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A B S T R A C T

Hyperspectral images (HSIs) can capture detailed spectral features for object recognition, while multispectral 
images (MSIs) can provide a high spatial resolution for accurate object location. Deep learning methods have 
been widely applied in the fusion of hyperspectral and multispectral images, but still face challenges, including 
the limited capacity to enhance spatial details and preserve spectral information, as well as issues related to 
spatial scale dependency. In this paper, to solve the above problems and achieve more effective information 
integration between HSIs and MSIs, we propose a novel multispectral and hyperspectral image fusion trans
former (MHFu-former). The proposed MHFu-former consists of two main components: (1) a feature extraction 
and fusion module, which first extracts deep multi-scale features from the hyperspectral and multispectral im
agery and fuses them to form a joint feature map, which is then processed by a dual-branch structure consisting 
of a Swin transformer module and convolutional module to capture the global context and fine-grained spatial 
features, respectively; and (2) a spatial-spectral fusion attention mechanism, which adaptively enhances the 
important spectral information and fuses it with the spatial detail information, significantly boosting the model’s 
sensitivity to the key spectral features while preserving rich spatial details. We conducted comparative experi
ments on the indoor Cave dataset and the Shanghai and Ganzhou datasets from the ZY1-02D satellite to validate 
the effectiveness and superiority of the proposed method. Compared to the state-of-the-art methods, the proposed 
method significantly enhances the fusion performance across multiple key metrics, demonstrating its outstanding 
ability to process spatial and spectral details.

1. Introduction

Hyperspectral and multispectral imagery are critical in remote 
sensing, with each offering distinct advantages for various applications. 
Hyperspectral imaging technology enables the capture of hundreds of 
continuous and narrow spectral bands, providing rich spectral infor
mation that is invaluable for tasks such as detection, classification, and 
tracking. However, hyperspectral images (HSIs) typically suffer from a 
low spatial resolution due to the physical constraint of the sensor, 
limiting their ability to accurately represent fine spatial details. In 

contrast, multispectral images (MSIs) offer a high spatial resolution but a 
lower spectral resolution, typically capturing only a few broad spectral 
bands. As a result, there is growing interest in fusing hyperspectral and 
multispectral data to combine their respective strengths, resulting in 
high-resolution HSIs that can provide both detailed spectral and spatial 
information. This fusion addresses the inherent limitations of the indi
vidual sensors, as the current technology cannot simultaneously achieve 
a high spatial and spectral resolution from a single imaging platform due 
to constraints such as the sensor capacity, signal-to-noise ratio (SNR), 
and data transmission limits. The development of effective multispectral 
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and hyperspectral image fusion (MHIF) techniques is therefore crucial to 
meet the increasing demand for more accurate and detailed remote 
sensing data in a wide range of applications, such as object detection 
(Qin et al., 2024), anomaly detection (Wang et al. (2023a), Wang et al. 
(2023b)), change detection (Yang et al., 2024), and scene classification 
(Dong et al., 2024).

Generally speaking, MHIF methods are typically either traditional 
methods or deep learning based methods. The traditional methods 
optimize the objective function to restore the fused image, while the 
deep learning based approaches employ a labeled sample learning 
mechanism for image fusion. MHIF is a specific instance of panchro
matic sharpening, and many different methods have been investigated 
(Tian et al., 2021; Zhu & Bamler, 2012). Selva et al. (2014) employed 
multivariate linear regression to synthesize HSIs from high-resolution 
MSIs, which is an approach that has less computational burden, but 
results in significant spectral distortion when there is a large discrepancy 
in the spatial resolution. Dong et al. (2021) investigated a more effective 
component substitution fusion model based on a binary partition tree 
and image segmentation. However, the above methods are faced with 
the limitations of linear models and deficiencies in band processing, 
while also being constrained by the challenge of balancing computa
tional efficiency and fusion quality.

