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A B S T R A C T

Airborne hyperspectral systems can provide high-resolution hyperspectral images (HSIs) covering large scenes, 
enabling fine-grained land-cover classification. However, the most popular patch-based methods are limited by 
low computational efficiency and broken classification results, which hinders the full utilization of this powerful 
technology in Earth observation applications. Therefore, in this paper, considering the efficiency requirements 
for large-scale land-cover classification, a novel patch-free approach based on a Transformer-CNN hybrid 
(PatchOut) framework is proposed. The proposed PatchOut framework adopts an encoder-decoder architecture, 
enabling rapid semantic segmentation for HSI classification. For the encoder module, we introduce a compu
tationally efficient reduced Transformer module integrated with convolutional neural network (CNN), to 
leverage their complementary strengths for long-range and local feature extraction, respectively. A multi-scale 
spatial-spectral feature fusion (MSSSFF) module is also proposed to amalgamate the characteristics of 
different levels from the encoder, which enhances the overall feature representation. Then, to address the loss of 
semantic detail and resolution inherent in multi-level feature extraction, a novel feature reconstruction module 
(FRM) is applied to recover high-quality semantic features. Finally, a large-scale benchmark dataset, Qingpu-HSI, 
is presented, comprising airborne HSIs covering 33.91 km2 with 20 land-cover classes. Experiments on the 
Qingpu-HSI and another public dataset demonstrate the superior accuracy and efficiency of our proposed 
PatchOut framework, outperforming several well-known patch-free and patch-based methods. The Qingpu HSI 
dataset, along with the PatchOut framework code will be released at https://github.com/busbyjrj/PatchOut.

1. Introduction

Accurately classifying and mapping land use through remote sensing 
represents a persistent research focus in Earth observation (Anderson 
et al., 2017; Yao et al., 2023). Hyperspectral images (HSIs) can reflect 
more detailed information of ground objects due to their unprecedented 
hundreds to thousands of continuous narrow bands and the fine-grained 
spatial distribution information (Paoletti et al., 2019). Consequently, 
HSIs play an essential role in facilitating land-cover classification and 

monitoring, such as wetland classification (Su et al., 2021), agricultural 
crop classification (Zhong et al., 2020) and tree species identification 
(Fu et al., 2023).

HSI classification seeks to assign a unique semantic label to each 
pixel vector. (Bioucas-Dias et al., 2013). In recent years, deep learning 
has demonstrated its powerful capabilities for image recognition, lead
ing to its increased application in other related fields, including HSI 
classification (Li et al., 2019; Paoletti et al., 2019). As a classical deep 
learning task, classification models based on a patch input were first 

* Corresponding author at: Key Laboratory of Spatial-Temporal Big Data Analysis and Application of Natural Resources in Megacities (Ministry of Natural Re
sources), East China Normal University, Shanghai 200241, China.

E-mail address: tankuncu@gmail.com (K. Tan). 

Contents lists available at ScienceDirect

International Journal of Applied Earth  
Observation and Geoinformation

journal homepage: www.elsevier.com/locate/jag

https://doi.org/10.1016/j.jag.2025.104457
Received 31 October 2024; Received in revised form 25 February 2025; Accepted 1 March 2025  

International Journal of Applied Earth Observation and Geoinformation 138 (2025) 104457 

1569-8432/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0000-0003-2152-7445
https://orcid.org/0000-0003-2152-7445
https://orcid.org/0000-0001-6353-0146
https://orcid.org/0000-0001-6353-0146
https://github.com/busbyjrj/PatchOut
mailto:tankuncu@gmail.com
www.sciencedirect.com/science/journal/15698432
https://www.elsevier.com/locate/jag
https://doi.org/10.1016/j.jag.2025.104457
https://doi.org/10.1016/j.jag.2025.104457
http://creativecommons.org/licenses/by/4.0/


used in HSI classification. Convolutional neural network (CNN)-based 
models such as SSRN (Zhong et al., 2018), A2S2K-ResNet (Roy et al., 
2021), etc., have shown great performances in HSI classification. These 
models employ 2D- or 3D-CNNs to effectively learn hierarchical spatial- 
spectral representations. Recently, Transformer-based models have 
become a hot research topic. Researchers are exploring the combined 
advantages of CNNs and Transformers. Hence, CNN and Transformer 
hybrid networks, e.g. SSFTT (Sun et al., 2022), and the spatial-spectral 
feature extraction network with patch attention module (PASSNet) (Ji 
et al., 2023), have recently been designed, and have shown powerful 
performances in feature extraction.

However, the aforementioned methods, based on CNNs and Trans
formers, are implemented using HSI patches. The patch-based methods 
take an HSI patch as input, but only one pixel in its center can be pre
dicted at a time. Although the patch-based methods can achieve satis
factory classification maps, it is difficult to avoid the problem of 
calculation redundancy and high time consumption. Recently, large 
HSIs are becoming more common due to advanced high-resolution 
hyperspectral sensors for airborne and unmanned aerial vehicle (UAV) 
platforms. The limitations of patch-based models prevent effective HSI 
classification in large scenes. With the fast patch-free global learning 
(FPGA) framework, a fully end-to-end classification framework was 
introduced, providing a more efficient option for HSI classification, 
which is actually a semantic segmentation task (Zheng et al., 2020). 
Benefiting from the end-to-end pixel-level prediction capability of the 
semantic segmentation models, patch-free models, e.g., unified multi- 
scale learning (UML) (Wang et al., 2022b), and the lightweight Trans
former (LiT) network (Zhang et al., 2023a), can efficiently classify and 
annotate every pixel in the input image with high precision.

For the semantic segmentation models, a larger labeled dataset is 
required. It has been pointed out that the limited availability of HSI 
classification datasets has constrained the development of deep learning 
models (Schmitt et al., 2023). Some models utilizing whole-image inputs 
face inherent data leakage challenges between training and evaluation 
sets, even with label mask strategies, thus affecting the reliability of 
accuracy assessments (Zhang et al., 2023b). On the other hand, the input 
feature size in some models, such as the LiT network, is set very small, e. 
g., 32 × 32 or 64× 64, which affects the ability of acquiring and asso
ciating long-range dependencies.

Deep learning approaches have demonstrated impressive perfor
mance in HSI classification, but training highly accurate deep learning 
models is still faced with many challenges. There are three primary is
sues that warrant attention:

(1) As the spatial resolution of HSIs improves, a larger input image 
size is required to capture complete ground object boundaries. Subse
quently, fusing the spatial and spectral features is essential for achieving 
comprehensive scene understanding and accurate segmentation.

(2) The Transformer architecture possesses the capability to capture 
long-range dependencies; however, it suffers from a substantial 
computational overhead and is prone to a suboptimal generalization 
performance when trained on limited samples.

(3) The existing HSI datasets struggle to meet the needs of the patch- 
free classification methods. In order to properly utilize HSI data for se
mantic segmentation and reasonably evaluate the performance, a large- 
scale finely labeled HSI classification dataset is required.

