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A B S T R A C T

Inverting soil parameters through hyperspectral techniques is currently one of the highly popular research topics 
and the major challenges in quantitative remote sensing. To date, indoor spectral data-based inversion models 
cannot be directly applied to satellite-based hyperspectral data, due to the weak model migration capability 
caused by the large differences between the two spectral data. Therefore, the present study aims to improve the 
inversion soil parameter accuracies using satellite-based GF-5 hyperspectral remote sensing data by merging 
multiple hyperspectral data. First, indoor Analytical Spectral Devices (ASD) hyperspectral and pre-processed GF- 
5 data of soil samples were used to develop a variational auto-encoder (VAE)-based spectral fusion model capable 
of transforming GF-5 spectra into indoor spectra. Second, traditional machine learning regression algorithms, 
namely Partial Least Squares Regression (PLSR) and Support Vector Regression (SVR), were used to build an 
inversion model using the mixed spectra data to determine the spatial distributions of soil organic matter (SOM), 
arsenic (As) and copper (Cu) contents across a large study area. The results demonstrated the effectiveness of the 
VAE-based spectral fusion model in removing substantial noise information while preserving the spectral features 
from the GF-5 data. The optimal inversion accuracies of the SOM, As, and Cu contents showed coefficients of 
determination (R2) of 0.87, 0.88, and 0.85, which are 38%, 55%, and 28% higher than those obtained using the 
original GF-5 data-derived model, respectively. In addition, the spatial distributions of the SOM, As, and Cu 
contents demonstrated that the GF-5 satellite data are more intuitive and effective for large-scale soil compo
sition analysis.

1. Introduction

As the Earth’s epidermis, the soil is a surface material located at the 
interface between the atmosphere and the lithosphere, playing an 
essential role in global climate change and biogeochemical cycles (Song 
et al., 2022). The assessment of soil composition has theoretical rele
vance for studying carbon peak, carbon neutrality, global warming, and 
extreme global weather evolution. Traditional in-situ sampling methods 
are costly, labor-intensive, and time-consuming, delaying soil 

monitoring activities (Ben-Dor, 2002). In contrast, hyperspectral remote 
sensing technology can rapidly detect minute changes in soils and 
extract soil components (Du et al., 2020). Indeed, several hyperspectral 
methods have been developed and used to invert soil components 
worldwide, attracting great attention from researchers worldwide (Ben- 
Dor, 2002; Ben-Dor et al., 2019).

The main objective of hyperspectral soil component inversion is to 
obtain sensitive bands or feature bands with accurate and universal 
identification of soil compositions. However, only a small number of soil 
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components exhibit distinct and consistent sensitivity bands. Indeed, 
water has sensitive band features around 1400 and 1900 nm (Viscarra 
Rossel and Behrens, 2010), while clay minerals exhibit sensitive band 
features around 2200 nm (Lagacherie et al., 2008). In contrast, there are 
no particular sensitivity features regarding soil organic matter (SOM). 
However, Ou et al. (2022) highlighted a good correlation of the SOM 
scattering characteristics at around 2200 nm using the Kubelka-Munk 
inversion method. While other researchers have indicated a good cor
relation of the SOM scattering characteristics at the visible near-infrared 
(VNIR) band range (Al-Abbas et al., 1972; Chabrillat et al., 2019). On the 
other hand, soil heavy metal arsenic (As) is more sensitive in the short- 
wavelength infrared (Ou et al., 2021). In addition, Wu et al. (2007)
demonstrated the presence of distinct spectral absorption features of soil 
chromium (Cr) and copper (Cu), when concentrations greater than 4000 
mg/kg at 0.61 and 0.83 μm, respectively. However, soils with heavy 
metal concentrations at such high concentrations are uncommon in 
nature. Therefore, sensitive features of soil heavy metals and SOM are 
still to be investigated.

Data-driven models are currently the most widely tools for imple
menting hyperspectral inversion of soil components. Indeed, these 
models can provide good inversion at the local scale and enable rapid 
soil component mapping over research areas (Ben-Dor, 2002). Most 
indoor spectrum data and hyperspectral remote sensing data modeling 
methods implement a similar process, involving data pre-processing, 
feature selection/extraction, and statistical Regression modeling- 
mapping (Gholizadeh et al., 2015; Shi et al., 2014; Wang et al., 2018). 
In general, preprocessing involves filtering, transformation, and other 
techniques; Feature selection/extraction mainly involves the use of 
some models, such as the Competitive Adaptive Reweighted Sampling 
(CARS) algorithm and Pearson correlation analysis (Cohen et al., 2009); 
Statistical regression modeling is performed by several methods, such as 
Partial Least Squares Regression (PLSR) and Support Vector Regression 
(SVR) (Smola and Schölkopf, 2004). Statistical models can provide 
satisfactory inversion results when applied to indoor and airborne 
spectral data. Tan et al. (2021) employed the CARS and stacking inte
gration techniques to develop heavy metal inversion models of As, Cr, 
Pb, and Zn for airborne HyMap hyperspectral data of the northeastern 
black land, showing correlation coefficients greater than 0.6. In recent 
years, Deep Learning has emerged as a substantial breakthrough in the 
machine learning field. Because of its great advantage in feature 
extraction, it has been used in several studies on hyperspectral in
versions. Padarian et al. (2019) used a multitask CNN model to construct 
prediction models for soil organic carbon, clay, pH, and total nitrogen 
(N) based on 20,000 LUCAS-derived surface soil spectra from 23 Euro
pean Union countries, demonstrating the effectiveness of the multitask 
CNN model in reducing the prediction error of soil organic carbon by 87 
and 62 % compared to the PLSR and Cubist regression methods, 
respectively. Whereas Tsakiridis et al. (2020) implemented a local 
multichannel 1D convolutional neural network to predict the organic 

