes from the different feature representation of ground objects in 
different types of images, increasing the difficulty of obtaining differ
ence maps. The extraction and application on multi-scale features have 
been proved to be one of the effective ways to obtain representative 

differences (He et al., 2016; Khan et al., 2020; Szegedy et al., 2015). The 
concept of branching within a layer was first utilized in the Inception 
module for extracting multi-scale features (Srivastava et al., 2015; 
Szegedy et al., 2015). Examples include the use of an asymmetric Sia
mese neural network for learning semantic changes (Yang et al., 2020) 
and the design of an unit for extracting multi-scale features in the same 
layer (Chen et al., 2019). Additionally, Wu et al. (2021a) adopted the 
graph convolutional network for CD combining with the multiscale 
object-based technique. This method also employed the idea of 
multi-scale feature extraction for improving accuracy on multi-sensor 
images CD. 

Despite the numerous successes and contributions on the multi- 
sensor images CD, there are limitations requiring more attention. 
Firstly, in the most of existing CNN-based CD methods, the extraction of 
multi-scale features depend on multiple convolution layers with distinct 
convolution kernel sizes (Tan and Le, 2019). However, this approach 
often tends to increase the size of the network, and finer-grained kernel 
spaces within the same convolution are frequently overlooked. As a 
result, it is essential to reduce the computational costs without accuracy 
reduction. Consequently, the recent CD methods tend to lose crucial 
change information, including the diversity of the scale features and the 
difference characteristics which will cause the low change detection 
accuracy. Lastly, the back-propagation training method can give rise to 
issues such as vanishing or exploding gradients in neural network 
learning. In general, the longer the error back-propagation distance is, 
the smaller the gradient in the early layers is, which potentially causes 
an unstable gradient problem. 

Regarding the widely application of land resource monitoring in the 
era of multi-source data, the utilization of a deep convolutional neural 
network (DCNN) is explored in this paper to for change detection with 
multi-sensor high-resolution remote sensing imagery. To handling the 
multi-scale feature learning and the optimization of the convolution, an 
innovative Siamese network architecture and supervised training 
method are also introduced. On this basis, the deep learning-based 
framework called MIGCNet is proposed to detect the differences with 
the two periods images acquired by multi-sensor. By combining mixed 
convolution (Tan and Le, 2019) with interleaved group convolution 
(Zhang et al., 2017), the mixed interleaved group convolution (MIGC) 
module can extract abundant image difference features for determining 
the changes. Meanwhile, multi-loss supervision is utilized to promote 
the network performance. The main contributions of this work are given 
as follows.  

(1) We investigate a novel MIGCNet for multi-sensor images CD. The 
network obtains different scale information at a fine-grained level 
and integrate the feature representation with multi scales, and 
the detailed change information is well kept for the final 
detection.  

(2) We propose a novel MIGC module, employed by mixing multiple 
convolution kernel sizes in one convolution operation, which 
contributes to the multi-scale convolutional features learning 
without any expanding.  

(3) We devise a multi-loss supervision training strategy using 
different parameter optimizers to handling the hard training is
sues of deep neural network. 

(4) From comprehensive comparisons among the multi-sensor im
ages change detection approaches, our proposed method can 
achieve state-of-the-art performance. 

2. Materials and methods 

To addressing two time-domain images collected by different sen
sors, this study initiates optimization at the fine-grained convolution 
level to attain multi-scale feature extraction within a unified convolu
tional framework. A novel deep learning network called mixed inter
leaved group convolutional network (MIGCNet) has been proposed to 
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extract the changes from multi-sensor images. The network comprises 
two key components: feature extraction and multi-loss supervision. In 
this section, the proposed model architecture will be illustrated firstly. 

2.1. Model structure 

2.1.1. Mixed interleaved group convolution module 
Convolution kernels are the main way that feature extraction is 

implemented in CNNs. Conventional convolution kernels usually use the 
same kernel size to extract the feature map. We let X(h,w,c) denote the 
input image data with shape (h, w, c), where c, w and h refer to the 
channel size, the width and height, respectively. We then assume that 
the convolution kernel has the same height and width k. W(k,c,m) denotes 
a convolution kernel with input channel size c. k × k represents the 
kernel size, and m is the channel multiplier. Then, each output feature 
map value can be calculated as: 

Ya,b,t =
∑

− k
2≤i≤k

2,−
k
2≤j≤k

2

Xa+i,b+j, t
m
• Wi,j,t, (1)  

∀t= 1,⋯, c • m  

where c • m denotes output size of the output tensor Y(h,w,c•m), which has 
the same shape (h, w) as the input. 

Differing from conventional convolution, mixed convolution (Tan 
and Le, 2019) partitions the input into several groups, and applies 
convolution kernels of different sizes to each group. Fig. 1 shows the 

mixed depthwise convolution. Specifically, the input tensor is parti
tioned into l groups of independent tensors according to the channel, 
which are denoted as {X(h,w,c1),⋯,X(h,w,cl)}. The sum of channel sizes is 
equal to the original input tensor, i.e., c = c1 + ⋯ + cl .We also partition 
the original convolution kernels into l groups, expressed as {W(k1 ,c1 ,m),⋯,

W(kl ,cl ,m)}, where each kernel for the different groups has a different size. 
The output of the input tensor in s-th group is calculated as: 

Ys
a,b,t =

∑

− k
2≤i≤k

2,−
k
2≤j≤k

2

Xs
a+i,b+j,t/m • Ws

i,j,t, (2)  

∀t= 1,⋯, cs 

By concatenating all of the output tensor, the final output tensor can 
be calculated as: 

Ya,b,t0 =Concat
(

Y1
a,b,t1 ,⋯,Yl

a,b,tl

)
(3)  

where t0 = t1 + t2 + ⋯ + tl is the final output channel size. 
The MixConv operation can easily obtain different scale information 

at a fine-grained level by mixing multiple convolution kernels in a single 
convolution. However, the large convolution kernel size requires more 
parameters and has a higher computational cost. Thus, we introduced 
interleaved group convolution (IGC) (Zhang et al., 2017) to mixed 
convolution in this study to solve this problem. In IGC, the input chan
nels consist of several partitions. This can not only guarantee the in
crease of the width under the same depth, but also solves the problem of 
the computational cost and data redundancy. 