In order to alleviate the above problems, a patch-free approach based 
on a Transformer-CNN hybrid (PatchOut) framework is proposed for 
large-scale HSI classification tasks in this paper. Specifically, employing 
the encoder-decoder architecture enables PatchOut to extract spatial- 
spectral features at multi levels, adapting to the fine-grained features 
of various land-cover types. The PatchOut framework is aimed at har
nessing the strength of Transformers in capturing long-range de
pendencies and the prowess of CNNs in modeling local features and 
incorporating inductive bias. Moreover, the multi-scale spatial-spectral 
feature fusion (MSSSFF) module facilitates multi-level feature fusion, 
enabling the framework to extract intricate HSI features and enhance 

classification performance. Furthermore, a feature reconstruction 
module (FRM) based on a lightweight Transformer structure is proposed 
to bridge disparity between encoder and decoder features with different 
sizes. The primary contributions of this work are summarized below.

(1) To mitigate the computational complexity inherent in Trans
former structures, a reduced Transformer block (RTB) mechanism is 
introduced. In the encoder blocks, this mechanism efficiently captures 
deep and long-range associative information with a small computational 
overhead. In the decoder blocks, the proposed FRM is able to fuse and 
reconstruct low-resolution features, which not only enhances the feature 
quality but also mitigates the potential semantic discrepancies in 
encoder-decoder skip connections.

(2) To further amalgamate the characteristics of the different levels 
from the encoder module, the MSSSFF module is proposed. Features 
spanning diverse scales are encoded into a unified dimensional space, 
and the Transformer is leveraged to aggregate the contextual semantic 
information, which enables the module to capture the local cross- 
channel interaction and inter-channel dependencies, enhancing the 
overall feature representation.

(3) We built a large-scale manually annotated HSI classification 
dataset—the Qingpu HSI dataset—dedicated to fine-grained classifica
tion of vegetation species and land-cover categories. This dataset is able 
to effectively avoid the issue of training and test data leakage, and 
provides a novel benchmark for the fine-grained classification of vege
tation and land-cover types, while being particularly suitable for patch- 
free semantic segmentation models.

2. Related work

2.1. CNNs for HSI classification

CNNs have proven highly effective at extracting spatial-spectral 
features from HSI data. In the early days, one-dimensional (1D) CNNs 
were first used for HSI classification; however, these methods solely 
utilize spectral information, while neglecting spatial features (Yue et al., 
2015). The advent of 2D CNNs has made up for this deficiency, resulting 
in a significant improvement in classification accuracy (Makantasis 
et al., 2015). To better extract spatial-spectral features simultaneously, 
3D CNNs have been introduced. SSRN achieves higher accuracy with the 
3D CNN architecture and consecutive spectral-spatial residual blocks, 
but requires significantly more computation (Zhong et al., 2018). The 
hybrid spectral convolutional neural network concatenates 3D and 2D 
convolutions, balancing the complexity and classification accuracy (Roy 
et al., 2020). Recent advancements in group convolution and attention 
mechanisms have enabled lightweight CNN architectures to achieve 
competitive classification results, e.g., the lightweight spectral-spatial 
attention network (Cui et al., 2022), etc.

On the other hand, fully convolutional networks (FCNs) eliminate 
the final fully connected layers, enabling pixel-to-pixel classification on 
input images. The FPGA framework adopts the encoder and decoder 
structure, and can obtain spatial and spectral features of different scales 
(Zheng et al., 2020). UML introduces channel shuffle and channel 
attention mechanisms into an FCN, resulting in a lightweight and effi
cient model (Wang et al., 2022b). The spectral patching network in
tegrates a residual architecture and atrous spatial pyramid pooling 
modules to effectively capture multi-scale semantic information (Hu 
et al., 2022). 3D-HRNet uses an attention-based 3D CNN module to 
capture global–local spectral features, thereby optimizing performance 
(Xu et al., 2023).

However, the CNN-based architectures face inherent limitations in 
modeling long-range semantic relations due to their finite receptive 
fields. In the process of multi-scale feature fusion, particular attention 
should be paid to the disparities between local and long-range features 
across different spatial resolutions.
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2.2. Transformers for HSI classification

Recently, vision Transformer (ViT) models have offered an alterna
tive architectural paradigm for image processing tasks (Dosovitskiy 
et al., 2021). The ViT-based architectures, which process images as se
quences of flattened patches, have gained prominence in various visual 
tasks, including the HSI classification. Their efficacy in capturing long- 
range dependencies and extracting hierarchical features has led to 
improved performance across spatial and spectral dimensions. Spec
tralFormer (SF) rethinks the HSI classification task from a sequential 
perspective with the Transformer model, and can extract and leverage 
the local spectral sequence information from the adjacent spectral bands 
(Hong et al., 2022). Recently, some hybrid models have combined 
Transformers and CNNs to utilize their respective advantages and realize 
comprehensive mining of local and long-range features. PASSNet uses 
hybrid CNN-Transformer architecture with patch attention mechanism 
to extract spatial-spectral features from local to long range scales (Ji 
et al., 2023).

For semantic segmentation tasks with limited data, integrating CNNs 
and Transformers has demonstrated enhanced feature extraction capa
bilities (Dai et al., 2021), notably in applications like medical image 
segmentation (Gao et al., 2021), building extraction (Fu et al., 2024), 
etc. For HSI data with a small sample size, there has still been little 
research on hybrid semantic segmentation models. HSI-TransUNet le
verages residual-connect Transformers to extract lobal contextual fea
tures, and obtain superior performance in the UAV HSI crop 
classification (Niu et al., 2022). The LiT network integrates lightweight 
convolutional modules and self-attentions structures, employing a 
controlled multiclass stratified sampling strategy to avoid classification 
overfitting problems (Zhang et al., 2023a). For multi-scale HSI feature 
extraction, the S2HM2 framework utilizes a self-supervised learning 
approach based on a 3D masking strategy and a 3D SwinTransformer, 
demonstrating effective performance (Tu et al., 2024).

In general, the Transformer-based networks for HSI classification 
tasks generally demonstrate a higher computational complexity than 
their CNN-based counterparts. Furthermore, in semantic segmentation 
tasks, the Transformer architecture requires larger training datasets. 
Consequently, the development of hybrid CNN-Transformer models 
merits further investigation, to optimize the performance and efficiency 
in HSI classification applications.

2.3. Other HSI classification methods

Some other deep learning models have also been applied to HSI 
classification. For example, generative adversarial networks are utilized 
to automatically augment training datasets to mitigate the small sample 
size issue in HSI classification (Roy et al., 2022). The combination of 
capsule network with CNN and Transformer is also widely used for 
hyperspectral classification (Wang et al., 2023). Recently, a novel 
network architecture based on state space models, named Mamba, has 
also been introduced for HSI classification tasks (Wang et al., 2024). 
Graph Convolutional Networks (GCNs), when integrated with super
pixels, offer an effective way to improve the consistency of classification 
results, providing another alternative to patch-based methods (Li et al., 
2023).

3. Materials

3.1. Qingpu-HSI dataset

The limited size of HSI classification datasets limits further devel
opment of deep learning in this field (Schmitt et al., 2023), and also 
leads to the problem of training and test data leakage (Zhang et al., 
2023a). For the fine land-cover classification needs of large-scale aerial 
HSIs, we built the Qingpu-HSI dataset. The Qingpu dataset was finely 
annotated manually, according to the properties of the ground features, 
rather than generated labels from geographic information data. To our 
knowledge, Qingpu-HSI is currently the largest manually annotated 
aerial HSI classification dataset.