matter components based on the LUCAS dataset, with a performance of 
0.86, indicating a significantly improved accuracy over the standard 
regression methods.

Although indoor hyperspectral and hyperspectral remote sensing 
data can be used to construct a reliable statistical regression model. 
Indoor spectral models cannot be applied directly to remote sensing data 
and vice versa (Wan et al., 2022). Laboratory spectroscopy can provide 
comprehensive insights for constructing high-quality inversion models 
through the elimination of a large variety of environmental disturbances 
(e.g., atmosphere, soil particle size, and soil moisture) (Camargo et al., 
2015; Chabrillat et al., 2019; Piekarczyk et al., 2016). However, 
numerous environmental factors can influence airborne and satellite- 
based hyperspectral remote sensing data, resulting in low precision or 
even model failure. Moreover, unlike laboratory spectra, it is often 
challenging to introduce sensitive features in remote sensing spectral 
data due to the low soil heavy metal contents. Therefore, in order to 
enhance the soil spectral features of hyperspectral remote sensing data, 
it is crucial to eliminate environmental factors. Multi-source data fusion 
has been attracting great interest. Indeed, deep generative models, such 
as variational auto-encoder (VAE) and generative adversarial network 
(GAN), have been successfully applied to hyperspectral image classifi
cation in several related studies, providing novel methods for data fusion 
(Wang et al., 2019; Yu et al., 2020).

In multi-source spectral data fusion, deep generative models need 
primarily to address two issues. First, unlike classification tasks, where 
various categories of spectra have distinct differentiability, quantitative 
analysis of soil composition requires accurate differentiable features; 
Second, assessing the generative spectra-derived features accuracy. In 
this context, the main objective of the present study is to integrate the 
spectral features of soil components from indoor spectra and remote 
sensing hyperspectral data in order to achieve high-precision inversions 
of SOM and soil heavy metal contents. The novelty of the present study 
lies primarily in the feature fusion and spectral generation of laboratory 
spectra and satellite-based remote sensing data using an improved VAE- 
based technique. Our proposed method can generate stable and reliable 
full-spectrum data while preserving the spectral soil features. The con
structed statistical regression inversion model is highly accurate, 
providing a reliable and stable baseline product for large-scale soil 
pollution and fertility assessments.

2. Study area and datasets

2.1. Study area

The study area is located in the southeastern part of Yitong Manchu 
Autonomous County in Western Jilin Province, China, which ranges 
from 125.31◦E-126.21◦E and 42.93◦N-43.33◦N, covering a total area of 
about 3800 km2 (Fig. 1). The minimum and maximum elevations in the 
study area are 233 and 833 m, respectively, with mostly hilly and 

Fig. 1. Study area and its land cover product.
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relatively flat terrain. The study area is located in a black soil area in the 
northeastern part, where the main soil type is a moderately fertile dark 
brown loam. The land cover product of China (CLCD) is obtained from 
Yang and Huang (Yang and Huang, 2023). From the CLCD data, it can be 
seen that cropland dominates the area, with forested land being the 
second largest. Crops are relatively homogeneous, consisting mainly of 
corn and rice in the lowlands. There are few industries in the study area, 
but there are numerous small gold mines, some of which are still oper
ational, constituting the main sources of pollution in the study area.

2.2. Datasets

2.2.1. Field sampling data and laboratory spectra
Soil samples were collected from 91 sampling points, evenly 

distributed across a 100 km2 cultivated area in the upper northwestern 
part of the study area, over the April 18-April 22, 2017 period. The 
geographic locations of the field sampling points are shown in Fig. 2. All 
soil samples were collected from the topsoil layer (0–5 cm). Real-time 
kinematic (RTK) positioning was used concurrently to record the pre
cise location data of the sampling sites. The collected soil samples first 
underwent a preliminary removal of impurities, then air-dried, ground, 
and sieved through a 100-mesh sieve. In addition, 91 soil spectra were 
measured using an ASD FieldSpec3 (400–2500 nm) and a 6.5-watt-tung
sten-halogen lamp.

In this study, the potassium dichromate volumetric method was used 
to determine the SOM contents, while the ICP-MS method was used to 
determine the soil As and Cu contents. Table 1 provides an overview of 
the soil composition observed in the study area. The SOM content was 

Fig. 2. Geographic locations of field sampling points overlaid on the GF-5 hyperspectral image.

