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Abstract—Urban change detection is crucial for informed 
decision-making but faces various challenges, including complex 
features, rapid changes, and extensive human interventions. These 
challenges underscore the urgent need for innovative multi-class 
change detection (MCD) techniques that extensively incorporate 
deep learning. Despite several successes achieved with the deep 
learning based MCD methods, still certain shortcomings persist, 
including the disregard for spatial principles, which significantly 
hinders the seamless integration of geoscience-knowledge and 
artificial-intelligence. In this paper, a novel deep learning model 
known as the Position-aware Graph-CNN Fusion Network 
(PGCFN) is introduced, integrating spatial position encoding to 
effectively detect urban changes. The model’s first part encodes 
geospatial positions following Tobler’s first law of geography. It 
then integrates encoded positions into a multi-class change 
detection model, combining a graph attention network with a 
convolutional neural network to enhance performance. The model 
was tested on 0.5-meter resolution remote sensing images, 
achieving an impressive minimum Mean Intersection over Union 
(MIoU) score of 91.20%. Additionally, the model’s position-aware 
graph attention module exhibited a strong emphasis on 
geographic-proximity when evaluating connections between 
superpixels. Overall, these findings affirm that our model could 
effectively addresses urban change detection challenges and 
significantly enhances the integration of geoscience knowledge and 
artificial intelligence. 
 
Index Terms—Geospatial artificial intelligence, multi-class change 
detection, graph attention network, position information encoding, 
urban changes. 

I. INTRODUCTION 
emote sensing image change detection plays a pivotal 
role in the field of geospatial artificial intelligence 
(GeoAI)[1]. It involves the technology of identifying 

and analyzing alterations occurring among geographical 
features within a same geographic area between different time 
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periods [2-4]. Over recent decades, the field of change detection 
(CD) has evolved and developed into a widely researched and 
applied area, influencing domains such as natural resource 
management, urban planning and disaster monitoring [5-7]. 

The continuous advancement of artificial satellite technology 
and sensor capabilities has enabled the rapid acquisition of 
extensive remote sensing imagery data, providing robust 
support for dynamic land cover change analysis [8]. Spatial 
resolutions in optical remote sensing images have significantly 
improved from hundreds or tens of meters in the past (such as 
MODIS and Landsat series satellites) to the current meter and 
sub-meter levels (such as GaoFen-2 satellite) [9, 10]. Although 
high-resolution images contain rich spatial structures and more 
refined texture and morphological information, they also suffer 
from increased noise due to excessive spatial resolution [11]. 
Additionally, a substantial amount of original data remains 
incorrectly labeled, presenting a significant challenge for 
subsequent interpretation and application of remote sensing 
images [12, 13]. Early binary change detection (BCD) methods 
were focused on to detecting changes and unchanged areas 
between dual-temporal images but faced practical 
implementation problems. In recent years, multi-class change 
detection (MCD), capable of distinguishing different change 
categories, has emerged as a prominent area of academic 
research [14]. One straightforward approach to MCD involves 
classifying images from different times individually, and then 
comparing those classifications to generate multi-class change 
maps, commonly known as post classification method (PCC) 
[15]. However, this method often suffers from low detection 
accuracy due to error accumulation. Another strategy is the 
direct classification method (DC), which is the opposite of the 
PCC method [2]. DC regards MCD as a multi temporal image 
classification task, directly classifying the processed multi 
temporal images, where each change type is considered as a 
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separate class. Compared with PCC, DC achieves higher 
detection accuracy as it doesn’t accumulate errors. However, it 
requires a substantial number of manually labeled samples of 
various changes, which increases the complexity of 
classification to some extent. 

Currently, deep learning (DL)-based methods have seen 
efficient use in various fields, such as image semantic 
segmentation [16], object detection [17, 18], and change 
detection [19, 20]. Similar to traditional methods, DL-based 
MCD methods can also be categorized into PCC and DC [21]. 
These methods typically employ semantic segmentation 
techniques combined with various neural networks for 
classification, with convolutional neural networks (CNNs) and 
their variants being the most prevalent choices [22-24]. MCD 
models typically use dual temporal images as inputs, with each 
pixel assigned a unique semantic change label. The latest 
representative deep learning network frameworks used for 
MCD are dual branch network frameworks like ReCNN [25], 
Bi-SRNet [26], and Y-Net [27]. In addition to CNNs, graph 
neural networks (GNNs) with their unique graph-based 
structure, are suitable for analyzing geographical data, as they 
can handle irregular shapes. One limitation of existing GNN-
based models is their uniform treatment of relations and 
reliance on fixed network parameters, often overlooking 
valuable information carried by individual relations. The 
literature revels that this challenge could be solved with another 
graph-based network called the graph attention network (GAT). 
With GAT, each node in the graph can be assigned varying 
weights based on the attributes of its neighboring nodes, and 
these weights are updated iteratively. This attention mechanism 
enhances the model’s ability to capture spatial information 
relevance. Consequently, various variants of GNNs has 
garnered increasing attention in the domain of MCD [20].  

Despite the promising future, there are still several common 
issues in the design of deep learning models, including the 
neglect of domain knowledge, practical experience, and 
established scientific principles such as Tobler's First Law of 
Geography (TFL) [28-30]. In geography, the concept of spatial 
regularity demonstrated with the Tobler's First Law (TFL) 
remains steadfast in any research pertaining to spatial and 
locational analysis: “Everything is related to everything else, 
but near things are more related than distant things.”. TFL has 
provided valuable guidance in the development of specific 
methods, such as the Geographically Weighted Regression 
model (GWR). Additionally, concepts like spatial 
autocorrelation and edge features have been integrated as prior 
geographic spatial knowledge within deep learning models, 
particularly in the context of weak supervision terrain detection 
[30]. Li et al. [31] introduced the notion of classification-based 
reasoning, which involves improving the classification outputs 
of deep learning modules through the utilization of ontological 
reasoning rules. This approach enhances the model’s ability to 
distinguish objects with spatial similarities in remote sensing 
images. Taken together, the theories and methods developed to-
date expand current deep learning techniques to incorporate 
spatially explicit models and, in that way, they are enhancing 

the adaptability of artificial intelligence in geospatial domains 
while also improving interpretability. However, their explicit 
utilization in multi-class change detection remains unexplored. 