The MIGC module is composed of primary mixed convolution part 
and secondary group convolution part. The input tenser shown in Fig. 2 
is first equally divided into two groups, i.e., l = 2, and convolution 
kernels of size [3 × 3, 5 × 5] are performed over each group. Then, the 
output tensors are concatenated and input into next convolution. The 
secondary group convolution is performed to shuffle the cross-partition 
channels output by the primary mixed convolution. After that, the 
partition x1 is then connected with y2, the partition of output tensor, 
through the MIGC module, as shown by the red line in Fig. 2. There also 
has a similar path connecting each channel of the secondary group 
convolution output with each channel of the primary mixed convolution 
input. 

Under the same computational complexity, the MIGC module has the 
bigger receptive field comparing with a conventional convolution 
module. We assume that 1 and S = k × k is the group convolution and the 
kernel size in the primary mixed convolution, respectively. 

TIGC =L × M × M × S + M × L × L (4)  

where L denotes the count of partitions in the primary group convolu
tion. M is the count of channels in each partition. We let G = M × L 
denotes the width of an IGC block. Equation (4) can then be calculated 
as: 

Fig. 1. The framework of mixed depthwise convolution.  

Fig. 2. The framework of mixed interleaved group convolution.  
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TIGC =G2 × (S /L+ 1 /M) (5) 

The number of parameters of a traditional convolution for a single 
spatial position is: 

Tnorm =C × C × S (6)  

where C represents the count of channels. Given the same size of pa
rameters, i.e., TIGC = Tnorm = T, we have G2 = T /(S /L + 1 /M), C2 =

T/S. It is therefore easy to obtain: 

G>C,when L/L − 1 < M × S (7)  

In a typical case, e.g., S = 3 × 3, we have G > C when L > 1. As for the 
MIGC block, i.e., L = 2, S1 = 3 × 3, and S2 = 5 × 5. when L > 1, we can 
easily obtain G > C. As shown in Fig. 3, we adopt two successive MIGC 
blocks to compose a complete MIGC module. 

Fig. 3. The framework of the MIGC module.  

Fig. 4. The proposed MIGCNet architecture. The different modules are marked by different colors. Block color legend: blue represents conventional convolution with 
kernel size 3 × 3, gray represents the difference extraction module (DM), green represents the proposed MIGC module, and yellow represents the feature fusion 
module (FM). 
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2.1.2. Network architecture 
Based on the MIGC module, MIGCNet has been proposed to tackle 

with the change detection with multi-sensor high-resolution images. 
Fig. 4 illustrated the structure of the MIGCNet framework. MIGCNet had 
two inputs, and each input patch was fed into an equal stream in the first 
half of the network. Each stream consists of four groups of conventional 
convolutions (colored in blue in Fig. 4). After progressive abstraction 
through stacked convolutional layers, the deepest layer in streams T1 
and T2 obtained compact local information. 

The outputs of the last three convolution groups (i.e., conv2, conv3, 
conv4) in streams T1 and T2 are then fed into the MIGC module (colored 
in green in Fig. 4), in turn, to extract abundant features. Meanwhile, the 
output of the first convolution group is input into the difference 
extraction module (DM, colored in gray in Fig. 4, and shown in Fig. 5), to 
obtain the initial difference features for fusion with the other high- 

dimensional features in later modules. The DM module utilizes convo
lution after subtraction to extract the low-level difference information. 
The detailed components of the proposed feature fusion module (FM) 
are shown in Fig. 5(b). Given the features of two adjacent MIGC mod
ules, Mi− 1 and Mi, the FM first reduced the dimension of each feature by 
stacking the convolutions to facilitate efficient training. M′

i is then 
concatenated with M′

i− 1 after residual connection, and applies subse
quent additional convolutions. Combining the two features in different 
modalities through FM complementarily is crucial for the feature 
extraction of the network. 

MIGCNet applies a global average pooling layer (GAP) after the FM 
module for avoiding overfitting. The results are then generated after the 
following fully connected layer. Moreover, multi-loss supervision is 
included to enhance the network performance and guarantee that the 

Fig. 5. The framework map of (a) the difference extraction module (DM), (b) the feature fusion module (FM).  

Fig. 6. Flowchart of the change detection framework.  

K. Tan et al.                                                                                                                                                                                                                                     



Engineering Applications of Artificial Intelligence 133 (2024) 108446

6

network is well trained. Details of the multi-loss supervision process are 
presented in the next section. 