Table 1 
Basic information on soil composition in the study area.

Descriptive statistics Pearson Correlation

Max Min Mean C.V Kurtosis Skewness SOM As Cu

SOM (g/kg) 49.84 14.76 30.55 0.21 0.72 0.11 1.00 − −

As (mg/kg) 419.96 6.35 44.12 1.55 13.55 3.40 0.03 1.00 −

Cu (mg/kg) 94.45 10.37 20.02 0.63 16.09 3.73 0.12 − 0.07 1.00

Fig. 3. Flowchart of the methodology used in this study.
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30 g/kg, with a low coefficient of variation, suggesting fewer effects of 
human activities on the SOM contents. In contrast, the coefficients of 
variation of soil As and Cu were high. Moreover, the high kurtosis and 
skewness values indicated that soil samples were more likely to be 
influenced by human activities. The low correlation between the three 
analyzed soil parameters suggests that there were no 
concomitant phenomena.

2.2.2. GF-5 hyperspectral data
The Gaofen-5 (GF-5) satellite, launched on May 9, 2018, is part of the 

China High-Resolution Earth Observation System. The GF-5 satellite is 
equipped with VNIR and SWIR hyperspectral sensors, of which the VNIR 
(400–1000 nm) sensor has a spectral resolution of 5 nm and contains 
150 bands, while the SWIR (1000–2500 nm) sensor has a spectral res
olution of 10 nm and contains 180 bands. The swath width and spatial 
resolution are 60 km and 30 m, respectively.

In this study, a high-quality GF-5 hyperspectral image was acquired 
on February 1, 2019. The acquired GF-5 hyperspectral images were 
preprocessed using radiometric calibration, geometric correction, and 
atmospheric correction. The calibration coefficients reported by Tan 
et al. (2020) were used as radiometric calibrations, while atmospheric 
correction was performed using FLAASH software (Berk et al., 1999). 
The preprocessed GF-5 hyperspectral image data had a size of 2008 ×
2083 × 330 pixels, with a spatial resolution of 30 m and a digitization 
footprint of 0.00699 Mb/ha (Fig. 3). Water vapor absorption leads to 
low reflectance and significant noise near 1400 nm and 1800 nm 
(Guanter et al., 2006). Therefore, the spectral regions between 
1342–1451 nm and 1771–1977 nm were removed, while 285 bands 
were finally retained.

As shown in Fig. 2, the ice in the study area had not melted. In 
addition, there was a lack of leaves since the images were acquired in 
February. Thin clouds on the right side of the GF-5 image may affect the 
inversion mapping result and must, therefore, be removed. Although the 
area from which the soil samples were collected is relatively small (100 
km2), the overall image exhibits high radiometric consistency (Tan 
et al., 2020). Ge et al.(2022) and Wu et al. (2021) have demonstrated the 
effectiveness of targeted regional sampling for producing large scale 
maps of soil composition with enhanced precision. Meng et al.’s (2024)
SOC results showed a high degree of consistency in the organic carbon 
content of this study area. Therefore, the soil samples are representative, 
and the inversion results can reflect the overall distribution trend.

2.2.3. Digital Elevation model
The Digital Elevation Model (DEM), with a resolution of 12.5 m, was 

obtained from the Alaska Satellite Facility Distributed Active Archive 
Data Center (ASF DAAC) (Logan et al., 2014).

3. Methods

Fig. 3 shows the flowchart of the methodology used in this study. 

First, GF-5 and indoor ASD spectra were merged using an implemented 
VAE-style deep network. Although the generated spectra contain the 
spectral information of ASD, some GF5 spectral features were also lost. 
Therefore, the GF5 spectra were combined with the generated spectra. 
Finally, the CARS method was used to select features of the mixed 
spectra, while the SVR and PLSR methods were used to construct the soil 
composition inversion model.

3.1. Spectral data fusion

Despite the two-year difference between soil sampling and hyper
spectral image acquisition, low variability and high correlation of soil 
heavy metal content were reported (Wu et al., 2021). The results of 
(Castaldi et al., 2018; Lagacherie et al., 2012; Qin et al., 2021) also show 
that the time difference between the image and the sampling points can 
also obtain better inversion results. In particular, Castaldi et al. (2018)
used 2015 APEX data with 2009 LUCAS soil sample data for soil organic 
matter inversion, which also suggests that time span has less impact on 
soil composition inversion results. Meng et al.’s (2024) SOC result shows 
a moderate decrease (0.40 g/kg) from 2001 to 2021, which indicates 
that soil composition in the study area changed very little over the two- 
year period. Direct applications of indoor spectra-derived soil compo
sition inversion models to imaging data lead often to very poor accuracy, 
which is due to the significant difference between indoor and imaging 
spectra. Indoor spectra are less sensitive to environmental perturbations, 
thus the model accuracies can reach 0.9 or higher. In contrast, imaging 
spectral data make it challenging to construct similarly accurate models. 
Therefore, a VAE style-based spectral fusion model was constructed to 
mitigate the time interval-related spectral differences and to fully utilize 
the indoor spectral and imaging spectral information to improve the 
inversion accuracy.