In this study, we focus on the powerful synergy between deep 
learning and geospatial knowledge to advance multi-class 
change detection model by incorporating fundamental spatial 
theories. Specifically, we introduce a novel supervised learning 
MCD framework called the Position-aware Graph-CNN Fusion 
Network (PGCFN), leveraging a graph attention network 
within the context of spatial distance perception. This study 
develops a position information encoding mechanism that 
employs the graph attention network to simulate diverse spatial 
distance relationships among objects. Furthermore, we enhance 
the graph by incorporating relative spatial distance information 
into its edges through spatial information encoding. To improve 
the overall performance of the detection model, we use a pixel-
superpixel mapping matrix to facilitate seamless feature 
propagation between image pixels and graph nodes. This 
enables our model to learn feature information at various scales. 
Lastly, we implement our proposed model to appreciate its 
applicability and accuracy using high-resolution satellite 
imagery. The key contributions associated with the 
development of the PGCFN are as follows: 

 
1) We propose a novel position information encoding 

mechanism by combing the order matrix and the two-
dimensional spatial distance between superpixels. The 
order matrix consists of the k-order adjacent relations 
between graph nodes; 

2) We present a new graph attention model incorporating 
spatial position information (P-GAT) to autonomously 
learn spatial relations of objects under the guidance of 
spatial knowledge; 

3) The incorporation of position encoding into the model 
enhances its ability to attain a more intricate and 
specific understanding of the geospatial structure. This 
refinement proves beneficial in optimizing the overall 
performance of the model. 

 
The rest of this paper is organized as follows: first, we 

present an overview of the current state of research in MCD. 
Then, we delve into the integration of spatial position 
information into our model design, followed by a detailed 
explanation of our approach. Finally, we outline the 
experimental setup and results, and engage in a discussion of 
potential directions for future research. 

 

II. RELATED WORK 
As our research primarily focuses on amalgamating spatial 

principle with deep learning models via the development of 
novel GNN structures, we will provide a concise overview of 
deep learning-based MCD and the integration of geospatial 
knowledge and deep learning models. 
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A. Deep learning-based change detection 

With the development of deep learning theory, methods 
based on deep learning are gradually being applied to BCD and 
MCD tasks. Early deep learning methods were mainly based on 
the PCC method that often uses different semantic 
segmentation deep learning networks for classification. After 
classification, multiple variations were obtained through 
comparison. The deep research of direct classification methods 
obtains not only changes and non-changes of urban land cover 
through threshold segmentation, but also subdivides their 
observed phenomena into various categories through clustering 
and classification [21]. Convolutional neural networks are 
widely used in CD tasks, owing to their capacity to directly 
segment multiple temporal images and to model dynamic 
information by combining and transforming various temporal 
features through stacked convolutional layers. Daudt et al. [2] 
proposed a multi-task framework that includes a fully 
convolutional network for BCD, in addition to a fully 
convolutional network branch for classification. Ding et al. [26] 
designed a dual-temporal semantic reasoning network to infer 
the semantic correlation between single-temporal and cross-
temporal phases, and employed a novel loss function to enhance 
the semantic consistency of change detection outcomes. 
Recently, the foundation model has garnered significant 
attention. In [32], a remote sensing foundation model for 
spectral data was introduced. This model incorporated 
convolution operations and possessed the capability to learn 
intrinsic knowledge representations, thereby offering valuable 
insights for comprehending various downstream applications in 
remote sensing, notably in the domain of change detection. 

These CD models typically take dual temporal images as 
input and subsequently generate pixel wise “from-to” change 
maps, wherein each pixel is associated with a distinct encoded 
semantic change label [19, 33]. Although existing methods 
based on CNNs have been proven to provide effective results in 
many cases, there are still some limitations. Specifically, 
ground objects in remote sensing images often have multiple 
scales and shapes, while the convolution kernel in CNNs 
primarily conduct convolutions within regular rectangular 
regions, making it difficult to comprehensively capture internal 
correlations between adjacent objects [34]. Recently, graph 
convolutional networks (GCNs), as an extension of GNNs, 
have received an increasing attention owing to their ability to 
perform convolution operations on graphs with arbitrary 
structures. GCNs exhibit a unique graph-based structure, 
enabling them to break the constraints of regular shapes, 
making them suitable for application in geographic data 
analysis. 

Saha et al. [35], for instance, utilized GNN to improve 
change detection performance and proposed a new graph 
construction method to process segmented objects into graph 
representations that can be processed by GCN to optimize their 
loss functions on labeled objects only. The iterative training 
method helps to propagate label information from labeled nodes 
to unlabeled nodes, thereby detecting changes in unlabeled 
data. Another study by Zhou et al. [20] applied graph 

convolution to the MCD task and designed a Siamese graph 
convolutional network (SIGNet) inspired by twin-structure. It 
employed the cross-attention mechanism to establish semantic 
connections with the category information within the dataset 
during spatial relationship reasoning. The recent study by Liu 
et al. [36], has demonstrated that the integration of CNN and 
GCN can effectively capture spatial topological relationships, 
thereby enhancing the robustness of image classification 
models. 

With the increasing complexity of algorithms, researchers 
are increasingly pushing for the development of larger deep 
learning models, which stems from the desire to improve 
accuracy and performance for more complex prediction tasks. 
However, the neglect of inherent spatial laws often occurs in 
the process of DL model design, hindering further research on 
the interpretability of DL models. The focus of many DL 
models in the MCD tasks is to design network structure to 
enhance the transmission of information between semantic 
features and corresponding labels. In contrast, our work 
considers the guiding role of geographic spatial principle in 
model design, aiming to improve detection accuracy while 
simultaneously investigating the potential impact of spatial 
principle on deep learning models. 

B. Geospatial analysis method with deep learning  
Geography provides a unified perspective for 

comprehending the world and society, guided by well-
established theories such as the Tobler’s first law (TFL) [37]. It 
suggests that objects or phenomena that are geographically 
close to each other are more likely to be similar or have spatial 
relationship compared to objects that are farther apart. TFL has 
played a pivotal role in shaping the design of certain spatial 
techniques, such as geographic weighted regression (GWR), 
which is a localized linear regression method rooted in 
modeling spatial change relationships. Similar ideas these days 
have been employed with deep learning to produce different 
robust results. As a subset of artificial intelligence (AI), deep 
learning represents a significant advancement of models from 
shallow to deep architectures, allowing complex patterns to be 
modeled and extracted by utilizing artificial neural networks. 