The airborne HSIs were captured in Qingpu District, which is an 
outer suburb of Shanghai, China on June 16, 2022, using the Airborne 
Multi-Modality Imaging Spectrometer (AMMIS) developed by the 
Shanghai Institute of Technical Physics at the Chinese Academy of Sci
ences. The visible and near-infrared (VNIR) module of AMMIS utilizes a 
256-band sensor (400–1000 nm). After removing five bad bands, 251 
bands were ultimately used for analysis. A fixed-wing aircraft equipped 
with the AMMIS sensor captured HSIs at 3000 m altitude with a of 0.75  
m spatial resolution. We conducted dark current correction, radiometric 
calibration, and geometric calibration on the HSIs. For the specific steps, 
please refer to Niu et al. (2024).

A representative area (20480 × 2944 pixels) was selected for the 
precise land-cover classification (Fig. 1). Ground truth was established 

Fig. 1. The true-color images and the corresponding ground truths of the Qingpu HSI dataset.
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through comprehensive field investigation using the Xingse mobile 
application (version 3.16), identifying 20 distinct land-cover types and 
their spatial distributions. To delineate ground object boundaries, his
torical images from ESRI and Google Earth, supplemented by 0.1-m 
aerial RGB imagery acquired in 2022 by the Shanghai Institute of 
Surveying and Mapping, was consulted. The resulting Qingpu HSI 
datasets comprises 20 land-cover categories, including four artificial 
surfaces, five crop types, ten tree species, and water bodies. Fig. 2 pre
sents the mean digital number (DN) values of the spectral signatures for 
the 20 land-cover types. While exhaustive labeling of land-cover types 
and pixels is prioritized, the resulting dataset exhibits a highly imbal
anced class distribution with a pronounced long tail, posing a significant 
challenge for semantic segmentation tasks.

3.2. Matiwan HSI dataset

The Matiwan HSI dataset serves as another benchmark for evaluating 
fine-grained vegetation classification performance, which was acquired 
in Xiong’an New Area in China, by the AMMIS VNIR module in 2017, 
with 256 spectral bands (Jia et al., 2022). The Matiwan dataset com
prises 3750 × 1580 pixels at 0.5 m spatial resolution. It has 20 cate
gories, among which crops are the main categories. Fig. 3 shows the RGB 
true-color image and corresponding labels for the Matiwan dataset. The 
Matiwan dataset exhibits significant intra-class variation, primarily due 
to varying vegetation growth stage and shadowing from street trees, 
posing a challenge for accurate HSI classification (Jia et al., 2022).

4. Proposed Methodology

This study aims to design a novel hybrid convolution and 

Fig. 2. Mean digital number values of the spectral signatures for the 20 land-cover types.

Fig. 3. The true-color images and the corresponding ground truths of the Matiwan HSI dataset.

R. Ji et al.                                                                                                                                                                                                                                        International Journal of Applied Earth Observation and Geoinformation 138 (2025) 104457 

4 



Transformer method, with an encoder-decoder structure, to enhance 
local and long-range feature fusion in HSIs. Specifically, a reduced 
Transformer block (RTB) is used to build a long-range feature acquisi
tion module in the encoder and an FRM in the decoder. Besides, the 
MSSSFF module is also proposed between the encoder and the decoder 
modules. In the following, detailed descriptions of the proposed Patch
Out framework are given, and the overview of the architecture is shown 
in Fig. 4.

4.1. Transformer blocks

4.1.1. Reduced Transformer block
The Transformer blocks, which are composed of a multi-head self- 

attention (MHSA) layer and a feed-forward layer, are capable of 
capturing the long-range dependencies and contextual features from the 
input. However, the computational demands of Transformers are 
considerable, especially for a larger input scale. Considering that remote 
sensing images are structured data, in high-resolution remote sensing 
images, a single ground object often consists of multiple pixels with 
similar spectral features. In other words, we can compress the input 
features while extracting features to reduce redundant and inefficient 
recompilation. Thus, we designed a reduced Transformer block, as 
shown in Fig. 5.

Similar to MHSA, consider an input feature map X ∈ R C×H×W, where 
C, H, and W are the number of channels, spatial height, and width, 
respectively. Firstly, X is projected through depthwise convolution 
(DWConv) layers to obtain a query Q ∈ R C×H×W, a key K ∈ R C×H×W, and 
a value V ∈ R C×H×W. The difference is that the proposed RTB also uses 

Fig. 4. The proposed PatchOut architecture.

Fig. 5. The proposed reduced Transformer block.
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bilinear downsampling to compress the spatial size of K and V into low- 
resolution features Kʹ, Vʹ ∈ R C×h×w, where h and w are the reduced 
spatial size of the feature map after downsampling (h < H and w < W). 
The details of RTB can be formulated as follows, to simplify the pre
sentation, and the multi-head structure is not presented: 

Q = DWConv(X) (1) 

K’ = SR(K) = SR(DWConv(X) ) (2) 

V’ = SR(V) = SR(DWConv(X) ) (3) 

where DWConv has a kernel size of 3. SR represents the down
sampling bilinear interpolation operation to reduce the spatial size of K 
or V. The proposed reduced self-attention is then calculated as: 

Attention(Q,K’,V’) = Softmax
(

QK’T

̅̅̅̅̅̅̅̅̅̅
dhead

√

)

V’ (4) 

X̂ = Attention(Q,K’,V’)WO (5) 

where dhead is the dimension of the heads. WO ∈ RC×C refers to the 
output linear projection matrix. With the above formula, it can be found 
that the compilation amount will decrease significantly, and thus the 
proposed RTB has the ability to handle larger input feature maps, 
without image patch embedding.

Since HSI features are rich in spatial characteristics, a convolution 
operation replaces linear projection in the feed-forward layer. Thus, the 
output of the convolutional feed-forward (ConvFF) layers is computed 
as: 

X̂ = GELU(PWConv(X) ) (6) 

X̂ = GELU(DWConv(X̂) ) + X (7) 

where PWConv is the pointwise convolution, and DWConv has a 
kernel size of 3.

As depicted in Fig. 4, the RTB incorporate layer normalization before 

MHSA and ConvFF layers, along with residual connections. These op
erations contribute to improved model stability and accelerated 
learning. Considering that the convolution operation is applied instead 
of a linear operation, no position encoding methods are adopted.

4.1.2. Feature reconstruction module
The decoder blocks reconstruct high-resolution representations by 

fusing contextual information from low-resolution features of high-level 
encoder with spatial details from high-resolution features derived from 
skip connections. Since HSIs have rich deep features, simple fusion 
methods such as addition or concatenation cannot deal with the details 
of spatial-spectral fusion. In order to better construct the fusion decoder 
and reconstruct the high-resolution feature map, we designed the FRM 
by using the RTB blocks.

As shown in Fig. 6, firstly, a Transformer block is used to fuse the 
low-level features L and high-level features H. The MHSA mechanism 
used in the FRM has a similar structure to the RTB, but it takes two 
inputs. The query Q ∈ R C×H×W with high-resolution features comes 
from the skip connections of the MSSSFF module H, and the key K ∈

R C×Hʹ×Wʹ 
and value V ∈ R C×Hʹ×Wʹ 

with low-resolution features come 
from the previous decoder layer L. 