3.1.1. VAE style-based spectral fusion model
Variational auto-encoder (VAE) is an extension of the AE data gen

eration model that includes distribution in the latent space (Phillips and 
Abdulla, 2022). The training of VAE involves the introduction of prob
ability distributions into the latent space in order to prevent overfitting 
and ensure appropriate latent space properties for the data generation 
process (Doersch, 2016). The principle of the proposed VAE style-based 
spectral fusion model is shown in Fig. 4. The model is similar to the 
conventional VAE model, except that the final loss function optimization 
is calculated using the indoor and generated spectra. Due to the high 
dimensional input spectra, the model employs three implicit layers in 
the encoding and decoding processes, resulting in a closer approxima
tion of the generated spectra to the indoor spectra. To minimize over
fitting, we used a dropout of 0.4 to the encoding layer, with ReLu as the 
activation function between the hidden layers.

3.1.2. Loss function
The encoding process of the model ensures that the data distribution 

Fig. 4. VAE style-based spectral fusion model.
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meets a normal distribution. The reparameterization trick function can 
be computed mainly using the following equation: 

Z = exp(σ) × ε+ μ (1) 

Where σ denotes the sample variance; ε is obtained from a random 
normal distribution; μ denotes the sample mean.

The Kullbeck-Leibler divergence (KLD) was used to transform the 
latent distribution to a standard Gaussian (Cha et al., 2019). As shown in 
Eq. (2), it is sufficient to minimize the KLD in the loss function. 

KLD =
∑(

exp(σ) − (1+σ)+ μ2
)

(2) 

Since our samples consisted of soils, the homogeneity of soil spectral 
is high. In addition, the trained spectra may be different when using 
methods that directly result in minimized mean square error (MSE). 
Therefore, the spectral angle distance (SAD) is considered part of the loss 
function, making the generated spectra more convergent to the indoor 
spectra while retaining more spectral features (Sohn and Rebello, 2002). 
The spectral angle distance can be determined using Eq. (3). 

MinSAD(X*,Xi) = cos− 1

(
(X*)

TXi

((X*)
TX*)

1/2( XT
i Xi
)1/2

)

(3) 

Where X* denote the generated spectra from the sample Xi denotes the 
ASD indoor spectra. The SAD value is small when two spectra are more 
similar.

The KLD can control the distribution of the generated spectral data, 
while SAD can maintain the generated spectra’s waveforms more similar 
to indoor spectra. However, in quantitative remote sensing, the spectra 
between different components may also differ significantly from the 
overall spectra. Therefore, distance measures are required to make the 
distribution of the generated spectra similar to the indoor spectra, 
maintaining the soil component feature patterns on the spectra. The 
Maximum Mean Discrepancy (MMD) was used to determine the distance 
between two distinct and related distributions according to the 
following equation (Borgwardt et al., 2006): 

MinMMD(X,Y) = ‖
1
n
∑n

i=1
∅(xi) −

1
m
∑m

j=1
∅(yi)‖

2

H

(4) 

Where H denotes the distance measured by the mapping (∅) of the re
generated Hilbert space. ∅ can be expressed as a kernel function. In this 
study, we used the Gaussian kernel function. Hence, the final loss 
function can be expressed as follows: 

Minloss = MMD+ α*SAD+KLD (5) 

Where α is used to regulate the spectral dominant generating features. 
Higher and lower α values indicate a more similar spectral spectrum and 
distribution feature, respectively. The final adjustment of the α value can 
balance the spectral waveform and spectral distribution. In this study, α 
was set to 0.1.

3.1.3. Spectral fine-tuning spectra
Since there is a dropout in the neural network, changing random 

seeds during algorithm evaluation may exhibit an effect on the algo
rithm accuracy results (Picard, 2021). Moreover, minor changes in soil 
spectra can also influence the correlation between soil compositions and 
spectra. Therefore, defining the optimal number of random seeds is 
necessary to improve the correlation between soil compositions and 
spectra. In this study, the optimal number of random seeds for each 
component was defined within a range from − 9999 to 9999 to improve 
the correlations between the observed SOM, As, and Cu contents of the 
training samples and the generated spectra. Savitsky-Golay filters were 
first used to determine the three optimal generated spectra, then the 
final generated spectra were obtained after averaging. However, the 

generated spectra may lose some of the original features. Hence, they 
were combined with the original GF-5 spectra to perform the fusion of 
multiple spectral features.

In the VAE style-based spectral fusion model experiment, indoor 
spectra with the same dimensions as GF5 spectra were created using 
linear interpolation. The optimizer used employs the Adam algorithm, 
with optimal step size and epoch of 1e– 4 and 100, respectively (Kingma 
and Ba, 2014). The dataset was divided into training and testing sub- 
datasets according to sample component gradient, with a ratio of 2:1. 
However, the deep network may easily exhibit overfitting due to the 
small size of the training sub-dataset. Tobler’s first law of geography 
(Tobler, 1970) shows that closely related substances are similar. 
Therefore, the four-neighborhood spectra of each training sample were 
selected as pseudo-labeled samples for training purposes. Due to the 
severe unmixing issue in the 30-m-resolution GF-5 spectral data, the 
spectral angular distance (SAD < 0.08) was used in the selection process 
to determine whether additional data are required in the training step.