The integration of AI and geospatial reasoning can amplify 
the interpretability of models and facilitate a more contextually 
suitable adaptation of AI to the geospatial domain [1, 38]. 
Knowledge and spatial principles from the geospatial domain 
have been explored to provide guidance in crafting more 
effective deep learning models. Research, such as of the Julian 
et al. [39], combines artificial neural networks and geographical 
weighting method to model spatial heterogeneous relationships. 
By incorporating geographically weighted learning into the 
neural network, models learn parameters that vary based on 
location, rather than assuming a uniform value. Based on the 
principle of TFL, Li et al. [30] transformed two-dimensional 
images into one-dimensional sequence data, preserving the 
inherent spatial continuity of the original data. Subsequently, 
they developed an enhanced LSTM model capable for 
processing 1D sequences and object localization. Unlike the 
general object detection models, this method does not need 
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bounding box labels. 

Images, especially remote sensing or geospatial images, 
often exhibit spatial autocorrelation, meaning that nearby pixels 
or regions in the image are more likely to have similar values 
or characteristics than those farther apart. In computer vision 
tasks like object detection and image segmentation, 
understanding spatial relationships between objects or regions 
within an image is crucial. With the integration of geospatial 
knowledge and spatial principles, models can comprehend 
intrinsic spatial relationships among ground objects to construct 
a more efficient deep learning model, thereby advancing the 
field of interpretability research. Nevertheless, at present, there 
are few related studies about geospatial-aware deep learning in 
the domain of MCD on remote sensing images. 

III. MATERIALS AND METHOD  
Essentially, Tobler’s First Law serves as a perfect description 

of spatial autocorrelation, which highlights internal 
relationships between geographical entities. There is a close 
relationship between spatial distance and internal relationships 
between entities. How to deeply integrate spatial theory and 
laws is a key aspect of our proposed model design. In this 
section, we introduce a position-aware graph attention module 
to address the multi-class change detection task, designed in 
alignment with Tobler’s First Law. 

A. Position information encoding 
Unlike general graphs, such as social network data and 

recommendation systems, geospatial graph data has a special 
spatial structure (two-dimensional or three-dimensional). This 
may have an impact on the interactions between geographical 
entities. The ability to learn this spatial structure and position 
information is crucial for exploring the interpretability of 
models. To better integrate geospatial information and 
topological structure of ground objects, a novel position-aware 
graph attention module was designed. 

First it is important to clarify the construction method of the 
graph. Although the nodes in the graph can be represented by 
image pixels, this will result in a huge graph and the calculation 
will be difficult. To take full advantage of the learning power 
of GNNs, a common approach is to segment the image into 
larger parts, which are often referred to as superpixels. Each 
superpixel is treated as a node within the graph, and the 

connections between these superpixels depict their interactions. 
This segmentation process serves to diminish the graph's scale, 
rendering calculations and learning procedures more efficient. 
To begin with, we employed SLIC [40] to partition the image 
into superpixels, representing the objects in the image. In our 
study, two temporal images were segmented separately and 
merged to obtain a set of superpixels, i.e., { } 1

N

i i
S S

=
= , where iS  

represents the i-th superpixel, with N being the number of 
superpixels. Like Liu et al. [36], we represented each superpixel 
with its centroid as a node. Finally, the image was transformed 
into an undirected graph ( , )G ν ε=  by creating adjacency 
relationships among superpixels, where ν  and ε  represent 
nodes and edges, respectively. 

In the field of natural language processing, position encoding 
plays a vital role by assigning vectors that represent the 
positional information of elements within sequential data. 
Spatial distances carry distinct meanings in correlation with 
ground objects, and positional encoding can be employed to 
represent the spatial distance between objects in geographic 
space. This encoding method offers contextual information 
within neural networks, enabling the network to discern the 
significance of inputs originating from diverse locations. 

In our study, the positions of the ground object were defined 
in terms of 2D coordinates firstly, forming an initial position 
matrix   2NR ×∈I , where N represents the number of ground 
objects. Considering the variability of artificially defined 
coordinates, we transformed I into a relative spatial matrix, 
namely the distance matrix N NR ×∈D . Among them, the 
adjacency of ground objects is one of the important properties 
in graphs, and subgraphs of k-th order allow to observe the 
relevance of ground objects from different levels. As depicted 
in the Fig. 1(c), for any given node n, there exists a set 
consisting of N-1 nodes, where the nodes in this set share a k-th 
order adjacency relationship with node n. Based on this 
premise, we constructed the order matrix N NZ ×∈K . From (1), 
the order was converted into a part of the distance parameter, 
resulting in a position relationship matrix N NR ×′∈D . 

 11/ ( ), ,1,

r
i j i j

i j
′ = ∗

+
D D

K
                       (1) 

where r is the exponent determining the rate of weight decay with 
distance. To represent spatial information, the scalar distance was 

  
 

(a) (b) (c) 
Fig. 1. Visual illustration of the k-th order neighborhood in graph. (a) An example of ground objects. (b) Simple neighborhood. (c) Order matrix. 
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divided into l components, and this information was encoded by 
utilizing a one-hot encoder, resulting in a multi-dimensional 
relational matrix N N lZ × ×∈P . Illustrated in Fig. 2, we partitioned 
the neighbors of 1a  into three different spatial relations, i.e. l = 
3. Subsequently, a learnable linear transformation was employed 
to obtain the position embedding ,

R
i jD  for each node. 

 . ,
R
i j p i j=D W P                                    (2) 

where d l
p R ×∈W  represents a weight matrix learned by the 

network. Next, we integrated the position embedding into the 
graph attention layer at the node-level. 
 

 
Fig. 2. Spatial position encoding. 