Q = DWConv(H) (8) 

K’ = SR(K) = SR(DWConv(L) ) (9) 

V’ = SR(V) = SR(DWConv(L) ) (10) 

Bilinear interpolation is then used to enhance the spatial resolution 
of L and form the residual structure, followed by the ConvFF structure. 

X̂ = Attention(Q,K’,V’)WO + Up(L) (11) 

where Up denotes bilinear upsampling to restore the spatial size of L.
The fused result X̂ and the high-level features H are then concate

nated, and a convolutional layer is used to obtain U, followed by batch 
normalization and the rectified linear unit (ReLU) activation function, 
thereby ensuring that the scales of the features are balanced. 

U = ReLU(BN(Conv(Concat(X̂,H) ) ) ) (12) 

where Concat denotes the concatenation operation, Conv denotes the 
convolution operation with the kernel size of 3, BN refers to the batch 
normalization, and U refers to the final outputs.

4.2. Encoder-decoder structure

The integration of CNN and Transformer within a hybrid structure 
can fuse the advantages of translation equivariance and a global 
receptive field and balance the generalization ability and model capacity 
(Dai et al., 2021; Ji et al., 2023). This work explores the integration of 
convolution and self-attention mechanisms to capitalize on their 
respective strengths.

4.2.1. Encoder blocks
The encoder (Fig. 4) consists of three CNN layers succeeded by two 

reduced Transformer layers. Considering the high dimensionality of 
HSIs, it is not sufficient for convolution kernels to use a small number of 
channels, so the stem layer employs 64 channels. At the beginning of 
each encoder layer, a max-pooling operation of size 2 × 2 is employed to 
halves the spatial resolution. The convolutional layers comprise two 
convolutional modules with the kernel size of 3. Then, to mitigate the 
computational demands of the Transformer layers, the reduced ratio in 
RTB is set to 4 and 2 for the Qingpu and Matiwan datasets, respectively, 
resulting in a reduced feature map width and height of Kʹ,Vʹ as 16, 
thereby lessening the computation burden. The last four stages employ 
128, 256, 512, and 512 channels, respectively, to promote efficient 
capture of spatial-spectral information.

Fig. 6. The proposed feature reconstruction module.
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4.2.2. Decoder blocks
Similar to the encoder blocks, the decoder blocks also comprise two 

CNN layers and two Transformer layers. During the deep feature fusion 
stage, as shown in Fig. 7, two FRMs are employed. Due to the low spatial 
resolution yet high channel characteristics of deep features, the use of a 
Transformer-based FRM can better fuse long-distance and global fea
tures. During the shallow feature fusion stage, the input features are 
characterized by a high spatial resolution, which enables the effective 
extraction of local features via convolutional modules, resulting in 
optimized spatial details for the task of land-cover classification.

4.3. Multi-level spatial-spectral feature fusion

In the proposed PatchOut framework, the encoder extracts spatial- 
spectral features at multiple scales. Since the different channels may 
capture distinct semantic patterns, it is crucial to effectively fuse these 
features, bridging potential semantic gaps, rather than relying on 
concatenation or addition. To solve the feature fusion problem between 
the encoder and decoder module, inspired by UCTransNet (Wang et al., 
2022a), we propose the MSSSFF module, which incorporates 

Transformer mechanisms to effectively model long-range dependencies 
across different encoder stages. Specifically, in Fig. 4, the MSSSFF 
module comprises three steps: a multi-scale feature embedding block 
(MEB), a spatial-spectral feature fusion (SSFF) block, and a spatial- 
spectral reconstruction (SSR) block.

During the encoder stages, four different-level skip connection fea

tures are obtained as Fi ∈ R
Ci×

H
2i×

W
2i ,(i = 1,2, 3, 4). Firstly, for multi-scale 

feature embedding, DWConv is used to tokenize the features at four 
different levels to have the same spatial size. In this study, we set the 
feature size as 16 × 16 after tokenization. Subsequently, PWConv unifies 
the channel dimension of the four features to 128 channels each. The 
tokens of the four layers are then concatenated to form a multi-level 
fusion feature: 

Ei = PWConv(DWConv(Fi) ),Ei ∈ R
c×h×w (13) 

E = Concat(E1,E2,E3, E4) (14) 

For the multi-level SSFF, MHSA and ConvFF modules that are 
essentially consistent with those utilized in the RTB are utilized. 
Regarding the Q, K, and V components, they are projected from the same 

Fig. 7. The structure of (a) the CNN-based decoder, and (b) the Transformer-based decoder.

Fig. 8. Distribution map of training samples (within the red boxes). (a) Qingpu HSI dataset. (b) Matiwan HSI dataset.
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source E. The difference is that the tokenization embedding has been 
performed, rendering the reduced key and value components redundant. 
Consequently, the reduction ratio is set to 1. The multi-level SSFF is 
repeated four times in order to enforce the deep fusion of multi-level 
features.

After this, the fused feature Eʹ is split into four groups according to 
the concatenation order. For each fused feature Fí ∈ R c×h×w, it is 
restored to its original size using nearest neighbor interpolation, fol
lowed by a DWConv layer, and adaptively added with the original skip 
connections: 

F’
i = DWConv(split(E’) ) (15) 

Oi = αF’
i + (1 − α)Fi (16) 

where Oi is the final skip connection after the multi-level SSFF, and 
α ∈ (0, 1) denotes the adaptive weight to balance the original and fused 
skip connections.

5. Experiments and analysis

5.1. Training data preprocessing

As shown in Fig. 8 and Table 1, to mitigate the impact of sparse and 
imbalanced labeled samples on the accuracy of the semantic segmen
tation model, and to prevent test set leakage, firstly, regions with more 
concentrated categories were cropped for training and validation, while 
the remaining regions formed the test set. For the Qingpu HSI dataset, 
sixteen images of size 512 × 512 were cropped for the training and 
validation, representing 6.96 % of the total area. For the Matiwan HSI 
dataset, a total of 22 images of size 256 × 256 were applied, repre
senting 24.33 % of the total area.

Then, a global stochastic stratified sampling strategy was adopted in 
this experiment (Zheng et al., 2020), which is a form of data augmen
tation that also helps to address the issue of class imbalance (Wang et al., 
2022b; Zhu et al., 2022). In detail, to avoid the long-tail distribution of 
ground types and ensure balanced training, 5000 and 1000 samples per 
land-cover class were extracted from cropped images for the Qingpu-HSI 
and Matiwan datasets, respectively. The remaining labeled pixels within 
the selected cropped regions served as the validation set. Besides, a 
minibatch sampler was also applied during the training process. When 
evaluating model performance, the cropped areas for training and 
validation are excluded to ensure that pixels used for training and 

validation do not participate in accuracy assessment. Besides, for the 
patch-based models used in the comparative experiments, HSI patches of 
size 9 × 9, centered on each training and validation pixel, were extracted 
to construct the respective datasets. These HSI patches were sampled 
from 16 or 22 distinct cropped regions, ensuring independence from the 
test set.