3.2. Inversion method

There is a large amount of redundant information between contig
uous hyperspectral bands, as they are highly correlated. Therefore, the 
implementation of feature selection and feature extraction techniques is 
required prior to inversion to improve its accuracy (Asadzadeh and de 
Souza Filho, 2016). The Competitive Adaptive Reweighted Sampling 
(CARS) algorithm is a spectral feature selection algorithm that is based 
on the Darwinian evolutionary theory of “survival of the fittest”. Indeed, 
the CARS method uses Monte Carlo iteration and competition to select 
several subsets of wavelengths according to their importance, then select 
the optimal wavelengths and eliminate those with significant errors 
using the decay index method and Adaptive Reweighted Sampling (ARS) 
algorithm through multiple cross-validations. The CARS algorithm was 
first applied to the fused spectra to select features, then SVR and PLSR 
were used for model training and testing purposes.

3.3. Hydrologic and topographic factors analysis

The Soil and Water Assessment Tool (SWAT) model was used to 
generate the stream network and analyze the accumulation and trans
port behaviors of soil parameters contents in the study area (Arnold and 
Fohrer, 2005).

The topographic factors Topographic Wetness Index (TWI), SLPOE, 
and LS-factor were generated by the open-source software SAGA and 
used for the subsequent correlation discussion and analysis of the soil 
composition(Conrad, 2006).

3.4. Model evaluation methods

In this study, four statistical metrics were used for modeling 
evaluation. 

(1) Coefficient of determination, R2: denotes the degree of variation 
in the variables explained by the model. The closer the value is to 
1, the better the prediction.

R2 = 1 −

∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 (6) 

(2) Root-mean-square error, RMSE: measures the degree of deviation 
between the predicted value and the true value. The smaller the 
value, the higher the accuracy, and the better the prediction.
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(ŷi − yi)

2

n

√
√
√
√
√

(7) 

(3) Mean absolute error, MAE: Average value of the difference be
tween the predicted value and the real value. The smaller the 
value, the better the prediction

MAE =
1
n
∑n

i=1
|ŷi − yi| (8) 

(4) Ratio of performance to inter-quartile distance, RPIQ: A larger 
RPIQ value indicates improved model performance.

RPIQ =
Q3 − Q1

RMSE
(9) 

Where Q1 is the value below which we can find 25 % of the samples; Q3 
is the value below which we find 75 % of the samples.

4. Results and analysis

4.1. Spectral generation analysis

The results of GF-5, indoor, and generated spectra are shown in 
Fig. 5. Overall, the spectral reflectance of GF-5 was relatively low. In 
addition, the spectral curves were not sufficiently smooth and contained 
comparatively more noise. Since the 400–1000 nm and 1000–2500 nm 
sensors were distinct, the continuity at the 1000 nm splice was relatively 

poor. The atmosphere might significantly impact the spectra, particu
larly around 1400 nm and 1900 nm, as the satellite is located at 705 km 
altitude. The indoor spectral reflectance was greater, while the spectrum 
and spectral differentiation were more uniform and enhanced, respec
tively. In contrast, the spectra generated by the proposed method were 
closely similar to the indoor spectra in terms of reflectance and noise, 
showing a high degree of similarity between the spectral curves and the 
indoor spectra. Indeed, although GF-5 showed a lack of spectral features 
over 2200 nm, the generated spectra were relatively similar to the in
door spectra. The generated spectra maintained, to a certain extent, the 
waveform features of the indoor spectra. However, it remains chal
lenging to determine whether some important GF-5 spectrum features 
were not lost.

The Pearson correlation coefficients of the generated spectra with 
three soil components (SOM, Cu, and As contents) are shown in Fig. 5. 
The observed SOM contents showed the strongest negative correlations 
with the GF-5 spectra of − 0.19 and − 0.28 at 741 nm and above 2000 
nm, respectively. Whereas the soil Cu contents showed a weak correla
tion with the GF-5 spectra in the entire spectral range. Regarding the 
indoor hyperspectral, the SOM contents exhibited strong negative cor
relations in the Visible-NIR range, reaching − 0.46 at 711 nm, while the 
soil As contents showed a moderate negative correlation of − 0.22 after 
2000 nm. In addition, the correlation coefficient between the soil Cu 
contents and the indoor spectra decreased with increasing wavelength, 
reaching the value of − 0.28 at 2100 nm. The comparison of the gener
ated spectra with the GF-5 hyperspectral data highlighted a substantial 
improvement in the correlation of the three soil parameters. The SOM 
and As contents showed the strongest negative correlations of − 0.42 and 
− 0.35 at 873 and 642 nm, respectively, while the soil Cu contents 
exhibited a substantial improvement of the correlation coefficient, 
reaching − 0.32 after 2200 nm. In general, the generated spectra can 
approach the indoor spectra’ correlation, even by combining the ad
vantages of the GF-5 and indoor spectra. However, the overall 

Fig. 5. Different spectra and their Pearson correlation coefficients with the soil parameters. Soil spectra extracted from the GF-5 (a), indoor ASD (c), and proposed 
data fusion model (e), and their Pearson correlation coefficients with the observed soil parameters (b, d, and f).
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correlation of all spectra was more similar, suggesting the loss of some 
spectral features. Therefore, the final inversion process requires the 
addition of the original GF-5 spectra.