B. Position-aware graph attention network 
The attention mechanism was originally developed for natural 

language processing and has been used in a wide range of 
different applications. In RS image processing based on deep 
learning, attention mechanism is typically employed on particular 
feature layers or a specific region of an image [41]. Previous 
studies have provided evidence of the favorable influence of the 
attention mechanism on the performance of deep learning 
methods in RS image processing [42]. According to TFL, it 
points out that nearby objects exhibit stronger correlations with 
each other, and the attention mechanism can be guided to 
facilitate the model in autonomously learning the spatial 
relationships among these objects. The core concept of the graph 
attention network is to assign an attention weight to each node, 
guiding the propagation and aggregation of information [43]. 
Here, we introduce the building block layers for constructing the 
distance-aware graph attention network module, starting with the 
description of a single graph attention layer as follows. 

Given N node features { }1 2, , , , F
N ih h h h R= ∈

   

h , where F 

represents the feature numbers in each node. As an initial step, 
the node features are first dimensionally extended through a 
shared parameter matrix, F FR ′×∈W . We propose the position-
aware attention to learn the weight among multi-relation objects. 
The importance of node j towards node i can be formulated as, 

( ), ., T R
i j i j i j i je atten h h h h 

 
 

= = a W W D                (3) 

where ∥  represents the concatenation operation, and a shared 

attention mechanism F FR ′ ′×∈a is applied to map the 
concatenated high-dimensional features into real numbers. Then 
the softmax function is used for normalization: 

,
. ,

,

( )
( ) =

i

i j
i j i j

i k
k

exp e
softmax e

e
α

∈

=
∑

Ν

                      (4) 

where iΝ  is the first-order neighbors of node i in the graph. The 
LeakyReLU nonlinearity is applied as the activation function. 
When expanded completely, the coefficients computed by the 
attention mechanism can be expressed as: 

.

,

.

(LeakyReLU( ))

(LeakyReLU( ))
i

T R
i j i j

i j T R
i k i k

k

exp h h

exp h h
α

∈

 
 ∈

 
 ∑

 

 

a W W D

a W W D
Ν

         (5) 

Once obtained, the normalized attention coefficient is utilized 
to calculate the linear combination of corresponding features. 
After that, a nonlinearity σ is applied to obtain the final output 
feature of each node. 

,( )
i

i i j j
j

h hσ α
∈

′ = ∑
 

W
Ν

                            (6) 

To enhance stability of the attention-based learning process, a 
multi-head attention is similarly employed as by [43] to 
extending our mechanism. Here, K independent attention 
mechanisms are employed to execute the transformation outlined 
in (6), and then connect their features to produce the following 
output feature representation: 

1 ,( )
i

K k k
i k i j j

j
h hσ α=

∈

′ = ∑
 

W
Ν

                       (7) 

where ∥  denotes concatenation, ,
k
i jα  represents the normalized 

attention coefficients calculated by the k-th position-aware 
attention mechanism, and kW  is the weight matrix associated 
with the corresponding input.  

By using a specially designed position-aware attention 
mechanism, all relevant neighbors of each node were aggregated, 
so that the combination of position representations contained 
necessary spatial and topological information. Notably, position 
information encoding in this study intentionally injected 
geospatial information into the deep learning model. The primary 
goal is to enhance the model's understanding of geographic 
location and spatial relationships, making it more suitable for 
geospatial analysis tasks. Based on the design of the distance-
aware attention layer, a change detection model was designed.  

C. Multi-class change detection model architecture  
Based on the position-aware graph attention module (P-

GAT), a deep learning network for multi-class change detection 
is proposed with high-resolution images, as shown in Fig. 3. 
Integrating CNNs and GNNs will serve to enhance and enrich 
each other's respective strengths, therefore, our detection model 
integrated CNN and P-GAT for pixel-level and object-level 
feature fusion using an association matrix.  

We represent the concatenated bi-temporal remote sensing 
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(RS) images as ( , , ) ( , , )
1 2( , )h w c h w c=X X X , where ( , , )

1
h w cX  and 

( , , )
2

h w cX  correspond to the images captured at two different time 
points, each having dimensions (h, w, c). In this notation, h 
represents height, w represents width, and c represents the 
channel size. 

As shown in Fig. 3, the pixel-level convolutional network 
(SCNN) designed is composed of two parallel multi-layer 
convolutional modules. Each stream consists of three groups of 
conventional convolutions. In each group, there are two 
convolutional layers to transform the original space and spectral 
features into the high-dimensional feature space. After 
progressive abstraction through stacked convolutional layers, 
the deepest layer in streams T1 and T2 captures compact local 
information. The pixel-level difference features are then 
obtained through a difference operation. Let pixelH  represents 
the output feature map after SCNN and we can express it as: 

1 2( , )pixelH Scnn= X X                         (8) 
Utilizing position-aware attention, we constructed a spatial 

position guided attention module based on superpixels. This 
module is integrated into a two-layer P-GAT model.  The first 
layer comprises four attention heads, while the second layer is 
dedicated to feature combination and classification, employing 

a single attention head, followed by an exponential linear unit 
(ELU) nonlinearity. The output feature after P-GAT, denoted 
as objectH  is: 

( )objectH Pgat= X                              (9) 
After the segmentation, N superpixels are obtained.

{ } 1

N
i iS S

=
=  is the superpixel set, { }

1

Ni
i j j

S x
=

=  denotes the i-th 

superpixel, and i
jx  represents the j-th pixel in i-th superpixel. 

Firstly, let Q be the association matrix between pixels and 
superpixels, as shown in (10). 

,

0,  
ˆ1,   i j

i j

otherwise

if S
= 

∈
Q

X
                           (10) 

ˆ ( )flatten=X X                               (11) 

where ˆ
iX  is the i-th pixel in X, flatten (∙) is flattening data 

according to spatial dimensions. Next, we can quickly encode 
and decode the image into graph nodes through matrix 
operations by (12) and (13), respectively. 

ˆ( )T Tflatten= =V Q X Q X                     (12) 
( )reshape′ =X QV                             (13) 

 
Fig. 3. Illustration of the proposed PGCFN model. 
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where V is the feature vector of the graph nodes, and reshape 
(∙) function is applied to restore the spatial dimension of the 
flattened data. After completing the decoding process, the 
graphic features can be projected back into the image space[36].  