5.2. Experimental setup

Given the limited available HSI training data, data augmentation 
procedures, including random rotation, cropping, and flipping, were 
implemented to augment the training set and improve model general
ization performance. The number of training epochs was set to 100, and 
the batch size was set to 4 for the Qingpu dataset and 8 for the Matiwan 
dataset. For the proposed PatchOut model, the learning rate was set to 
0.001, and a stochastic gradient descent (SGD) optimizer was employed 
to update the training parameters. Cross-entropy served as the loss 
function. To facilitate a fair comparison, the experimental setups for the 
other comparison models were replicated as reported in the original 
publications. During the inference, we employed a sliding window 
approach with 50 % overlap between adjacent tiles to mitigate the edge 
deterioration prevalent in semantic segmentation tasks (Sun et al., 
2019).

All the experiments were performed entirely on an NVIDIA GeForce 
RTX 4090 GPU. The overall accuracy (OA), Kappa, mean intersection 
over union (mIoU), and frequency weighted intersection over union 
(FWIoU) were selected for the accuracy evaluation of all the classifica
tion models.

5.3. Comparison algorithms

To evaluate the HSI classification performance of the proposed 
PatchOut framework, the following two aspects of comparison deep 
learning methods were considered. The patch-based methods were SSRN 
(Zhong et al., 2018), SpectralFormer (Hong et al., 2022), and PASSNet 
(Ji et al., 2023), for which the input patch size was set to 9. The patch- 
free methods were FPGA (Zheng et al., 2020), ABCNet (Li et al., 2021), 
Swin-Unet (Cao et al., 2023), and ConvNext-V2 (Woo et al., 2023). The 
parameters of the comparison methods were as consistent as possible 
with the original articles.

Table 1 
Sample distribution across the land-cover classes in the Qingpu and Matiwan datasets.

Qingpu dataset Matiwan dataset

No. Classes Train + Val Testing No. Classes Train + Val Testing

C1 Asphalt road 36,545 363,112 C1 Acer negundo 67,250 158,397
C2 Greenhouse 62,687 297,340 C2 Salix 65,277 115,489
C3 Cement road 34,864 368,230 C3 Elm 7688 7665
C4 Lotus 114,804 1,363,364 C4 Oryza sativa 67,988 384,156
C5 Water bamboo 1 192,083 1,570,698 C5 Sophora japonica 133,010 342,581
C6 Farmland 322,359 7,033,623 C6 Fraxinus chinensis 59,808 109,534
C7 Water bamboo 2 172,562 1,907,426 C7 Goldenrain tree 6653 16,651
C8 Water 524,298 14,465,019 C8 Water 60,584 105,063
C9 Buildings 244,680 1,615,848 C9 Bare land 15,336 23,073
C10 Bulrush 23,963 78,620 C10 Post-harvest field 71,257 122,573
C11 Oak 19,399 9240 C11 Stubble 4224 1388
C12 Ligustrum 15,942 18,298 C12 Zea mays 41,078 18,087
C13 Elaeocarpus sylvestris 41,730 19,546 C13 Pyrus 332,121 694,392
C14 Camptotheca acuminata 23,470 2296 C14 Soybean 3975 3176
C15 Soapberry 49,966 33,202 C15 Populus 45,917 45,155
C16 Salix 7649 21,300 C16 Vegetable field 19,071 10,077
C17 Goldenrain tree 34,385 20,218 C17 Sparsewood 588 908
C18 Cedar 39,395 83,672 C18 Weeds 119,845 301,945
C19 Camphor tree 124,765 381,818 C19 Amygdalus 38,317 27,197
C20 Zelkova schneideriana 2315 8340 C20 Buildings 9584 20,032
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5.4. Classification results

5.4.1. Results for the Qingpu HSI dataset
For the Qingpu HSI dataset, the quantitative evaluation of the 

PatchOut framework and other comparison algorithms are presented in 
Table 2, wherein the highest accuracy and second-highest accuracy is 
indicated in bold and underline, respectively. The OA measures the 
global pixelwise classification, while the mIoU assesses the segmenta
tion quality across all classes. The experimental results indicate that our 
PatchOut framework attained superior performance, attaining an OA of 
96.82 %, Kappa of 0.954, mIoU of 0.596, and FWIoU of 0.945. In detail, 
compared with PASSNet, which was the best performing patch-based 
method, the OA of PatchOut is improved by 1.11 %, while the mIoU 
and FWIoU of PatchOut are improved by 2.23 % and 2.05 %, respec
tively. Compared with the other patch-free models, the proposed 
PatchOut framework exhibits a significant performance improvement. 
Quantitatively, it demonstrates improvements of 1.78 %, 16.63 %, and 
2.83 % in OA, mIoU and FWIoU, respectively, when compared to 
ConvNext-V2. Overall, the proposed PatchOut framework performs well 
in the fine-grained land-cover classification task, especially for artificial 
surfaces and crop types.

Fig. 9 and Fig. 10 illustrate the overall and local classification out
comes generated by the different methods for several representative 
areas in the Qingpu dataset, enabling a visual comparison of the model 
performance across diverse land-cover types. As shown in Fig. 9, the 
proposed PatchOut framework improved visual quality, exhibiting 
minimal salt-and-pepper noise, preserving the most complete internal 
structures, and delineating clear boundaries, particularly for cropland 
and water classifications. From the classification results of the local 
magnification (Fig. 10), for instance, from the first and second rows, 
PatchOut could accurately distinguish the two different types of water 
bamboo, which are in different growth cycles. From the third row, some 
models (e.g., Swin-Unet and ConvNext-V2) fail to accurately identify 
camphor tree, which is the main tree species type in the Qingpu area. In 
addition, the proposed PatchOut framework can extract the farmland 
type most completely. From the fourth and fifth rows, when faced with 
fine tree species classification, despite the relatively comparable classi
fication accuracies between the patch-based and patch-free methods, the 
visual quality of the patch-based results is notably inferior, demon
strating poor spatial coherence and continuity in the classification 
output. The final row depicts the classification map of residential area 

and its vicinity, with PatchOut exhibiting better integrity rather than 
fragmentation.

5.4.2. Results for the Matiwan HSI dataset
Table 3 reports the classification results of all compared methods for 

the Matiwan HSI dataset. Comprehensively, the PatchOut framework 
again achieves a superior performance, outperforming the other ap
proaches. The quantitative evaluation demonstrates that the proposed 
PatchOut framework obtains a superior performance, yielding an OA of 
89.96 %, Kappa of 0.883, mIoU of 0.704, and FWIoU of 0.834. PASSNet 
and SSRN, which belong to the patch-based methods, achieve the 
second-highest classification accuracy. The precision for the “Sparse
wood” (C17) category in most of the patch-free methods is lower than 
that for the patch-based methods, which can be attributed to the extreme 
scarcity of samples and their confinement to a single training image. 
These data limitations significantly constrain the performance of the 
patch-free semantic segmentation models.