In degradation-based methods for MHIF, the MSIs are treated as a 
combination of spectral degradation and noise, based on the fused 
image, while the HSIs are considered as a combination of spatial 
degradation and noise. Methods based on a low-rank prior consider that 
the spectral features can be represented in a low-dimensional subspace 
to learn low-rank spectra from low-resolution images. Both sparse and 
low-rank representation methods can effectively preserve the spectral 
characteristics and significantly reduce the redundancy inherent in 
spectral information. Yokoya et al. (2011) proposed the coupled 
nonnegative matrix factorization (CNMF) method, which alternately 
unmixes hyperspectral and multispectral data while incorporating a 
sensor observation model to generate fused data with a high spatial and 
spectral resolution. Pansharpening methods are computationally simple 
but prone to spectral distortion, while matrix factorization and tensor 
representation methods yield promising results but are computationally 
intensive and depend on accurate sensor model estimation and prior 
knowledge.

Recently, due to the powerful feature extraction and representation 
capabilities of deep learning, it has been extensively applied in the field 
of remote sensing image fusion. Zhang et al. (2020) proposed an inter
pretable spatial-spectral reconstruction network (SSR-NET) based on a 
CNN, integrating cross-mode information insertion, a spatial recon
struction network, and a spectral reconstruction network to enhance the 
spatial and spectral information recovery under spatial edge loss con
straints. Despite its strong performance, the proposed MHFu-former still 
has limitations. First, the model employs fixed window and slice sizes, 
which may not be universally optimal across diverse scene types or 
sensor characteristics. The static configuration could limit generaliza
tion performance in highly heterogeneous environments. Future work 
could explore adaptive or dynamic windowing strategies that adjust to 
local image complexity, potentially enhancing robustness. Second, the 
current pipeline relies on pre-processing steps such as spectral alignment 
and interpolation. These steps, while standard, can introduce subtle 
artifacts and often require prior knowledge of sensor specifications. A 
key future direction is the development of end-to-end fusion mecha
nisms that can learn to align and integrate data directly, thereby 
improving both autonomy and generalization.

Furthermore, transformer frameworks have also been explored and 
applied in the fusion of multispectral and hyperspectral imagery, 
because of their big breakthrough in the field of computer vision. Hu 
et al. (Hu et al., 2022) proposed a transformer-based architecture 
(Fusformer), which leverages self-attention to capture the global feature 
relationships and estimates the spatial residuals to enhance the high- 
resolution HSI reconstruction while reducing the training complexity. 

The HyperTransformer model (Bandara & Patel, 2022) addresses the 
fusion of panchromatic and hyperspectral imagery, and is made up of 
two independent feature extraction modules: a multi-head feature soft 
attention module and a spatial-spectral feature fusion module. Deng 
et al. (Deng, Wu, Ran, & Wen, 2023) introduced the Bidirectional 
Dilation Transformer (BDT), which integrates dilation spatial self- 
attention with grouped spectral self-attention to effectively capture 
multiscale spatial-spectral characteristics. Jia et al. (2023) proposed a 
Multiscale Spatial-Spectral Transformer Network (MSST-Net) embed
ding multiscale attention mechanisms to enhance joint feature repre
sentation of MSI and HSI. Ma et al. (2024) proposed a dual cross- 
attention-based reciprocal transformer architecture, enabling bidirec
tional interaction of spatial and spectral features between HSI and MSI 
modalities. Wang et al. (2023a), Wang et al. (2023b) developed a 
Retractable Spatial-Spectral Transformer Network (RSST) with an 
attention retractable mechanism and a gradient spatial–spectral recov
ery block to address token interaction limitations and enhance edge 
detail preservation.

In addition, scholars have explored the integration of model-driven 
approaches with deep learning to establish interpretable deep fusion 
networks, thereby enhancing the network’s interpretability. Xie et al., 
(2020) proposed an interpretable multispectral/hyperspectral fusion 
network, MHF-net, which integrates linear mapping and low-rank 
priors, while using a proximal gradient algorithm for efficient fusion 
and robust performance across different sensors. Wang et al. (X. Wang, 
Borsoi, Richard, & Chen, 2023) combined a lightweight CNN with an 
iterative optimization method to establish a general imaging model with 
a super-Laplacian distribution, thereby improving the image fusion ac
curacy. More recently, Yan et al. (2025) introduced a spatial–spectral 
unfolding network that embeds an optimization algorithm directly into 
its architecture. This hybrid approach leverages both prior knowledge 
and the representation power of deep learning, further advancing the 
performance and interpretability of hyperspectral–multispectral fusion 
models.