2.2. Multi-loss supervision 

In the field of neural network learning, the discriminative deep 
features are learned through defining and minimizing the loss function, 
and then features are used to train the classifier (Cheng et al., 2020). 
Neural networks tend to achieve architecture innovation with increased 
depth and width, and the parameter updating depends on the 
back-propagation algorithm (LeCun et al., 2015). Therefore, the model 
performance is dependent on the following: 1) the update rate of the 
different layers having variation; and 2) the update speed of a layer close 
to the output being faster than that of a layer close to the input. wl

jk 

denotes the weight between layer l − 1 and next layer l. C denotes the 
loss function. bl

j denotes the bias in layer l. The output of the j-th neuron 
is defined as: 

al
j = σ

(
∑

k
wl

jkal− 1
k + bl

j

)

(8)  

where σ represents the activation function, and al− 1
k denotes the output 

from the k-th neuron in layer l − 1. By rewriting (8) to matrix form, we 
can obtain the formula: al = σ(wlal− 1 + bl). As zl

j is the weight input of 
neuron j in layer l, i.e., zl

j = wlal− 1 + bl, (8) can be calculated as: 

al
j = σ

(
zl

j

)
(9) 

By using the chain rule to calculate the partial derivative, the error of 
the output layer is as follows: 

δl
j =

∂C
∂zl

j
=

∂C
∂al

j
•

∂al
j

∂zl
j
=

∂C
∂al

j
• σ′
(

zl
j

)
(10)  

where σ′(zl
j) represents the partial derivative of zl

j by activation function 
σ. The error of wl

jk can be calculated as follows: 

∂C
∂wl

jk
=

∂C
∂zl

j
•

∂zl
j

∂wl
jk
=

∂C
∂zl

j
• al− 1

k = δl
j • al− 1

k (11) 

As can be seen in (11), when the activation output of the upper layer 
approaches zero, no matter how large the error is, ∂C/ ∂w has smaller 
value which will create a smaller gradient. Therefore, the back- 
propagation training method may lead to the problem of vanishing or 
exploding gradients (Zhang et al., 2020). 

To handling the problem of gradient vanishment of MIGCNet, we 
introduced the multi-loss supervision method to train the difference 
identification layers effectively. In this context, the middle layer of the 
network does not solely depend on gradients gradually backpropagating 
from the output layer; instead, it is supervised by distinct parameter 
optimizers. This direct feedback from the change outcome enables the 
middle layer to generate features that exhibit greater differentiation 
within the region of change. As illustrated in the red box in Fig. 4, 
throughout the training process, the loss for each depth supervision is 
independently calculated and directly backpropagated to the middle 
layer. 

2.3. The proposed change detection framework 

As shown in Fig. 6, the proposed change detection framework in
cludes three main steps: 1) training sample acquisition; 2) network 
training; and 3) object-based uncertainty analysis. A pair of bi-temporal 
images (i.e., the pre-change image T1 and the post-change image T2) is 
fed into the two parallel streams separately, which allows the original 
features of each individual bi-temporal image to be preserved as much as 

possible. The introduction of multi-loss supervision enhances the per
formance of this network. Meanwhile, the object-based uncertainty 
analysis is applied to refine the results to the object level. The three steps 
are described as follows. 

2.3.1. Training sample acquisition 
The training samples are selected in combination with an automatic 

analysis process, based on the differences in the multi-feature images. By 
combining the individual detection results from the spectral and texture 
features, initial selection of the changed and unchanged pixels is 
achieved. 

Firstly, the Gabor features are constructed in the 0◦, 45◦, 90◦, and 
135◦ directions, with kernel sizes of [7,9,11,13,15,17], for the 
transform-based texture features. The multi-kernel Gabor features are 
generated as follows: 

Ge
direction =

∑

k
ge

k, k ∈ [7, 9, 11, 13, 15, 17], (12)  

where k denotes kernel size, ge
k represents the Gabor features on the e-th 

spectral band with k, and the original images have E spectral bands. 
After Equation (8), the 4 × E Gabor texture features are obtained to 
generate the difference map. 

The difference image D is generated from the two temporal images, 
with the dataset consisting of the spectral features and the Gabor texture 
features. For the images with r spectral bands at times T1 and T2, D is 
calculated as follows: 

D= |T1 − T2
⃒
⃒, (13) 

Each dimension of D must be normalized in the range [0, 1], and the 
data in the b-th dimensional Db are normalized as follows: 

Db =
Db − Dmin

Dmax − Dmin
, b = 1, 2,…, r, (14)  

Then, Equation (15) is applied to generate the pixel-based results CDb on 
each band by the threshold Tb, calculated according to the expectation 
maximization (EM) algorithm (Bruzzone and Prieto, 2000). 

cdb
i,j =

⎧
⎨

⎩

0, if db
i,j < Tb

1, if db
i,j ≥ Tb

, (15)  

where cdb
i,j indicates whether the pixel at position (i, j) in CDb belongs to 

the unchanged or changed part. In order to select reliable train and valid 
samples, the uncertainty analysis on each band of CD is considered, and 
a conservative decision is made as follows: 

Li,j =

{
0, p ≤ ⌊0.3 × b⌋
1, p ≥ ⌊0.7 × b⌋ , (16)  

p=
∑b

r=1
cdb

i,j, (17)  

where cdb
i,j indicates the category of the pixel at (i, j) in CDb. p is the score 

that a pixel at position (i, j) is regard as changed in all dimensions. If the 
score p on the position (i, j) is greater than the threshold ⌊0.7 × b⌋, then 
the pixel is labeled as the “changed”. Likewise, if p is less than ⌊0.3 × b⌋, 
then the pixel is labeled as the “unchanged”. Training samples are 
selected from these augmented samples randomly. Therefore, the inputs 
in this study are [patch1,patch2, label], where patch1 and patch2 represent 
the patches of a fixed size ω on the two temporal images.  

2) Network Training 

Patches of the multi-sensor remote sensing images are utilized in 
MIGCNet to extract the high-level features. We randomly collected 2000 
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bi-temporal image pairs for each dataset. Among them, 70% of the 
sample dataset was used for model training, and the other 30% of the 
sample dataset was used for the model performance assessment. Adam 
optimizer (Kingma and Ba, 2014) and cross-entropy loss function was 
utilized in the network training. Three optimizations, i.e., OP1,OP2, and 
OP3, were utilized to optimize the different parts parameters of the 
MIGCNet. Table 1 lists the parameter settings of optimizations. 