Fig. 11 presents the visualized classification maps generated by the 
various models on the complete Matiwan HSI dataset. Clearly, the patch- 
based models exhibit salt-and-pepper noise in their classification maps, 
particularly noticeable in the higher-resolution Matiwan dataset due to 
their pixelwise prediction mode. In contrast, the patch-free models, 
especially the proposed PatchOut, generate smoother and visually more 
appealing results. Furthermore, due to the inherent sparsity and varied 
growth conditions of certain classes within the Matiwan dataset, FPGA, 
which is the most lightweight method among the patch-free architec
tures, exhibits notable limitations in its feature extraction and general
ization capabilities. ABCNet, incorporating a bilateral structure, is noted 
for exhibiting a serrated appearance at the edges of objects. Swin-Unet, 
featuring a sliding Transformer window, tends to manifest a checker
board pattern in its classification results. The ConvNext-V2 model 
demonstrates a generally favorable classification performance; howev
er, it encounters occasional misclassification characterized by sparse 
voids in specific regions, e.g., Sophora japonica, due to the limited 
receptive field inherent to CNNs. The proposed PatchOut framework, 
leveraging the combined strengths of the CNN’s local feature extraction 
capability and the Transformer’s ability to capture long-range de
pendencies, achieves the best visual performance. It effectively miti
gates issues such as voids and checkerboard effects, thereby enhancing 
the overall classification accuracy and visual coherence.

Table 2 
Classification accuracies of the different methods on the Qingpu HSI dataset.

Class SSRN SpectralFormer PASSNet FPGA ABCNet Swin-Unet ConvNext-V2 PatchOut

C1 71.03 ± 4.57 71.76 ± 0.71 71.38 ± 7.73 68.54 ± 9.94 70.09 ± 6.95 56.43 ± 6.00 67.06 ± 2.43 72.18 ± 4.79
C2 89.89 ± 1.86 89.05 ± 0.48 90.48 ± 3.52 93.59 ± 1.14 91.51 ± 1.77 84.70 ± 2.36 87.10 ± 2.25 95.54 ± 0.86
C3 95.33 ± 1.08 95.58 ± 0.57 95.60 ± 0.83 94.59 ± 0.66 89.06 ± 4.56 85.22 ± 2.31 91.68 ± 1.01 94.17 ± 1.58
C4 95.55 ± 0.78 96.29 ± 0.02 97.53 ± 0.67 85.23 ± 4.36 96.95 ± 0.57 83.37 ± 3.59 97.96 ± 0.69 98.54 ± 0.58
C5 87.28 ± 2.10 88.91 ± 0.88 92.17 ± 2.05 87.79 ± 1.59 95.49 ± 0.55 91.79 ± 0.97 94.63 ± 0.53 95.22 ± 0.47
C6 87.93 ± 2.32 93.87 ± 0.12 95.15 ± 0.95 88.68 ± 2.78 90.36 ± 2.91 96.48 ± 0.76 96.48 ± 0.86 97.86 ± 0.22
C7 94.69 ± 1.23 92.16 ± 1.35 92.30 ± 0.76 91.62 ± 1.79 89.37 ± 3.44 84.40 ± 2.32 82.28 ± 1.60 96.54 ± 0.25
C8 97.56 ± 0.84 98.16 ± 0.11 98.28 ± 0.31 94.73 ± 0.93 91.39 ± 6.14 98.31 ± 0.40 98.58 ± 0.29 98.58 ± 0.15
C9 93.15 ± 0.75 89.66 ± 0.42 95.90 ± 0.62 90.52 ± 2.14 88.33 ± 1.62 88.30 ± 3.21 92.49 ± 1.71 94.30 ± 0.78
C10 64.53 ± 1.19 68.86 ± 0.01 72.32 ± 2.86 58.95 ± 0.59 77.62 ± 10.85 63.71 ± 1.87 74.00 ± 3.70 64.97 ± 1.92
C11 97.00 ± 0.58 95.64 ± 0.36 98.19 ± 0.60 100.00 ± 0.00 100.00 ± 0.01 93.92 ± 4.19 93.71 ± 6.41 99.26 ± 0.87
C12 22.29 ± 1.62 18.35 ± 0.33 22.96 ± 1.36 16.77 ± 1.23 26.41 ± 1.20 17.49 ± 1.30 17.62 ± 3.48 23.85 ± 3.93
C13 87.29 ± 1.99 78.31 ± 1.55 81.67 ± 0.17 76.27 ± 6.49 80.78 ± 0.84 40.25 ± 8.12 61.27 ± 10.38 87.65 ± 4.73
C14 96.33 ± 2.29 86.73 ± 8.24 79.55 ± 6.64 79.49 ± 20.19 88.01 ± 5.57 84.31 ± 7.44 67.74 ± 9.98 88.12 ± 9.26
C15 64.42 ± 3.04 60.76 ± 0.20 64.75 ± 3.01 48.85 ± 7.85 42.20 ± 14.17 52.76 ± 3.80 54.15 ± 4.72 46.84 ± 11.78
C16 83.95 ± 6.03 82.04 ± 3.50 71.11 ± 7.76 53.47 ± 9.84 49.15 ± 21.23 84.39 ± 9.16 33.94 ± 7.20 36.99 ± 6.43
C17 82.72 ± 4.98 81.44 ± 1.56 86.82 ± 1.35 48.13 ± 0.85 48.23 ± 4.56 76.80 ± 5.74 74.27 ± 13.37 51.39 ± 4.98
C18 56.32 ± 2.85 53.07 ± 0.71 69.68 ± 7.21 41.45 ± 3.29 40.95 ± 5.26 43.66 ± 1.65 45.42 ± 5.38 54.55 ± 4.35
C19 86.43 ± 0.55 73.16 ± 1.28 85.11 ± 2.09 57.17 ± 6.77 73.30 ± 7.21 63.25 ± 1.69 73.84 ± 5.35 81.38 ± 2.66
C20 6.75 ± 10.82 0.64 ± 0.53 0.94 ± 0.54 59.41 ± 12.69 38.27 ± 24.25 20.21 ± 18.39 22.29 ± 8.71 62.79 ± 6.52
OA 93.30 ± 0.83 94.59 ± 0.02 95.76 ± 0.30 90.82 ± 0.43 90.45 ± 2.78 93.71 ± 0.24 95.13 ± 0.31 96.82 ± 0.08
Kappa 0.905 ± 0.011 0.923 ± 0.000 0.939 ± 0.004 0.871 ± 0.006 0.867 ± 0.036 0.910 ± 0.003 0.930 ± 0.004 0.954 ± 0.001
mIoU 0.538 ± 0.003 0.515 ± 0.005 0.583 ± 0.009 0.466 ± 0.008 0.483 ± 0.024 0.448 ± 0.007 0.511 ± 0.005 0.596 ± 0.007
FWIoU 0.890 ± 0.013 0.910 ± 0.001 0.926 ± 0.005 0.860 ± 0.006 0.850 ± 0.036 0.904 ± 0.004 0.919 ± 0.004 0.945 ± 0.001
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Fig. 9. Classification maps obtained by the different methods on the Qingpu HSI dataset. (a) True-color images. (b) Labels. Patch-based methods: (c) SSRN. (d) 
SpectralFormer. (e) PASSNet. Patch-free methods: (f) FPGA. (g) ABCNet. (h) Swin-Unet. (i) ConvNext-V2. (j) PatchOut.
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Fig. 10. Local classification maps obtained by the different methods on the Qingpu HSI dataset. (a) True-color images. (b) Labels. Patch-based methods: (c) SSRN. (d) 
SpectralFormer. (e) PASSNet. Patch-free methods: (f) FPGA. (g) ABCNet. (h) Swin-Unet. (i) ConvNext-V2. (j) PatchOut.