Our method defines two subnetworks, SCNN and P-GAT. 
Specifically, SCNN is responsible for extracting dual-branch 
difference features and local spectral spatial features at the pixel 
level. On the other hand, P-GAT is employed to learn data 
representation related to objects and position features, thereby 
generating superpixel features. Ultimately, these two different 
levels of integrated and utilized for change detection. The entire 
feature fusion process can be expressed as: 

1 2( ( ( ( )))) ( , )T
map reshape Pgat flatten Scnn=F Q Q X X X (14) 

Finally, to generate the probability for each change class on 
each pixel, a softmax classifier is employed to classify the 
feature map mapF . As a result, the final change detection map Y 
is defined as 

( ( ))mapsoftmax Linear=Y F                    (15) 
where Linear(ꞏ) denotes a fully connected layer, and softmax(ꞏ) 
is a softmax classifier. 

IV. EXPERIMENTAL RESULTS  

A. Dataset description 
This study conducted an experiment to appreciate our designed 

model using high-resolution satellite images taken in Pudong New 
Area, Shanghai, China (Fig. 4). The acquisition times of the two 
SuperView-1 (SV-1) images were in October 2018 and November 
2021, respectively, with a spatial resolution of 0.5 meters. Both sets 

of data have an image size of 1000*1000 pixels, consisting of four 
bands: blue, green, red, and near-infrared. For land cover 
classification tailored to the specific conditions of the experimental 
area, we designed a system with five categories: built-up areas 
(including residential, commercial, industrial and service zones, 
roads, and other mixed development zones), water (including 
rivers, streams, ponds, and lakes), farmland (including agricultural 
fields, planting greenhouse, orchards, and fallow lands), green land 
(including forests, shrubs, lawns, mixed wooded areas, etc.), and 
bare land (including undeveloped lands, exposed soils and unused 
lands). 

The first dataset comprises 11 change categories, of which the 
top three categories are the change of Farmland to Built-up areas, 
Water, and Green land to Built-up areas. Notably, the category 
with the largest proportion has 75,318 pixels, while the category 
with the smallest proportion of Built-up areas to Water contains 
only 920 pixels, highlighting a significant class imbalance. The 
second dataset contains four types of changes, namely, Green land 
to Built-up areas and Water, and Built-up areas to Water and Green 
land, respectively. Remarkably, the pixel counts for all categories 
are evenly distributed. The last dataset comprises five distinct 
change categories: change from Bare land to Water and Green 
land, from Water to Green land and Bare land, and from Farmland 
to Bare land. Among them, the change from Farmland to Bare land 
is only 1,646 pixels, accounting for the smallest proportion. There 
are 59,817 pixels from Water to Green land, accounting for the 
largest proportion. Importantly, these three datasets do not share 
identical change information, and the proportion of each type 
varies significantly, highlighting the challenges associated with 
MCD. Fig. 5 shows the true-color images and reference change 
maps for the three datasets.  

 
Fig. 4. Illustration of the study area. 
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B. Benchmark methods  
To fairly evaluate the proposed method, the DSCNH [9], 

DDSCN [44], CEGCN [36] and GAT-CNN fusion network 
(GCFN) were selected to conduct compared experiments.  

DSCNH serves as a representative binary change detection 
method, incorporating multi-scale feature modules for change 
detection based on pixels. In this context, the model's output was 
modified to produce change category labels.  

DDSCN is an end-to-end model designed for large-sample 
input, utilizing depth-separable convolution [45] and the U-Net 
[46] structure, and stands as a representative model for aerial image 
change detection. For model training, we extracted 1/4 of the 
regions from each dataset to construct the training data with a 
sample size of 112×112, while the remaining regions were utilized 
to create the test data. Ultimately, we obtained 1000 training image 
pairs, each sized 112×112. 

CEGCN, initially designed for image classification, is 
introduced for feature propagation between image pixels and graph 
nodes, effectively addressing the challenge of data structure 

disparities between CNN and GCN, thus enabling them to 
collaborate seamlessly within a single network. To best of our 
understanding this model is firstly introduced into the domain of 
multi-class change detection with this study to integrate feature 
propagations between CNN and GAT. We have selected CEGCN 
as a comparative benchmark to validate the efficacy of 
incorporating the attention mechanism in this context.  

Furthermore, we have replaced the P-GAT component of the 
method of this paper with the traditional Graph Attention Network 
(GAT) [43] to create GCFN serving as a second comparative test 
to discuss the influence of geospatial knowledge on deep learning 
models. 

C. Accuracy evaluation metrics 
In addition to the commonly used metrics like overall accuracy 

(OA), kappa coefficient (KPP) and average accuracy (AA), we 
introduce another additional metrics for MCD, i.e., Intersection 
over Union (IoU). Furthermore, we calculate the Mean Intersection 
over Union (MIoU), which is the average of individual IoU values. 

Ⅰ 

    

Ⅱ 

    

Ⅲ 

    
 (a) (b) (c) 

Fig. 5. True-color images and ground truth maps for the three datasets. (a) T1 image. (b) T2 image. (c) Ground truth (GT). 
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Thus, we employ a total of four accuracy evaluation metrics in this 
section. Their definitions are as follows: 

TP PNOA
TP TN FN FP

+
=

+ + +
                       (16) 

( ) /AA sum recall n=                               (17) 
TPrecall

TP FN
=

+
                               (18) 

 TPIOU
TP FP FN

=
+ +

                         (19) 

1
OA PeKPP

Pe
−

=
−

                             (20) 

2

( ) ( ) ( ) ( )
( )

TP FP TP FN TN FN TN FPPe
TP TN FP FN

+ × + + + × +
=

+ + +
  (21) 

where TP indicates the number of positive examples classified 
accurately, FP is the number of actual negative examples 
classified as positive, FN means the number of actual positive 
examples classified as negative, and TN shows the number of 
negative examples classified accurately. 

D. Implementation details 
The segmentation scales are set as 800, 1500, and 1300 for 

the three datasets, respectively, and the number of components 
l is fixed to 25. For model training and validation, a random 
selection of 3% and 3% of samples per class is drawn from each 
of the three datasets. The experiments were conducted on an 
RTX-3080 GPU. We employed the Adam optimizer [47] with 
a learning rate of 0.0005 to train our network. Each experiment 
was repeated ten times, and the reported results represent the 
mean and standard deviation of each accuracy evaluation 
metric. It's important to note that all baseline methods were 
configured with hyperparameters as recommended in their 
respective original papers. 