Numerous data fusion methods for multi-source remote sensing have 
been developed, with many mature applications and high-performing 
algorithms in the field of MHIF. However, several limitations and 
challenges remain to be addressed: 

1) Compared to the traditional fusion methods, deep learning based 
remote sensing image fusion algorithms have advantages in learning 
spatial-spectral features and obtaining a higher fusion accuracy. 
Nevertheless, their capabilities in enhancing spatial details and 
preserving spectral information require further improvement, 
particularly in complex remote sensing scenes, resulting in unsatis
factory performances in real fusion applications.

2) In MHIF, besides enhancing the spatial features and maintaining 
spectral consistency, the current deep learning based methods pre
dominantly rely on small-scale public datasets, which are very 
different from satellite-based image scenarios. Furthermore, many 
deep learning fusion methods are trained based on the Wald proto
col, which causes significant scale dependency. Therefore, more 
effective feature extraction strategies are vitally needed to capture 
the spatial-spectral mapping relationships between multispectral and 
hyperspectral images, to mitigate this dependency.

3) Despite the demonstrated efficacy in hyperspectral and multispectral 
image fusion, standard Transformer-based architectures are con
strained by inherent limitations. The primary challenge stems from 
the global self-attention mechanism, which imposes a prohibitive 
computational burden due to its quadratic complexity with respect to 
input image size. Moreover, standard transformers often lacks a 
strong inductive bias for local spatial details and struggles to capture 
the fine-grained textures essential for high-fidelity fusion. These 
constraints on scalability and spatial precision hinder the practical 
deployment in large-scale remote sensing scenarios.
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To address the current issues of insufficient spatial context details 
and poor spectral characteristics consistency in image fusion, we pro
pose a novel multispectral and hyperspectral image fusion transformer 
(MHFu-former). MHFu-former integrates a Swin transformer and a 
convolutional module within a dual-branch architecture to extract 
multi-scale spatial-spectral features, thereby effectively handling the 
spectral disparities while capturing the global contextual correlations 
and fine-grained spatial details. In addition, we introduce a spatial- 
spectral fusion attention mechanism that dynamically prioritizes the 
key spectral bands and integrates multi-level spatial information 
through global–local dependency modeling, thereby minimizing the 
spectral distortion and ensuring spectral continuity. The main contri
butions of the MHFu-former method are summarized as follows: 

1) The dual-branch hybrid architecture integrating a Swin transformer 
and depth-separable convolution enables parallel extraction of the 
global spectral correlations and fine-grained spatial features, effec
tively addressing the spectral disparities while preserving the spatial 
details. The Swin transformer, with its hierarchical structure and 
shifted window-based self-attention, enables efficient modeling of 
both long-range dependencies and local context. Compared to stan
dard Transformers, it significantly reduces computational 
complexity while maintaining high-resolution feature continuity and 
achieves linear computational complexity. This capability to model 
long-range dependencies efficiently while maintaining precise local 
features makes it a uniquely powerful architecture for remote 
sensing image fusion.

2) The dynamic spatial-spectral fusion attention mechanism adaptively 
prioritizes the critical spectral bands and hierarchically fuses the 
multi-level spatial features through global–local dependency 
modeling, thereby minimizing the spectral distortion and ensuring 
spectral profile continuity.

3) The end-to-end cascaded refinement framework achieves high- 
resolution HSI reconstruction via interpretable spatial-spectral 
decoupling, embedding the cross-modal interactions to bridge the 
MSI-HSI domain gaps while maintaining radiometric consistency.

2. Previous work

2.1. Convolutional neural networks (CNNS)

CNNs are a type of feed-forward neural network with local connec
tivity and weight sharing characteristics. The architectural elements of 
CNNs, namely convolutional layers, pooling layers, and fully connected 
layers, endow them with a degree of invariance to translation, scaling, 
and rotation.