Table 3 
Classification accuracies of the different methods on the Matiwan HSI dataset.

Class SSRN SpectralFormer PASSNet FPGA ABCNet Swin-Unet ConvNext-V2 PatchOut

C1 83.59 ± 1.34 77.82 ± 1.58 85.90 ± 2.88 59.31 ± 6.47 71.01 ± 10.60 72.78 ± 7.39 80.03 ± 5.19 87.05 ± 0.55
C2 93.11 ± 0.81 90.09 ± 1.34 93.16 ± 1.10 89.20 ± 3.86 84.25 ± 0.42 93.88 ± 1.98 92.69 ± 6.12 98.18 ± 0.50
C3 95.63 ± 1.36 92.91 ± 0.67 95.98 ± 3.05 64.79 ± 6.02 18.88 ± 4.09 80.36 ± 30.19 95.80 ± 5.20 84.72 ± 12.54
C4 95.43 ± 0.34 95.27 ± 0.36 94.84 ± 0.52 88.56 ± 4.29 90.30 ± 7.67 96.35 ± 0.75 96.59 ± 0.75 96.23 ± 1.26
C5 84.58 ± 3.18 77.53 ± 2.57 85.00 ± 1.10 57.01 ± 6.37 80.01 ± 3.13 71.44 ± 3.06 72.15 ± 8.26 88.03 ± 2.19
C6 94.65 ± 0.70 93.82 ± 0.56 88.98 ± 4.48 74.59 ± 6.75 77.30 ± 3.81 91.94 ± 2.44 93.79 ± 3.03 91.94 ± 2.41
C7 92.96 ± 2.09 76.99 ± 4.30 79.25 ± 11.76 51.76 ± 11.16 80.39 ± 5.29 70.57 ± 14.35 90.48 ± 1.50 93.75 ± 4.83
C8 86.38 ± 1.81 86.85 ± 2.79 89.52 ± 1.98 73.54 ± 2.16 93.66 ± 2.81 84.84 ± 3.90 86.34 ± 4.51 92.83 ± 2.11
C9 89.09 ± 3.19 92.14 ± 0.97 91.90 ± 2.83 54.67 ± 21.48 89.70 ± 4.66 89.02 ± 3.39 80.10 ± 3.27 99.15 ± 0.48
C10 98.52 ± 0.43 97.94 ± 0.25 99.57 ± 0.11 93.29 ± 3.79 91.04 ± 3.94 82.41 ± 2.43 89.38 ± 7.14 99.48 ± 0.48
C11 82.74 ± 6.67 82.36 ± 2.34 81.54 ± 3.96 70.09 ± 7.03 64.93 ± 9.32 67.78 ± 9.07 89.12 ± 4.95 89.51 ± 2.19
C12 86.60 ± 2.11 91.36 ± 0.78 90.91 ± 1.29 84.89 ± 0.64 90.19 ± 1.45 88.04 ± 1.56 93.10 ± 1.97 95.07 ± 0.45
C13 87.18 ± 1.63 74.72 ± 1.12 85.77 ± 1.67 85.96 ± 2.44 82.05 ± 2.55 78.31 ± 2.61 92.37 ± 1.44 88.68 ± 0.73
C14 36.78 ± 5.58 36.12 ± 4.83 48.22 ± 7.04 58.43 ± 20.45 62.40 ± 5.59 20.08 ± 2.31 24.78 ± 10.29 51.33 ± 9.41
C15 79.60 ± 4.05 79.26 ± 2.79 87.19 ± 2.10 74.68 ± 2.23 89.01 ± 2.45 77.03 ± 3.39 80.33 ± 1.45 88.83 ± 1.81
C16 79.25 ± 2.91 80.33 ± 2.13 77.86 ± 3.02 77.40 ± 4.41 72.35 ± 15.86 61.20 ± 14.49 70.34 ± 9.88 77.86 ± 7.84
C17 57.56 ± 15.31 66.85 ± 3.85 77.71 ± 6.53 2.38 ± 2.44 0.00 ± 0.00 72.05 ± 30.99 47.22 ± 13.82 21.01 ± 10.78
C18 83.93 ± 2.14 70.49 ± 1.68 85.25 ± 1.84 66.81 ± 3.48 70.59 ± 5.67 68.65 ± 4.73 85.25 ± 5.25 79.52 ± 4.53
C19 88.98 ± 4.55 79.71 ± 1.64 89.92 ± 2.61 52.60 ± 17.42 81.43 ± 2.98 69.90 ± 2.47 74.63 ± 2.82 98.15 ± 0.90
C20 74.20 ± 8.16 74.54 ± 0.88 81.07 ± 3.95 76.23 ± 4.32 80.41 ± 7.62 67.55 ± 10.95 71.38 ± 10.37 86.37 ± 2.00
OA 88.34 ± 0.34 81.58 ± 0.38 88.34 ± 0.18 76.57 ± 1.18 81.70 ± 2.06 80.18 ± 1.14 87.42 ± 1.64 89.96 ± 0.36
Kappa 0.865 ± 0.004 0.788 ± 0.005 0.865 ± 0.002 0.726 ± 0.014 0.787 ± 0.024 0.771 ± 0.013 0.853 ± 0.019 0.883 ± 0.004
mIoU 0.620 ± 0.005 0.564 ± 0.009 0.645 ± 0.008 0.486 ± 0.007 0.569 ± 0.019 0.530 ± 0.032 0.669 ± 0.033 0.704 ± 0.021
FWIoU 0.814 ± 0.005 0.728 ± 0.006 0.810 ± 0.003 0.648 ± 0.016 0.712 ± 0.030 0.701 ± 0.013 0.789 ± 0.021 0.834 ± 0.005
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Fig. 11. Classification maps obtained by the different methods on the Matiwan HSI dataset. Patch-based methods: (a) True-color images. (b) Labels. Patch-based 
methods: (c) SSRN. (d) SpectralFormer. (e) PASSNet. Patch-free methods: (f) FPGA. (g) ABCNet. (h) Swin-Unet. (i) ConvNext-V2. (j) PatchOut.
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6. Discussion

6.1. Time consumption comparison

The analysis of the computational efficiency is shown in Table 4, 
focusing on three key metrics: model parameter count, computational 
complexity (FLOPs), and inference time. Firstly, the patch-free methods, 
used for semantic segmentation, exhibit larger parameter counts and 
FLOPs compared to the patch-based approaches, which are typically 
used for classification tasks, primarily attributed to the substantial dif
ferences in input dimensions. The patch-free models can process and 
predict entire images of 512 × 512 or 256 × 256 pixels in a single for
ward pass, while the patch-based methods operate on smaller 9 × 9 
patches, generating predictions for only the central pixel of each patch. 
Consequently, in terms of inference time, despite the implementation of 
GPU parallelization optimization to maximize the GPU utilization for 
the patch-based methods, the patch-free approaches demonstrate 
significantly faster performances. The disparity in inference time be
comes even more pronounced when processing larger HSIs. For the 
Qingpu HSI dataset, the proposed framework requires only 135.22 s, 
including data loading. In contrast, the fastest patch-based method
—PASSNet—exceeds 2000 s. While achieving comparable or superior 
accuracy to patch-based methods, the proposed patch-free model offers 
substantial and noteworthy improvements in computation efficiency.