Fig. 6 shows the spectra of three selected samples with different SOM 
contents for comparison. GF5_SOM_22.33 represents the GF5 spectral 
for SOM with 22.33 g/kg, Indoor_SOM_22.33 represents the indoor ASD 
spectral for SOM with 22.33 g/kg, Generate_SOM_22.33 represents the 
generated spectral by our proposed method for SOM with 22.33 g/kg, 
separately. The obtained results showed a lower and pronounced 
reflectance of the GF-5 spectra in the visible spectral range. The spectra 
generated by our method are all close to the target spectrum (indoor 
spectrum), with a higher degree of differentiation. In addition, the two 
spectral curves of GF5_SOM_22.33 and GF5_SOM_34.34 obviously 
overlapped in the 800–1400 nm wavelength. In contrast, the spectra 
generated by our proposed model were more distinct, indicating that 
these spectra were generated based on the entire spectral features, 
thereby demonstrating the better performance of the generated model.

4.2. Soil composition inversion model

The optimal inversion models for the SOM, AS, and Cu contents in 
the soils obtained by the CARS-based SVR and PLSR methods for mixed 
spectral features (original GF5 and proposed model-generated spectra) 
are indicated in Table 2. Fig. 7 shows scatter plots of the predicted and 
measured values. The SOM training and testing sub-datasets showed R2 

values of 0.94 and 0.87, respectively, with low RMSE values and high 
RPIQ values greater than 3.4. These findings demonstrated the effec
tiveness of the model in predicting the soil parameters with very small 
predicted errors. The scatter plots showed a linear distribution of the 
training and testing data close to the 1:1 line (Fig. 7a), indicating that 
the overfitting phenomenon was not obvious. The soil As training and 
testing sub-datasets showed R2 values of 0.96 and 0.88, with RPIQ 
values of 2.63 and 1.35, respectively, demonstrating good prediction 
accuracy of the model. However, some high predicted errors were 
observed due to the uneven spatial distributions of the soil sampling 
points and soil As contents, showing high RMSE values. Fig. 7b showed 
less pronounced overfitting between the soil As training and testing sub- 
datasets is less pronounced, particularly under high soil As contents. The 
soil Cu training and testing sub-dataset revealed R2 values of 0.95 and 
0.85, respectively, with relatively low RMSE values and RPIQ values 
greater than 1.2, demonstrating the high performance of the model in 
predicting the soil Cu contents. Although Fig. 7c showed uneven sample 
data distributions, the model had a high accuracy in predicting high soil 
Cu contents.

4.3. Analysis of the spatial distributions of soil parameters

The spatial distributions of the SOM, As, and Cu contents are shown 
in Figs. 8, 9, and 10. By overlaying the DEM-derived hydric network 
vectors, we can more visibly analyze the spatial distributions of the 

Fig. 6. Comparison between the GF5, indoor, and generated spectra.

Table 2 
Evaluation of the optimal soil composition inversion models.

Soil Regression models No. of Features Training sub-dataset Testing sub-dataset

R2
c RMSEc MAEc RPIQc R2

p RMSEp MAEp RPIQp

SOM CARS + SVR 51 0.94 1.60 0.76 4.71 0.87 2.21 1.77 3.41
As CARS + SVR 64 0.96 14.34 4.14 2.63 0.88 21.98 15.32 1.35
Cu CARS + PLSR 36 0.95 2.99 2.29 1.95 0.85 4.47 3.51 1.22

Fig. 7. Scatter plots of the predicted and measured contents of SOM (a), As (b), and Cu (c).
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analyzed soil parameters. Even though our sampling points represent 
only 1/38th of the entire map of the study area, the map clearly shows 
the distributions of the soil parameter contents in areas where there 
were no sampling points. The left part of the original image was less 
affected by clouds compared to the right part, particularly in the upper 
right part, which was partially masked, but some remnants were still 

discernible.
The SOM content distribution in Fig. 8 showed high SOM accumu

lation in areas where the stream networks flow. This finding can be 
explained by the fact that the stream network traverses a low-lying area, 
resulting in SOM accumulation and migration through soil erosion. 
There were greater SOM amounts in the low-lying and flat areas than in 

Fig. 8. Spatial distribution of the SOM contents in the study area.

Fig. 9. Spatial distribution of the soil As contents in the study area.
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Fig. 10. Spatial distribution of the soil Cu contents in the study area.