E. Experiments results 
The result maps generated by these methods are illustrated in 

Fig. 6, and change detection accuracies are detailed in Tables 
Ⅰ–Ⅲ. In-depth analysis of the detection results obtained through 
different methods is shown in Figs. 7-9.  

Fig. 6 illustrates the limitations of DSCNH when applied to 
high-resolution data. In this context, pixel-based change 
detection proves ineffective in learning meaningful information 
on our datasets. Conversely, DDSCN, employing Image-to-
Image learning, surpasses the detection performance achieved 
through Point-to-Point learning (DSCNH). The other three 
methods exhibit a capacity to detect changes in urban areas and 
categorize them to some degree, highlighting the effectiveness 
of fusing pixel-level and object-level features in extracting 
valuable information from high-resolution images. Notably, the 
method proposed in this paper excels in producing superior 
results, particularly in capturing finer details with higher 
precision. 

For Dataset I, the changed regions mainly comprise new 
constructions and high-complexity features, and contains a 
large number of changes in farmland and water body. The 
newly constructed planting greenhouse in the lower left corner 
is prone to being mistakenly detected as a change. Moreover, 
there is a serious imbalance of variation categories in the data 
set, our method surpasses all the compared methods. As is 
shown in Table Ⅰ, the MIoU and Kappa of PGCFN are increased 
by 3.3% and 1.1% when compared with CEGCN, respectively, 
and by 1.5% and 1.08% compared with GCFN. And DDSCN 
produces less favorable results on Dataset Ⅰ compared to 
PGCFN. It is evident from the detailed plots (as illustrated in 
Fig. 7) that the PGCFN model's detection results closely align 
with the labels, outperforming the other models. This is evident 

Ⅰ 

        

Ⅱ 

        

Ⅲ 

        
 (a) (b) (c) (d) (e) (f) (g) (h) 

 
Fig. 6. Visualization of multi-class change detection results on three datasets. (a) T1 image. (b) T2 image. (c) DSCNH. (d) DDSCN. (e) CEGCN. (f) GCFN. 

(g) PGCFN. (h) Ground-truth (GT). 
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in its inference results, which closely match the ground truth, 
featuring fewer error pixels and smoother feature boundaries. 

The PGCFN model shows higher accuracy in identifying 
small-scale features, highlighting its advantages in identifying 
tiny objects. In the change area of Dataset Ⅱ, we observe the 
presence of both new buildings and demolished buildings. 
However, in the results obtained from CEGCN and GCFN for 
Dataset II, some noise is evident, as depicted in Figs. 6 II(d)-(e). 
Notably, in the west of the image, areas covered by building 
shadows are inaccurately identified as changes towards the 
water body. This is due to the higher spectral similarity between 
shadows and water. Despite these challenges, our model 
consistently outperformed others on Dataset II, as shown in 
Table Ⅱ. Generally, other models often misclassified certain 
pseudo-changes arising from color variations as actual change 
areas, particularly in cases involving alterations in vegetation. 
These models exhibited lower performance in correctly 
identifying such changes. 

Similarly, PGCFN achieved best results on Dataset III. The 
MIoU of PGCFN is superior to that of GCFN by over 2.47%, 
and the Kappa is increased by 1.46% when compared with 
CEGCN, as shown in Table Ⅲ. Briefly, our model obtained 
results with more complete boundaries and fewer noise points. 
The pixel-based deep learning model DSCNH exhibited a high 
rate of false detections and missing detections in our dataset. 
This could be due to the high level of detail, numerous 
categories, and increased complexity present in data with a 0.5-
meter resolution, which poses greater challenges for the model. 
DDSCN achieves better results compared to DSCNH, 
benefiting by the end-to-end full convolution structure. It is 
worth noting that GCFN is indeed a model combining CNN and 
GAT. The outcomes of this combination demonstrate that 
integrating CNN and GNNs can achieve good results. We hope 
these findings will inspire and guide future research efforts. 

TABLE I 
ACCURACY ACHIEVED BY THE DIFFERENT MODELS ON DATASET Ⅰ.  

 Change type DSCNH DDSCN CEGCN GCFN PGCFN 

IOU 

Farmland-Bulit up areas 28.03±1.78 22.98±0.25 94.19±0.09 95.53±0.06 95.24±0.03 
Farmland-Water 47.95±0.92 30.75±1.21 97.98±0.10 97.92±0.05 98.14±0.07 
Bareland-Bulit up areas 34.38±0.84 38.68±0.92 70.49±1.89 75.44±1.03 85.84±0.17 
Bareland-Water 30.79±1.63 30.16±0.45 90.07±0.26 89.48±0.16 90.09±0.27 
Water-Bulit up areas 15.35±1.01 28.59±1.09 93.21±0.34 93.68±0.48 95.05±0.22 
Water-Greenland 27.53±1.18 29.32±0.91 70.29±1.24 71.38±0.77 72.05±0.54 
Water-Bareland 26.13±1.26 45.15±0.71 90.99±0.13 89.74±0.16 91.62±0.12 
Greenland-Bulit up areas 25.47±0.92 32.34±0.64 91.52±0.09 91.17±0.14 92.45±0.16 
Greenland-Water 30.77±0.81 43.45±0.23 96.92±0.05 97.40±0.12 97.42±0.14 
Greenland-Bareland 14.48±2.65 51.16±0.52 83.18±0.31 90.09±0.26 91.17±0.19 
Bulit up areas-Greenland 13.64±2.70 54.21±0.32 76.85±2.46 86.24±1.38 84.12±1.32 
No change 81.43±0.62 84.51±0.16 98.08±0.04 98.18±0.02 98.24±0.18 

MIoU 31.33±1.85 47.65±0.42 87.87±0.34 89.69±0.35 91.20±0.12 
OA 54.68±0.34 75.60±0.37 98.34±0.04 98.39±0.01 98.76±0.06 
KPP 12.74±0.92 38.50±0.48 95.98±0.09 96.01±0.04 97.09±0.01 
AA 59.32±0.87 74.29±0.61 97.20±0.34 97.55±0.24 98.21±0.12 