2.1.3. Object-based uncertainty analysis 
Due to the different imaging conditions, images collected by multiple 

sensors always show great diversity (Wang et al., 2020). Object-oriented 
change detection (OBCD) can effectively suppress the influence of noise 
on change detection. In the proposed approach, two temporal images are 
stacked into a single image by simple band stacking. The fractal net 
evolution approach (FNEA) is then utilized to over segment the stacked 
image (Hay et al., 2003; Tan et al., 2019). According to the 

heterogeneity of the segmented objects, the segmented objects are 
merged into multiple scales. 

The optimal segmentation scale Sl is first obtained according to the 
global score (GS) value (Espindola et al., 2006; Lu et al., 2017; Tan et al., 
2019), and then five segmentation scales [Sl− 2, Sl− 1, Sl, Sl+1, Sl+2] are 
selected. We combine the pixel-based result obtained by MIGCNet with 
the segmentation with different scales, and extract the enhanced spatial 
features of the multi-sensor images and obtain optimized object-based 
results. 

For a segmented object Oi, the number of pixels ni
c for the changed 

class is counted. The percentage of object Oi belonging to changed class 
C is calculated as follows: 

pc =
ni

c

ni
, (18)  

where ni is the total number of pixels in object Oi. A threshold T is then 
set and compared with pc to classify the object Oi of the current seg
mentation scale. The final change detection result is calculated as 
follows: 

CDi =

{
1, if pc > T

0, others , (19) 

If CDi satisfies Pc > T, the object Oi is labeled as a changed object. 

Table 1 
Parameter settings of multi-loss supervision.   

Optimization Layers Learning Rate 

OP1 Adam All 1e − 03 
OP2 Adam FM2,GAP2,FC2 1e − 03 
OP3 Adam FM3,GAP3,FC3 1e − 04  

Fig. 7. The image and the corresponding labeled maps for the three datasets.  
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CDi = 0,1 indicates that Ri belongs to the unchanged and changed 
classes, respectively. The change map is obtained by integrating the 
segmentation maps and the pixel-wise change detection result through 
the uncertainty analysis, according to the accuracy evaluation. The 
pixel-based result obtained by MIGCNet can be refined by an additional 
constraint on the same object, so as to make better use of the spatial 
information of the multi-sensor images. 

3. Experiments and results 

3.1. Dataset description 

We evaluated MIGCNet using three urban area datasets. Dataset I 
covers part of Big Dragon Lake, Xuzhou, China, and the details of this 
dataset are depicted in Fig. 7(a) and (b). Dataset II covers Tongshan 
District, Xuzhou China, which is presented in Fig. 7(d) and (e). Dataset 
III, depicted by Fig. 7(g) and (h), covers Cloud Dragon Lake, Xuzhou, 
China. The main types of changes in the three multi-sensor datasets are 
mainly additional building in urban area. The first temporal image was 
acquired by the ZY-3 satellite taken on October 14, 2014, and the second 
temporal image was obtained by the GF-2 satellite on October 5, 2016. 
The key characteristics of these two satellites, e.g., band combination 
and resolution, are listed in Table 2. Each dataset consisted of 350 × 350 
pixels, and all of the images were unified transformed to the same spatial 
resolution. In the stage of image preprocessing, the geometric registra
tion root-mean-square error (RMSE) was found to be lower than 0.5 
pixel. The corresponding labeled maps for the three datasets were 
generated via manual expert knowledge based on prior knowledge and 
field investigation, and are shown in Fig. 7(c), (f), and (i). 

Table 2 
Details of the GF-2 and ZY-3 imagers.  

Satellite Sensor Band Spectrum 
(μm) 

Spatial resolution 
(m) 

Time 

ZY-3 MUX Blue 0.45–0.52 5.8 2014.10.14 
Green 0.52–0.59 
Red 0.63–0.69 
Nir 0.77–0.89 

GF-2 PMS Blue 0.45–0.52 4.0 2016.10.05 
Green 0.52–0.59 
Red 0.63–0.69 
Nir 0.77–0.89  

Fig. 8. Detection map on Dataset I by: (a) SVM, (b) MLP, (c) TSCNN, (d) DSMS-CN, (e) DCNN, (f) MixNet, (g) DSCNH (h) ResViT (i) PASSNet and (j) MIGCNet with 
multi-loss supervision (l = 45, ω = 11). (k) Ground truth. 
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3.2. Benchmark methods 

To fairly evaluate the proposed method, the following methods were 
selected to conduct compared experiments.  

1) Supervised pixel-wise change detection methods, i.e., multi-layer 
perceptron (MLP) and SVM-based method.  

2) Change detection based on DCNN. This network is made up of five 
conventional convolution groups and three fully connected layers. 
Each conventional convolution group is made up of two convolu
tional layers, following with batch normalization and activation 
function. The input is the absolute difference of the paired samples.  

3) The approach using the traditional Siamese CNN (TSCNN) (Zhan 
et al., 2017).  

4) The approach using the deep Siamese multi-scale CNN (DSMS-CN) 
(Chen et al., 2019) which consists of multi-scale feature extraction 
module.  

5) The network is composed of MixConv, as per the method introduced 
by (Tan and Le, 2019).  

6) Change detection based on the deep Siamese convolutional network 
with hybrid convolutional feature extraction module (DSCNH) 
(Wang et al., 2020).  

7) Change detection based on the visual transformers (ResViT) (Wu 
et al., 2020).  

8) Change detection on a spatial-spectral feature extraction network 
with patch attention module (PASSNet) (Ji et al., 2023). 

In addition, the patch size ω used in the comparison experiments of 
deep learning methods were settled as same as MIGCNet. 