6.2. Ablation study

Several ablation experiments were conducted to evaluate the per
formance brought by the proposed RTB, MSSSFF and FRM modules. The 
baseline model employed a hybrid encoder architecture comprising a 
standard Vision Transformer and CNN, while utilizing solely CNN 
upsampling in the decoder phase. The proposed modules were then 
incrementally incorporated into the baseline. Additionally, in order to 
evaluate the performance of proposed RTB, it was removed from the 
PatchOut framework, replacing it with a standard Vision Transformer 
block. As can be seen in Table 5, the ablation study results demonstrate 
that the inclusion of these modules effectively enhances the performance 
of the proposed PatchOut framework. Specifically, especially for the 
mIoU and FWIoU indicators, the integration of the three proposed 
modules leverages the Transformer’s capacity for long-range feature 
extraction and the exploitation of adjacent pixels, resulting in more 
comprehensive classification outcomes and reduced noise.

6.3. Sensitivity analysis on image size and batch size

To evaluate the potential impact of image size and batch size settings 
on model performance, further experiments were implemented. The 
original training datasets were divided into four subsets for training. 
Specifically, for the Qingpu dataset, 256 × 256 patches were used with 
batch sizes of 4, 8, and 16. For the Matiwan dataset, 128 × 128 patches 
were used with batch sizes of 8, 16, and 32. As shown in Table 6, under 
different combinations of image size and batch size, our proposed 
PatchOut model consistently maintains the best overall accuracy per
formance. Besides, the results indicate that smaller training sample sizes 
(implying fewer land cover types per image) generally require larger 
batch sizes for most models to maximize type diversity within each 
iteration.

6.4. Sensitivity analysis on overlap percentage

While overlapping inference is widely adopted in large-scale image 
semantic segmentation for its benefits, it inherently leads to redundant 
computations. Thus, we reduced the percentage of overlap to 33 % or 25 
% for further experiments. As shown in Table 7, the model performance 

Table 4 
Total trainable parameters, FLOPs, and prediction times for the different methods on the Qingpu and Matiwan datasets.

Dataset SSRN SpectralFormer PASSNet FPGA ABCNet Swin-Unet ConvNext-V2 PatchOut

Qingpu Params 0.92 M 0.49 M 0.70 M 2.84 M 15.18 M 27.53 M 11.16 M 30.65 M
FLOPs 269.06 M 50.87 M 56.84 M 165.67 G 118.51 G 37.62 G 58.032 G 275.87 G
Inference time (s) 4284.07 9679.69 2010.76 157.92 147.88 151.42 92.4 135.22

Matiwan Params 0.93 M 0.50 M 0.72 M 2.84 M 15.21 M 27.54 M 11.17 M 30.65 M
FLOPs 273.41 M 52.37 M 58.35 M 41.70 G 30.14 G 9.44 G 14.52 G 69.17 G
Inference time (s) 432.78 696.39 183.15 17.81 17.69 27.54 20.56 30.22

Table 5 
Ablation experiments on the Qingpu and Matiwan datasets.

Method Qingpu dataset Matiwan dataset

RTB MSSSFF FRM OA Kappa mIoU FWIoU OA Kappa mIoU FWIoU

ViT × × 95.93 0.942 0.554 0.930 87.60 0.856 0.647 0.803
√ × × 96.11 0.944 0.545 0.935 87.95 0.860 0.657 0.812
√ √ × 96.57 0.951 0.569 0.941 89.46 0.878 0.676 0.831
√ × √ 96.53 0.950 0.578 0.939 89.19 0.875 0.680 0.823
√ √ √ 96.82 0.954 0.596 0.945 89.96 0.883 0.704 0.834
ViT √ ViT 96.47 0.949 0.571 0.939 89.44 0.877 0.687 0.826

Table 6 
Classification accuracies of the different methods on the Qingpu and Matiwan 
dataset under different image size and batch size.

Dataset Image 
Size

FPGA ABCNet Swin- 
Unet

ConvNext- 
V2

PatchOut

Qingpu I256B4 91.89 
± 1.67

89.86 
± 1.80

93.92 
± 0.32

93.97 ±
0.67

95.15 ±
0.43

I256B8 92.61 
± 0.36

90.55 
± 1.72

94.20 
± 0.41

94.28 ±
0.79

96.33 ±
0.16

I256B16 92.86 
± 0.13

91.78 
± 1.22

93.94 
± 0.40

94.63 ±
0.17

96.76 ±
0.08

I512B4 90.82 
± 0.43

90.45 
± 2.78

93.71 
± 0.24

95.13 ±
0.31

96.82 ±
0.08

Matiwan I128B8 77.48 
± 0.56

80.90 
± 1.48

80.87 
± 0.69

85.99 ±
2.15

87.47 ±
0.89

I128B16 77.12 
± 2.50

82.81 
± 1.12

81.24 
± 0.79

87.43 ±
0.71

87.53 ±
0.96

I128B32 77.74 
± 0.59

84.58 
± 0.66

80.93 
± 0.95

86.68 ±
0.37

88.69 ±
0.91

I256B8 76.57 
± 1.18

81.70 
± 2.06

80.18 
± 1.14

87.42 ±
1.64

89.96 ±
0.36

Notes: I means image size, B means batch size. I256B4 means the image size is set 
as 256 and the batch size is set as 4.
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varied across different overlap ratios. We posit that this variation may be 
attributed to the extent of edge degradation inherent in each model. Our 
proposed PatchOut model achieved consistent accuracy across varying 
overlap ratios. This performance stability suggests that the hybrid 
Transformer-CNN architecture effectively integrates the local receptive 
fields of CNNs and the global receptive fields of Transformers, thus 
mitigating the impact of edge effects on accuracy.

7. Conclusion

In this paper, we propose a novel patch-free frame
work—PatchOut—specifically designed for the task of HSI semantic 
segmentation. This framework integrates Transformer and CNN archi
tectures, leveraging their combined capacity to learn both global and 
local representations, thereby facilitating a more comprehensive un
derstanding of the spectral-spatial characteristics of HSI. By synergisti
cally leveraging the respective strengths of the CNN and Transformer, 
the unified framework facilitates the simultaneous modeling of high- 
resolution local features and low-resolution global representations, 
thus enabling the extraction of multi-level spatial and spectral charac
teristics. The proposed MSSSFF module leverages the Transformer ar
chitecture to aggregate and extract multi-scale features, thereby 
facilitating a more comprehensive understanding of the spectral-spatial 
characteristics inherent in HSIs. In addition, the proposed FRM enhances 
the low-resolution features in the decoder by integrating them with 
high-resolution features from the encoder, enabling effective feature 
restoration. Moreover, we have described how a large-scale HSI dataset 
covering Qingpu District, Shanghai, China, was constructed for fine 
land-cover classification. Empirical evaluations demonstrate that the 
proposed PatchOut framework, as a semantic segmentation approach, 
can effectively extract spectral-spatial features from HSIs. Compared to 
the existing patch-free methods, PatchOut achieves superior classifica
tion accuracy, while significantly outperforming the patch-based ap
proaches in terms of computational efficiency. Given the challenges in 
obtaining labeled HSI data, feature research will explore the self- 
supervised learning paradigms to minimize the requirement for anno
tated samples.
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