 
TABLE Ⅱ 

ACCURACY ACHIEVED BY THE DIFFERENT MODELS ON DATASET Ⅱ. 
 Change type DSCNH DDSCN CEGCN GCFN PGCFN 

IOU 

Greenland-Bulit up areas 60.93±0.27 76.10±0.32 96.54±0.08 96.43±0.10 96.35±0.04 
Greenland-Bareland 43.61±0.38 69.67±0.12 94.08±0.07 93.74±0.13 95.74±0.06 
Bulit up areas-Greenland 41.79±0.29 39.89±0.36 85.80±0.11 87.34±0.13 88.27±0.15 
Bulit up areas-Bareland 26.64±0.96 34.89±0.26 91.07±0.07 89.95±0.16 91.86±0.12 
No change  79.43±0.16 70.80±0.09 95.74±0.18 95.55±0.28 96.15±0.24 

MIoU 50.48±0.24 58.27±0.18 92.64±0.11 92.06±0.16 94.07±0.12 
OA 79.22±0.33 77.52±0.16 97.12±0.12 96.89±0.17 98.54±0.16 
KPP 60.02±0.81 65.15±0.20 95.06±0.20 94.68±0.28 96.06±0.28 
AA 75.91±0.46 78.24±0.19 98.42±0.06 98.35±0.05 98.48±0.08 

 
TABLE Ⅲ 

ACCURACY ACHIEVED BY THE DIFFERENT MODELS ON DATASET Ⅲ. 
 Change type DSCNH DDSCN CEGCN GCFN PGCFN 

IOU 

Farmland-Bareland 23.24±0.31 40.10±0.45 87.60±0.26 86.90±0.37 87.88±0.10 
Bareland-Water 21.57±0.67 36.15±0.23 92.63±0.23 92.70±0.37 93.38±0.14 
Bareland-Greenland 30.14±0.28 45.67±0.12 93.89±0.18 90.13±0.14 91.58±0.15 
Water-Greenland 17.99±0.46 61.79±0.36 92.28±0.12 91.90±0.10 92.52±0.13 
Water-Bareland 18.17±0.64 46.03±0.30 78.36±0.37 76.94±0.70 80.05±0.74 
No change  86.01±0.23 90.60±0.09 98.21±0.16 98.01±0.20 98.47±0.14 

MIoU 32.84±0.22 53.88±0.38 90.49±0.28 89.43±0.32 91.90±0.22 
OA 83.72±0.19 89.00±0.52 98.29±0.13 98.15±0.16 99.11±0.12 
KPP 25.19±0.47 65.05±0.31 94.29±0.41 93.86±0.53 95.75±0.37 
AA 71.57±0.10 83.23±0.20 98.57±0.05 98.54±0.16 98.70±0.02 
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Fig. 7. Visualization of detail results on Dataset Ⅰ. 
 

 
Fig. 8. Visualization of detail results on Dataset Ⅱ. 
 

 
Fig. 9. Visualization of detail results on Dataset Ⅲ. 

V. DISCUSSION 

A. Influence of the component value l 
The proposed method encodes spatial information using a 

one-hot encoder and generates a multi-dimensional relationship 
matrix by dividing the scalar distance into l components. We 
selected eight l values, specifically [5, 10, 15, 20, 25, 30, 35, 40, 
45], to analyze the influence of different component values on 
the change detection results. The performance of the proposed 

model under different component values are illustrated in Fig. 
10. 

Based on change detection accuracy, the optimal 
performance is achieved when the component values for the 
three datasets are set to 25, as shown in Figs. 10(a)-(c). When 
the number of component values is small, such as 5 and 10, it 
can lead to lower change detection accuracy since fewer 
components fail to adequately capture the complex spatial 
information. Conversely, when the l-value is large, such as 40, 
it increases computational costs and doesn't necessarily result 
in improved change detection performance. This analysis helps 
determine the most appropriate component values to choose in 
a given situation to strike a balance between computational 
costs and performance requirements. 

B. Visualization and analysis of attention mechanism 
This study achieved a profound integration of geospatial 

theory and deep learning through the application of graph 
neural network. Graph structures were used to simulate the 
complex spatial relationships, encompassing aspects such as 
distance, as well as homogeneity and heterogeneity among 
ground objects. Beyond assessing the model's efficacy using 
detection accuracy, it is also valuable to qualitatively 
investigate the quality of the learned feature representations. To 
achieve this, we provided visualizations of the transformed 
feature representations obtained from the initial layer of the P-
GAT. 

In this context, the Python package Networkx was adopted to 
visualize subgraphs. Initially, we normalized the attention 
coefficients (i.e., weights) within the range of (1, 5]. We 
employed a tree-like graph layout to visually represent the 
nodes and their neighboring nodes. Specifically, the node is 
positioned at the center, with its neighbors arranged in a circular 
fashion. Node categories are represented using color coding, 
and the link size corresponds to the weight—thicker lines 
indicate higher weights. In addition, a multivariable line chart 
illustrates the change of node distances and attention weights. 
The distance variable is depicted in blue, whereas the weight 
variable is represented by the red line. It is important to note 
that the selected visualization results stem from three datasets, 
underscoring their generalizability. 

Through an extensive series of experiments, we have 
observed that normal graph attention models yield features that 
exhibit minimal variations across different nodes. As depicted 
in Figs. 11(b-1), (d-1), and (e-1), the weights assigned to nodes 
tend to concentrate within a narrow range. This implies that 
distinct ground object types and various spatial positions exert 
similar influences on one another. Normal graph attention 
networks are typically utilized to uncover the relationships and 
interactions between nodes in graph data [48]. However, when 
dealing with complex data, these models often struggle to 
capture subtle distinctions among different nodes. 
Consequently, the learned weights exhibit similarities among 
various nodes, may leading to limitations in model performance 
[49]. 
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As illustrated in Figs. 11(a-4) to (e-4), the results obtained 
through P-GAT reveal a notable disparity in the weights 
assigned to its neighboring nodes. P-GAT incorporates 
geospatial information, enabling the model to place greater 
emphasis on geographic proximity when evaluating 
connections between nodes. This means that nodes in closer 
geographic proximity receive heightened geographic attention, 
enhancing the model's ability to capture geospatial patterns 
more effectively. 