3.3. Accuracy evaluation metrics 

To assess the performance of the proposed approach, six indicators 
are adopted for comparing the detection results with the ground truth: 
1) overall accuracy (OA); 2) kappa coefficient; 3) the missing alarm rate 
(MAR); 4) the false alarm rate (FAR); 5) intersection over union (IoU); 6) 
F1 Score. Furthermore, we calculated the mean intersection over union 
(MIoU), which is the average of individual IoU values. These metrics are 
obtained as follows: 

OA=
(N11 + N00)

(N11 + N00+N01 + N10)
(20)    

Fig. 9. Detection map on Dataset II by: (a) SVM, (b) MLP, (c) TSCNN, (d) DSMS-CN, (e) DCNN, (f) MixNet, (g) DSCNH (h) ResViT (i) PASSNet and (j) MIGCNet with 
multi-loss supervision (l = 30, ω = 9). (k) Ground truth. 
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MAR=
N01

(N01 + N11)
(22)  

FAR=
N10

(N10 + N00)
(23)  

IoU =
N11

(N11 + N10 + N01)
(24)  

Precision=
N11

(N11 + N10)
(25)  

Recall=
N11

(N11 + N01)
(26)  

F1 − score=
2 × Precision × Recall

Precision + Recall
(27)  

where N11 presents the count of correctly identified “changed” labels, 
N00 is the count of pixels correctly detected which are unchanged, N10 
represents the number of missed changed pixels; N01 is the number of 
pixels which are identified as changed in change map while are un
changed in ground reference; and N is the count of all labeled pixels. 

3.4. Experimental results 

Figs. 8–10 provide a visual representation of the results obtained 
across the three datasets. For Dataset I, the changed regions mainly 
comprise new constructions and high-complexity features. As shown in 
Fig. 8(a), the detection result obtained by SVM on Dataset I contains a 
considerable number of undetected pixels, which demonstrates the in
adequacy of the SVM classifier on multi-sensor images. In change 
detection, accurately labeling an area as unchanged is imperative, 
especially when covered by crops. However, change maps generated by 

Fig. 10. Detection map on Dataset III by: (a) SVM, (b) MLP, (c) TSCNN, (d) DSMS-CN, (e) DCNN, (f) MixNet, (g) DSCNH (h) ResViT (i) PASSNet and (j) MIGCNet with 
multi-loss supervision (ω = 9, l = 30). (k) Ground truth. 

Kappa=
N × (N11 + N00) − ((N11 + N10) × (N11 + N01) + (N01 + N00) × (N10+N00))

N2 − ((N11 + N10) × (N11 + N01) + (N01 + N00) ∗ (N10+N00))
(21)   
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MLP (Fig. 8(b)) and TSCNN (Fig. 8 (c)) exhibit a significant number of 
falsely detected pixels in the southwest of the image, corresponding to 
cultivated land. Additionally, in Fig. 8(h), there is a significant presence 
of misdetected pixels in the results of ResViT. Fig. 8(d) and (g) 
demonstrate that the siamese convolutional neural network (Siamese 
CNN) with multi-scale features outperforms in capturing both spatial 
and spectral information. Fig. 8(e) and (f) present the result maps of the 
traditional DCNN and MixNet, and it can be seen that the method 
combined with multi-scale convolution has a good performance which 
successfully restrains most of the salt-and-pepper noise. The detection 
performance of the PASSNet (Fig. 8(i)) is commendable; the transform- 
based method effectively captures differences between images without 
introducing confusion. However, it is noted that the detection result still 
falls short compared to the method employed in this study. 

The change area within Dataset II comprises new bare land, roads, 
and demolished buildings. In Fig. 9(a) and (b), the results from machine 
learning methods exhibit increased noise and simultaneous missed de
tections. This may be attributed to the lack of consideration for spatial 
context. In contrast, the block-based deep learning approach, illustrated 
in Fig. 9(c), (d), (e), and (f), successfully extracts features beneficial for 
the detection task. Among the transformer-based detection models, as 
depicted in Fig. 9 (h) and (i), the performance of PASSNet is better than 
that of ResViT. In our proposed model, multi-scale information is inte
grated into the fine-grained space, and a multi-loss supervised training 
approach is employed to enhance the consistent of the change result 
map with the ground truth. 

Similarly, MIGCNet also achieves superior results on Dataset III, 
where the change area primarily involves new buildings and vegetation 
reduction—a distinct scenario from the first two datasets. As shown in 

Fig. 10(a) and (b), there are many falsely detected pixels in the water 
area when employing SVM and MLP. Conversely, Fig. 10(f) and (g) 
showcase the adept detection of invariant information in the results 
obtained through the deep learning methods incorporating multi-scale 
features. Notably, the southern region of the data exhibits a tendency 
toward false detections illustrating in Figures (h) and (i), and the pro
posed method effectively mitigates this phenomenon. Furthermore, the 
segmented features significantly suppress salt-and-pepper noise within 
the image. 

On the quantitative analysis (i.e., Tables 3–5), MIGCNet obtained the 
superior results with the highest kappa values and OA, and the lowest 
MAR across all datasets. In the table, “C” and “U” represent the Inter
section over Union (IoU) for the changed and unchanged categories, 
respectively. 

MIGCNet outperform other counter parts, with the OA of 0.9419, 
0.9748, and 0.9780 on these three datasets, respectively. For Dataset I, 
MIGCNet surpasses TSCNN by 5.21% in OA and 31.02% in kappa. In 
comparison with DSMS-CN, MIGCNet achieves a 20% higher kappa and 
an OA 3.95% superior in Dataset II. Moving to Dataset III, MIGCNet’s OA 
surpasses neural network-based methods by over 2.41%, and its kappa is 
higher by 15.34% compared to DSMS-CN. Moving to Dataset II, MIGC
Net achieves a 20% higher kappa compared to DSM-CN, with an OA 
superior by 3.95%. On Dataset III, MIGCNet enhances OA by more than 
2.41% compared to neural network-based methods, and its kappa sur
passes DSM-CN by 15.34%. 