Fig. 11. Comparison of the generated spectra between different loss functions, namely SAD + KLD (a), MMD + KLD (b), 0.5*MMD + 0.5*SAD + KLD (c), and MMD 
+ 0.1*SAD + KLD (d), as well as with the indoor spectra (e); GF5 spectra loss curve (f).
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other parts of the study area where small river channels are present. 
According to the field survey, erosion around the river in the study area 
was severe. In addition, most of the study area consisted of soil with high 
sand contents, explaining the low SOM contents, which is consistent 
with the SOM inversion results, suggesting high inversion accuracy. The 
results showed also an overlap of the As contents with the stream net
works in the study area (Fig. 9). The main source of As in the study area 
is mining. The spatial distribution of the soil As contents was similar to 
that of SOM due to the complexation of As by dissolved organic matter 
(DOM), which also has a sorption effect (Haitzer et al., 1998; Zhang 
et al., 2021). The roots of rice cultivated in some regions may exhibit 
some effect on soil As contents through absorption. Overall, the study 
area showed a moderate pollution level due mainly to mining activities. 
On the other hand, the soil Cu content distribution was less consistent 
with the stream network distribution in the study area (Fig. 10). The 
highest soil Cu contents were found in the central part of the study area, 
which might be due to the influences of atmospheric factors, requiring 
more comprehensive field investigations. The inverted soil parameter 
contents in the eastern part of the study area were substantially higher 
than those in the other parts due to the greater effects of atmospheric 
factors in the eastern part of the study area.

5. Discussion

5.1. Effect of the loss function

Different loss functions significantly affect the generated spectra. In 
this study, different loss functions (SAD + KLD, MMD + KLD, 0.5*MMD 
+ 0.5*SAD + KLD, and MMD + 0.1*SAD + KLD) were used to compare 
and analyze the generated spectra using our proposed model. The KLD 
was ignored in the comparative analysis, as it had little effect on the 
generated spectra in this study. Fig. 11 shows the generated spectra 
using different loss functions. As can be seen, the spectral values were 
generally relatively high, reaching over 0.9, but their waveforms were 
relatively good. Fig. 11b shows the spectra generated by the MMD +
KLD function, indicating lower spectral values than those of the other 
generated spectra, thus the spectral features were lost. Fig. 11c and 11d 
show the results of the combined MMD and SAD loss functions with 
different parameter values. Although these combined loss functions 

were comparable and retained more features than those obtained using 
only the MMD loss function, there were inconsistencies in the range of 
the retained features.

Fig. 11e shows the results of the indoor and GF-5 spectra selected 
randomly. It can be observed that the reflectance of the MMD +
0.1*SAD + KLD and 0.5*MMD + 0.15*SAD + KLD loss functions were 
close to those of the indoor spectra. It should be noted that the MMD +
0.1*SAD + KLD loss function exhibited the highest degree of similarity 
with the indoor spectra. The MMD + KLD, on the other hand, exhibited 
more lost features, while the SAD + KLD retained more features, with 
obvious deviation from the indoor spectra. Therefore, the obtained 
demonstrated that the MMD + 0.1*SAD + KLD was the most optimal 
loss function in this study. Certainly, this combination can be flawed and 
does not guarantee consistent spectra with the indoor spectra, as the GF- 
5 spectra vary considerably. Fig. 11f demonstrates that the loss was 
stable at an epoch number of 10. For the stability of the generated 
spectra, 100 training iterations were performed to build the final model.

5.2. Comparative Experimental analysis of the inversion accuracy

In this study, a series of comparative analyses were performed to 
validate the features of the generated and mixed spectra. In total, four 
sources of spectra were selected for feature comparisons, namely indoor 
spectral (Indoor), GF-5 original (GF5), proposed model (VAE), and 
mixed spectra (Mix). The features of each spectrum type were first 
selected using the CARS algorithm, then PLSR and SVR were used to 
develop inverse models. Table 3 provides the comparison results of the 
proposed method with different features. Direct training with GF-5 data 
resulted in extremely inaccurate model results for the three soil pa
rameters (SOM, Cu, and As). In contrast, the accuracy of direct inversion 
using indoor spectra was very high, as indoor spectra are not greatly 
affected by environmental factors-related disturbances compared to GF- 
5. The spectra generated by our proposed model showed slightly higher 
and lower inversion accuracies than those obtained using the GF-5 and 
indoor spectra, respectively. Indeed, the slightly lower accuracies of our 
proposed model are due to the fact that the generated spectra may 
remove some of the original features. On the other hand, the inversion 
accuracy of the mixed spectra was higher than that of the indoor spectra. 
This finding is due to the consideration of both indoor spectral features 

Table 3 
Comparison of the proposed method with different feature models.