C. Computational efficiency and model complexity 
Training and testing times, as well as model complexities for 

each method on every dataset, are detailed in Tables Ⅳ and Ⅴ, 
respectively. The multi-class change detection task requires 
assigning a label to every pixel in a multi-temporal image, with 
the time required to classify all pixels considered as the test time. 
As indicated in Table Ⅳ, integrating CNN and GCN leads to 
faster convergence. In comparison to other methods, our 
approach integrates spatial principle of superpixels and utilizes 
the entire image as input, thereby significantly enhancing the 
efficiency of both training and testing. 

 
TABLE Ⅳ 

RUNNING TIME ON EACH DATASET. 
Network Time Dataset Ⅰ Dataset Ⅱ Dataset Ⅲ 

DSCNH Train 498.26s 481.98s 495.21s 
Test 120.42s 121.57s 120.61s 

DDSCN Train 1821.92s 1107.53s 1903.01s 
Test 6.39s 6.01s 5.78s 

GCFN 
Train 82.73s 81.09s 85.62s 
Test 2.3×10-2s 1.9×10-2s 2.1×10-2s 

CEGCN 
Train 95.05s 93.41s 81.79s 
Test 4.9×10-2s 4.3×10-2s 5.0×10-2s 

PGCFN 
Train 80.13s 72.41s 68.79s 
Test 0.83×10-2s 0.77×10-2s 0.90×10-2s 

 
As illustrated in Table Ⅴ, we conducted a comprehensive 

comparison of the model complexity for each method. FLOPs, 
denoting the number of floating-point operations a computing 
entity can complete in one second, and the number of 
parameters (#Params), representing the count of learnable 
weights and biases in the model, can be combined to gauge the 
overall complexity of the network. Notably, DDSCN exhibited 
the highest parameter count, while PGCFN boasted a relatively 

modest number of parameters, closely aligned with GCFN. 
Despite DSCNH's lightweight nature, it falls short in 
performance on high-resolution data compared to other models. 
Analyzing the interplay between Params and FLOPs, PGCFN 
stands out with a notable volume of floating-point operations 
with relatively few parameters.  

 
TABLE Ⅴ 

THE COMPARISON OF PARAMS AND FLOPS FOR NETWORKS. 
Network #Params #FLOPs 
DSCNH 5.58×103K 0.65G 
DDSCN 29.82×103K 86.06G 
GCFN 55.96K 56.29G 

CEGCN 140.12K 49.22G 
PGFCN 55.19K 55.52G 

 

D. Robustness study 

To quantitatively assess the robustness of our method, we 
chose common Salt & Pepper noise as well as Strip noise in 
remote sensing images to simulate noise and investigate the 
performance of various algorithms on our datasets. We 
introduced Salt & Pepper noise to bi-temporal images at 
varying noise rates ranging from 5% to 45% with 10% intervals, 
utilizing mIOU as the primary evaluation metric. As can be seen 
from Fig. 12 that PGCFN is more robust against noises 
compared to others.  

Also, we introduced stripe noise with a varying noise rate 
ranging from 15% to 55% at intervals of 10% to assess the 
robustness of each algorithm. The results are presented in Fig. 
13. It is evident that the model, integrating both CNN and GNN, 
excels in its ability to counter noise. This excellence can be 
attributed to the synergistic advantages of these two 
components in handling diverse data types and modeling 
intricate relationships. Our model also demonstrates heightened 
robustness, showcasing an enhanced capacity to handle 
complex data efficiently within a noisy environment. 

 
 

 

   
(a) (b) (c) 

Fig. 10. Detection accuracy under different component values. The left sub-axis represents the OA and Kappa measurements, while the right sub-axis represents 
the MIoU measurements, and the horizontal axis corresponds to the l-value. (a) Dataset Ⅰ. (b) Dataset Ⅱ. (c) Dataset Ⅲ. 
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ID Graph attention in GCFN Position-aware graph attention in PGCFN 
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Fig. 11. Examples of tree chart and multivariable line chart for different nodes. Where (*-1) is the tree charts on nodes generated by GCFN, (*-2) is the 
multivariable line charts of corresponding spatial distances and weights; (*-3) is the tree charts on nodes generated by PGCFN, and (*-4) is the multivariable 
line charts of corresponding spatial distances and weights. 
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Ⅵ. CONCLUSION 
Deep learning models are characterized by a multitude of 

network parameters, high complexity, and often render the 
decisions and intermediate processes less interpretable. Current 
intelligent analysis methods for remote sensing images based 
on deep learning mainly focus on architectural innovations [50]. 
This study sought to bridge the gap by leveraging graph neural 
network theory to achieve a deep integration of geospatial 
knowledge and deep learning, and a multi-class change 
detection network named PGCFN was proposed. Building on 
neural network theory, we delved into the powerful synergies 
between deep learning and geospatial knowledge, with the aim 
of empowering intelligent interpretation with enhanced 
geographical context understanding. The results demonstrate 
that the position-aware graph attention-based change detection 
model can adeptly extract change features from the bi-temporal 
images. It is evident that the incorporation of geospatial 
information enhances the model’s spatial comprehension, 
leading to an improved accuracy in change detection. 
Furthermore, this study certifies that the combination of pixel 
and object-level features ensures the high precision of detection 
results. While the proposed change detection method has shown 
satisfactory results, there are still limitations that require 
attention in future research.  

1) Variations in the number of superpixels generated can 
undeniably impact detection accuracy and due to computational 
constraints, our research has yet to comprehensively investigate 
the correlation between segmentation parameters and outcomes. 
We aim to investigate this in our coming future research and 
delve into change detection results under diverse segmentation 
conditions.  

2) Remote sensing images of large scenes often encompass a 
diverse range of ground objects, making changes within them 
more complex. Although the data-driven change detection 
model can achieve excellent results on small-scale data, their 
detection accuracy tends to be decreased when applied to large-
scale data due to the influence of sample quality and quantity. 
However, the geographical spatial principles are not 
constrained by the scale of the scene. Building on the findings 
of this paper, the utilization of spatial principle will continue to 
be enriched in the future, enhancing the potential for large-scale 
image change detection within the spatial domain.  

3) Another challenge relates to the limited samples in 
supervised learning methods. Supervised learning is 
particularly sensitive to sample acquisition difficulties and 
inadequate sample sizes. The issue of sample imbalance further 
compounds the challenges associated with supervised learning 
applications. Future studies will be directed to conduct a more 
extensive set of experiments in semi-supervised and 
unsupervised representation learning to address these issues. 
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