While MIGCNet may not achieve the lowest FAR on all three data
sets, its overall effectiveness stands out. Additionally, MIGCNet attains 
the highest mean intersection over union (mIoU) and F1-score across the 
three datasets. In summary, MIGCNet exhibits robustness and superior 

Table 3 
Quantitative analysis of the Different Approaches on Dataset I.  

Method SVM ANN DCNN DSCNH MixNet DSMS-CN TSCNN PASSNet ResVIT MIGCNet (ω = 11, l = 45) 

IoU C 0.1584 0.2481 0.4238 0.6124 0.6055 0.5650 0.2892 0.3888 0.2470 0.6269 
U 0.8888 0.8329 0.8454 0.9428 0.9321 0.9165 0.7939 0.8850 0.8087 0.9340 

MIoU 0.5236 0.5404 0.6346 0.7776 0.7688 0.7407 0.5416 0.6369 0.5279 0.7804 
F1-score 0.2735 0.3976 0.5953 0.7548 0.7544 0.7221 0.4486 0.5600 0.3962 0.7655 
OA 0.8803 0.8416 0.8783 0.9167 0.9138 0.8959 0.8898 0.8929 0.8200 0.9419 
Kappa 0.3167 0.3085 0.5074 0.6545 0.6436 0.4925 0.4201 0.4994 0.2978 0.7303 
MAR 0.5440 0.6523 0.5263 0.4114 0.4208 0.5122 0.5421 0.4789 0.6815 0.2551 
FAR 0.6729 0.5362 0.2697 0.1340 0.1419 0.2625 0.3130 0.3948 0.4754 0.1581  

Table 4 
Quantitative analysis of the Different Approaches on Dataset II.  

Method SVM ANN DCNN DSCNH MixNet DSMS-CN TSCNN PASSNet ResVIT MIGCNet (ω = 9, l = 30) 

IoU C 0.4687 0.4474 0.4621 0.6332 0.4793 0.4554 0.4684 0.4048 0.3317 0.6866 
U 0.9443 0.9344 0.9168 0.9663 0.9284 0.9316 0.9359 0.9234 0.9022 0.9721 

MIoU 0.7065 0.6909 0.6895 0.7997 0.7039 0.6933 0.7022 0.6641 0.6170 0.8294 
F1-score 0.6382 0.6182 0.6202 0.7754 0.6480 0.6255 0.6380 0.5763 0.4982 0.8142 
OA 0.9470 0.9378 0.9268 0.9335 0.9295 0.9353 0.9393 0.9272 0.9067 0.9748 
Kappa 0.6097 0.5850 0.5805 0.6124 0.6033 0.5913 0.6058 0.5378 0.4500 0.8067 
MAR 0.3817 0.4528 0.5094 0.4810 0.4982 0.4693 0.4468 0.5091 0.5970 0.1713 
FAR 0.3405 0.2895 0.1655 0.1425 0.1202 0.2385 0.2465 0.3021 0.3473 0.1880  

Table 5 
Quantitative analysis of the Different Approaches on Dataset III.  

Method SVM ANN DCNN DSCNH MixNet DSMS-CN TSCNN PASSNet ResVIT MIGCNet (ω = 9, l = 25) 

IoU C 0.3468 0.2702 0.4275 0.4995 0.4509 0.9482 0.3645 0.4383 0.3237 0.6048 
U 0.9571 0.9116 0.9508 0.9603 0.9534 0.4410 0.9526 0.9562 0.9296 0.9772 

MIoU 0.6520 0.5909 0.6892 0.7299 0.7021 0.6946 0.6585 0.6973 0.6267 0.7910 
F1-score 0.5150 0.4254 0.5989 0.6663 0.6215 0.6121 0.5343 0.6095 0.4891 0.7538 
OA 0.9581 0.9145 0.9491 0.9619 0.9524 0.9502 0.9539 0.9576 0.9319 0.9780 
Kappa 0.4932 0.3886 0.5692 0.6476 0.5983 0.5889 0.5107 0.5883 0.4579 0.7423 
MAR 0.5006 0.7041 0.5542 0.4740 0.5343 0.5457 0.5374 0.5034 0.6433 0.2912 
FAR 0.4683 0.2434 0.1139 0.0915 0.0696 0.0621 0.3676 0.2108 0.2221 0.1951  
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Fig. 11. Several presentations of the details of change detection results. Results generated by means of (a) fc3, (b) fc2, (c) fc1 (the final output of MIGCNet), (d) 
Reference map. 
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performance in the comparative experiments across the three datasets. 
The proposed method shows a superior detection capability in most 
evaluation indictors comparing with other advanced change detection 
methods, which demonstrated that the designed neural network struc
ture results in effective utilization of the multi-scale information, and 
the multi-loss supervision enhances the performance of the network. 

4. Discussion 

4.1. Validation of the multi-loss supervision 

The proposed method introduced multi-loss supervision in the 
training process after each feature fusion operation. To explore the effect 
of the multi-loss supervision, groups of results for the three datasets 
were selected for analysis. Fig. 11(a), (b), and (c) are the results pro
duced by fc3, fc2, and fc1, respectively, and (d) is the corresponding 
reference map. From Fig. 11, fc3 produces the poorest change results, 
which have broken boundaries and lower compactness. The results ob
tained by fc2 are somewhat better. The change maps generated by fc1 

shows the boundaries of the recognition results are becoming clearer 
and the internal compactness of the objects is improved. We also 
compared the results of the network without multi-loss supervision with 
those of the network with multi-loss supervision. 