Soil Features Models No. of 
Features

Training sub-dataset Testing sub-dataset

R2
c RMSEc MAEc RPIQc R2

p RMSEp MAEp RPIQp

SOM Indoor CARS + PLSR 51 0.99 0.63 0.51 11.89 0.82 2.60 1.95 2.90
GF5 38 0.95 1.44 1.12 5.22 0.43 4.64 3.89 1.63
VAE 51 0.98 1.01 0.85 7.43 0.79 2.84 1.97 2.66
Mix 51 0.99 0.63 0.50 12.04 0.88 2.13 1.71 3.54
Indoor CARS + SVR 51 0.98 0.93 0.43 8.09 0.50 4.34 3.57 1.74
GF5 38 0.96 1.27 0.60 5.93 0.49 4.38 3.39 1.72
VAE 51 0.98 0.92 0.41 8.20 0.45 4.53 3.41 1.67
Mix 51 0.94 1.60 0.76 4.71 0.87 2.21 1.77 3.41

As Indoor CARS + PLSR 34 0.98 9.55 7.32 3.95 0.86 24.09 18.45 1.23
GF5 34 0.93 18.53 15.08 2.03 0.51 45.11 32.98 0.66
VAE 38 0.97 13.06 9.59 2.89 0.65 38.41 29.22 0.77
Mix 64 1.00 2.24 1.84 16.86 0.80 29.24 23.83 1.01
Indoor CARS + SVR 34 0.94 17.40 5.74 2.17 0.41 49.63 30.18 0.60
GF5 34 0.70 37.99 11.61 0.99 0.33 52.82 32.57 0.56
VAE 38 0.74 35.91 14.64 1.05 0.38 50.87 30.11 0.58
Mix 64 0.96 14.34 4.14 2.63 0.88 21.98 15.32 1.35

Cu Indoor CARS + PLSR 62 0.99 1.09 0.81 5.32 0.84 4.72 3.67 1.15
GF5 42 0.92 3.68 2.84 1.58 0.57 7.68 5.93 0.71
VAE 56 0.90 4.09 3.48 1.42 0.54 7.89 6.00 0.69
Mix 36 0.95 2.99 2.29 1.95 0.85 4.47 3.51 1.22
Indoor CARS + SVR 62 0.98 1.83 1.23 3.17 0.79 5.29 4.03 1.03
GF5 42 0.85 5.07 1.99 1.15 0.60 7.34 5.43 0.74
VAE 56 0.98 1.99 0.45 2.92 0.69 6.48 4.91 0.84
Mix 36 0.94 3.29 1.46 1.77 0.76 5.75 4.16 0.95
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and spectra generated by our proposed model, demonstrating the 
effectiveness of spectra data fusion in inverting SOM, Cu, and As con
tents in the soils. In fact, the inversion accuracies of the SOM, As, and Cu 
contents obtained using the mixed spectral feature model were 38, 55, 
and 28 % higher than those of the original spectral feature model, 
respectively.

Table 4 shows the inversion of soil composition using the FD-RF 
method proposed by Zhou et al. (2021) and the DNN-CARS method 
used by Wei et al. (2021) respectively. From the table, it can be seen that 
the FD-RF method has the highest accuracy for the inversion of SOM, 
and the R2 values of test set can reach 0.69, while our proposed method 
is able to reach 0.87, which is 18 % higher. For As and Cu, relatively 
better results can be obtained by utilizing DNN-CARS, and the R2 of the 
test set can reach 0.56 for both of them, while it is around 0.45 using FD- 
RF. However, our proposed method can achieve 0.88 for As and 0.85 for 
Cu, which are 32 % and 29 % higher, respectively. This means the high 
accuracy advantage of our method.

5.3. Topographic correlation analysis

Table 5 shows the correlation of soil composition with topographic 
factors. From the hyperspectral image, the right half of the image may be 
affected by thin clouds, so we used the whole image, the left half of the 
image and the right half of the image to obtain the relationship between 
topographic factors and soil composition content respectively. From the 
table, it can be seen that SOM has the highest correlation with slope, 
which can reach − 0.24, while As and Cu show lower negative correla
tion, indicating that the surface fluctuation has a certain effect on the 
distribution of soil components. At the same time, it corroborates that 
the hydrodynamics of the study area plays a role in the transportation 
and accumulation of soil components. The correlation coefficient of the 
left half of the image is higher than that of the right half of the image, 
which indicates that the thin clouds have a certain effect on the soil 
composition mapping, so more consideration needs to be given to 
removing the effect of the thin clouds in the follow-up in order to ensure 
the accuracy of the mapping.

6. Conclusions

This paper proposes a VAE style-based spectral data fusion model to 

address the low inversion accuracy caused by the large time interval of 
the GF-5 image and soil sample data acquisition. Compared to the indoor 
and original GF-5 spectra, the correlations of the proposed model- 
generated spectra with three soil parameters (SOM, As, and Cu) were 
significantly enhanced. The results demonstrated that the proposed 
model generates indoor-like spectra with variable interclass spacing. 
According to the comparison results, the mixed spectral feature model 
showed higher SOM, As, and Cu inversion accuracies than those of the 
original spectra feature model by 38, 55, and 28 %, respectively. In 
addition, the inversion accuracies of the SOM, As, and Cu contents in the 
testing step showed R2 values of 0.87, 0.88, and 0.85, respectively. The 
spatial distribution maps revealed that SOM and As contents were 
similarly concentrated in the lowlands, while the soil Cu contents were 
not detectable. Although the proposed model can better fuse indoor and 
GF-5 image spectra, it has some shortcomings. Furthermore, physical 
mechanisms should be considered in spectral generation in the future to 
prevent feature losses.
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