Fig. 12 depicts the results obtained by the network with these two 

Fig. 12. Change detection results obtained on the three datasets by: (a) MIGCNet without multi-loss supervision, and (b) MIGCNet with multi-loss supervision. (c) 
Reference map. 

Table 6 
Quantitative results of the different training approaches.  

Dataset Method OA Kappa Commission Omission 

I − 0.9385 0.7196 0.3141 0.1620 
+ 0.9419 0.7303 0.2551 0.1581 

II − 0.9737 0.7987 0.1819 0.1897 
+ 0.9748 0.8067 0.1713 0.1880 

III − 0.9767 0.7273 0.3055 0.2094 
+ 0.9780 0.7423 0.2912 0.1951 

* − : MIGCNet without multi-loss supervision; +: MIGCNet with multi-loss su
pervision.  
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training approaches, and the corresponding accuracy evaluation is 
presented in Table 5. Fig. 12(a) presents the change maps produced by 
MIGCNet without multi-loss supervision (i.e., − ) on the three datasets, 
and Fig. 12(b) shows the results from MIGCNet with multi-loss super
vision (i.e., +). The accuracy of the results obtained without multi-loss 
supervision is generally lower. As is shown in Table 6, higher OA and 
kappa values are obtained by introducing the multi-loss supervision, and 
the values of the commission and omission are also reduced. The 
improvement in accuracy is most significant in Dataset I. The complex 
change categories and irregular change shapes are likely the main 
reason why the multi-loss supervision has a significant impact on 
Dataset I. This confirms that the multi-loss supervision is beneficial to 
the performance improvement of the MIGCNet. 

4.2. Influence of the patch size ω 

The image patches with free size is fed into the proposed MIGCNet. 
We have chosen four sizes of input patch, i.e., 7, 9, 11, and 13, for 
analyzing the influence of patch size on detection accuracy. Fig. 13 
illustrated the performance of the MIGCNet using different patch sizes 
are illustrated in Fig. 13. For Dataset I, the model with 11 patch size 
obtains the highest OA, where the commission is lower than for the other 
patch sizes. With the patch size 9, MIGCNet yields the best results on 

both Dataset II and Dataset III. 
In Dataset II, buildings contribute the most of changes. In other 

words, this dataset has relatively simple change categories and regular 
change shapes. As a result, input patch with large size may lead to too 
much spatial neighborhood information, resulting in a decrease of the 
accuracy. As shown in Fig. 13(a), the accuracy is significantly improved 
from patch size 7 to patch size 11 because of the complexity of the land 
surface in Dataset I. Compared with Dataset II, the change scenarios in 
Dataset I are more intricacy. For example, many buildings have been 
turned into bare land. The network is lack of sensitivity for change 
features based on the small patch size, which results in the detection 
flaw. Moreover, the situation of Dataset III is similar to that of Dataset II. 
Except that there is a large area of water coverage, the information of 
change areas is not as complex as that of Dataset I, thus small size will be 
more suitable on Dataset III. 

Fig. 13. Charts of the accuracy curves with different patch sizes on (a) Dataset I, (b) Dataset II, and (c) Dataset III.  

Table 7 
Quantitative results of the ablation experiments.  

Dataset Method OA Kappa Commission Omission mIoU F1 score 

I M-2 0.9348 0.6608 0.2689 0.3334 0.7323 0.6972 
M-1 0.9411 0.7204 0.2685 0.2027 0.7765 0.7245 
MIGCNet 0.9419 0.7303 0.2551 0.1581 0.7804 0.7655 

II M-2 0.9680 0.7436 0.1891 0.2835 0.7900 0.7607 
M-1 0.9691 0.7525 0.1720 0.2694 0.7931 0.7849 
MIGCNet 0.9748 0.8067 0.1713 0.1880 0.8294 0.8142 

III M-2 0.9328 0.5665 0.4379 0.2068 0.6323 0.4972 
M-1 0.9629 0.6935 0.3022 0.1955 0.7484 0.6047 
MIGCNet 0.9780 0.7423 0.2912 0.1951 0.7910 0.7538  

Table 8 
The comparison of Params and FLOPs for networks.  

Network #Params #FLOPs 

DSCNH 5.7M 0.46G 
MixNet 21.9M 0.54G 
TSCNN 20.4M 0.89G 
PASSNet 0.23M 18.35M 
ResVIT 1.06M 11.48M 
MIGCNet 9.7M 0.23G  

Table 9 
Running and testing time on each dataset.  

Network Time Dataset I Dataset II Dataset III 

DSCNH Train 498.26s 481.98s 495.21s 
Test 120.42s 121.57s 120.61s 

DCNN Train 821.92s 807.53s 903.01s 
Test 125.39s 136.01s 125.78s 

MixNet Train 308.50s 299.18s 321.71s 
Test 108.43s 115.24s 120.70s 

DSMS-CN Train 96.21s 107.19s 105.11s 
Test 107.66s 101.57s 104.01s 

TSCNN Train 384.20s 379.54s 391.08s 
Test 157.21s 151.09s 147.33s 

PASSNet Train 179.01s 176.25s 175.47s 
Test 50.99s 50.10s 55.02s 

ResViT Train 188.84s 195.65s 187.38s 
Test 90.71s 90.61s 95.83s 

MIGCNet Train 85.62s 89.86s 84.47s 
Test 102.26s 101.42s 102.83s  
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4.3. Ablation study 

To further validate the efficacy of the proposed modules, we per
formed ablation experiments by systematically removing one or two 
layers of MIGC blocks and scrutinizing their impact on model perfor
mance. Specifically, M-1 denotes the network configuration with one 
block of MIGC removed, while M-2 represents the network with two 
blocks of MIGC removed. As depicted in Table 7, the detection accuracy 
of the network with a single layer of MIGC module (i.e., M-1) surpasses 
that without the inclusion of the MIGC module (i.e., M-2), yet falls short 
of the performance achieved by the newly proposed network, i.e., 
MIGCNet. Further incorporation of MIGC block may lead to overfitting 
and increased computing resources. To trade off the accuracy and model 
complexity, we opted for a configuration with two layers of MIGC 
modules to build the current detection network. 

4.4. Model complexity and time efficiency 

In this section, we conducted supplementary experiments to compare 
the complexity, training time, and testing time of each deep learning 
model, as presented in Table 8 and Table 9, respectively. As indicated in 
Table 8, we calculated the floating-point operations (FLOPs) and 
parameter size (Params) to assess the model complexity of each model. 
While the number of parameters in MIGCNet is relatively modest, it still 
surpasses that of DSCNH and TSCNN. Notably, PASSNet involves a 
relatively lower count of FLOPs, whereas TSCNN has the highest number 
of it. MIGCNet demonstrates a moderate performance in terms of FLOPs. 
It is evident that MIGCNet shows a balanced performance compared to 
other models, considering both the Params and FLOPs. This could 
explain its relatively efficient performance while demanding fewer 
computational resources. 

As indicated in Table 9, MIGCNet demonstrates a significant 

superiority over MixNet with TSCNN during the training phase, mani
festing a notably reduced training time. In the testing phase, our pro
posed method also exhibits exceptional efficiency, showing a time 
reduction of approximately 18s compared to DSCNH. In a holistic 
assessment, the change detection model should not only prioritize model 
efficiency but also consider accuracy and robustness as important in
dicators. The proposed research has yielded optimal results on three 
distinct datasets with a comprehensive evaluation that accounts for 
time, complexity, and accuracy. 

4.5. Robustness study 

To assess the robustness of our proposed model, we incorporate a 
publicly available dataset, namely the SZTAKI Air Change benchmark 
(Benedek and Szirányi, 2008), for our research. This dataset comprises 
images with a resolution of 1.5 m/pixel and dimensions of 952 × 640. 
Furthermore, we have selected two sets of images for experimentation, 
and the true color image and ground truth of the datasets are shown in 
Fig. 14. 

Tables 10 and 11 present the detection accuracy of various algo
rithms applied to those datasets, and the detection maps are shown in 
Figs. 15 and 16. Examining both the result figures and the accuracy 
evaluation table, our method consistently outperforms on the public 
datasets, underscoring the robustness inherent in the proposed 
approach. Specifically, when applied to datasets A and B, MIGCNet ex
cels in accurately detecting change regions and exhibits a strong capa
bility to effectively suppress noise. These results affirm the resilience 
and efficacy of our proposed method in various scenarios. 

5. Conclusion 

MIGCNet has been proposed as a supervised change detection 

Fig. 14. The image and the corresponding labeled maps for the two datasets.  

Table 10 
Quantitative analysis of the Different Approaches on Dataset A.  

Method SVM ANN DCNN DSCNH MixNet DSMS-CN TSCNN PASSNet ResVIT MIGCNet 

IoU C 0.3267 0.2932 0.3841 0.3304 0.3521 0.2864 0.2722 0.4491 0.3380 0.4601 
U 0.9266 0.9112 0.9493 0.8933 0.9019 0.8819 0.8536 0.9310 0.8976 0.9281 

MIoU 0.6266 0.6022 0.6667 0.6119 0.6270 0.5841 0.5629 0.6900 0.6178 0.6991 
F1-score 0.4925 0.4534 0.5551 0.4967 0.5208 0.4452 0.4279 0.6198 0.5052 0.6302 
OA 0.9291 0.9144 0.9507 0.8987 0.9069 0.8872 0.8612 0.9346 0.9026 0.9412 
Kappa 0.4556 0.4104 0.5291 0.4516 0.4785 0.3952 0.3727 0.5882 0.4612 0.6008 
MAR 0.5798 0.6407 0.4178 0.6515 0.6293 0.6889 0.7191 0.5330 0.6422 0.4950 
FAR 0.4048 0.3854 0.4696 0.1346 0.1242 0.2168 0.1013 0.0782 0.1400 0.1326  
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network in this work, which takes multiple kernel sizes into account in 
the establishment of the CNN. The proposed MIGC module, which is 
based on mixed convolution and interleaved group convolution, was 
found to be of learning the effective multiscale features. MIGCNet was 
also found to be capable of being applied to tackle with multi-sensor 
images. Meanwhile, we conduct the multi-loss supervision to over
come the problem of insufficient training. The results obtained for the 
three multi-sensor datasets demonstrated that the MIGCNet is superi
ority compared with the mainstream methods. The introduction of 
multi-loss supervision can improve the performance of MIGCNet. 
Although the proposed MIGCNet has obtained satisfactory results, still 
there are some limitations requiring more attention in future. 

1) Firstly, although the model has obtained a certain degree of practi
cality, there are still some defects for the large-scale remote sensing 
image. Therefore, in the future, we need to consider how to combine 
the new model to carry out efficient and low-cost network learning of 
remote sensing big data.  

2) Secondly, supervised learning is easily affected by the difficulty of 
the sample acquisition and the insufficient number of samples. The 

sample imbalance problem also poses a great challenge during the 
application of supervised learning. The unsupervised representation 
learning methods will also be considered during the detection 
process.  

3) Moreover, our feature work is to extend the change detection 
framework to more types of heterogeneous images, such as SAR and 
optical images. 
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