In the case of two-dimensional convolution, the mathematical rep
resentation can be given as: 

yij =
∑U

u=1

∑V

v=1
wuvxi− u+1,j− v+1 (1) 

where U and V represent the size of the convolution kernel in two 
adjacent layers. i and j denote the position subscript of the output ma
trix. In deep learning, the input form is generally a three-dimensional 
tensor X, and the output feature matrix is denoted as Yp. The convolu
tion process can be represented as: 

Yp = f(wp ⊗ X + bp) (2) 

where bp represents the bias, and f(⋅) represents the activation function 
of a neuron. The common activation functions include the rectified 
linear unit (ReLU), sigmoid, and tanh activation functions. The fully 
connected layer, combined with the activation function, constitutes a 
continuous matrix multiplication and nonlinear information trans
formation process: 

xl = f
(

wlxl− 1 + bl
)

(3) 

where l represents the lth layer, wl and bl respectively represent the 
weight matrix and bias from the (l − 1)th layer to the llth layer, f rep
resents the nonlinear activation function, and xl is the output of the 
current layer. With the classification task, the fully connected layer is 
usually placed at the last layer in a CNN, while it is rarely used as the last 
layer before the output in image fusion.

2.2. Attention mechanisms

An attention mechanism can effectively extract and represent more 
important features to tackle the problem of limited computational re
sources, and is an effective way to address information overload. 
Attention mechanisms can be categorized into soft attention (Lu, Wang, 
Zheng, & Li, 2017), hard attention (Feng et al., 2020), and self-attention 
(Long et al., 2023) mechanisms.

A. Soft and hard attention mechanisms.
Let X = [x1,⋯, xN] represent N sets of inputs, where x represents a set 

of input information with D dimensional features. To select information 
from X that is relevant to the target, the attention distribution from all 
the input information is first computed, followed by the weighted 
average, based on the attention distribution.

By introducing a query vector q, z denotes the index position of the 
corresponding information. The probability of selecting the i-th input 
vector based on q and X is denoted as αn. 

αn = p(z = n|X, q) (4) 

= softmax(s(xn, q)

=
exp(s(xn, q))

∑N
j=1exp(s(xn, q))

where αn is the attention distribution, and s(x, q) is the attention score 
function, which can be calculated in various ways, including through 
additive models, dot-product models, scaled dot-product models, and 
bilinear models. A soft attention mechanism is computed as follows: 

attn(X, q) =
∑n

N=1
αnxn (5) 

Unlike the above-mentioned soft attention mechanisms, which 
consider information from all the input vectors, hard attention mecha
nisms focus on a single input feature, which can be implemented 
through the maximum value or stochastic sampling based on the 
attention distribution. The sampling strategy in hard attention causes a 
non-differentiable relationship between the loss function and the 
attention distribution, which precludes the backpropagation for 
training. A common implementation of hard attention is conducted by 
selecting the maximum value: 

attn(X, q) = Xn̂ (6) 

n̂ = argmax(αn), n = 1,2⋯N (7) 

B. Self-attention mechanisms.
The encoding–decoding scheme in a typical CNN only explores the 

local dependencies within the input information. To capture the long- 
distance dependencies across sequenced inputs such as spectral fea
tures, researchers generally enhance the depth of the network layers or 
employ fully connected layers. However, fully connected layers are not 
well suited for handling sequences of varying lengths. To tackle this 
issue, self-attention mechanisms assign weights to the different positions 
in the feature sequence and employ dynamic connections between fea
tures. The self-attention model operates on a query-key-value (QKV) 
framework, as illustrated in Fig. 1.
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Assume that the input is X = [x1,⋯, xN] and the output is H = [h1,h2,

...,hN]. For each input sequence X, linear mapping is applied to transform 
it into three different feature spaces, yielding the vectors Q, K, and V: 

Q = WqX (8) 

K = WkX (9) 

V = WvX (10) 

If the key-value pair attention formula is employed, the output vector 
hn is computed as follows: 

hn = attn((K,V), qn)

=
∑N

j=1
αnjvj (11) 

=
∑N

j=1
softmax

(
s
(
kj, qn

))
vj 

If scaled dot-product attention is used for the weight calculation, the 
output vector H is as shown in the following equation: 

H = softmax
(

KTQ
̅̅̅̅̅̅
Dk

√

)

V (12) 

where D represents the dimensionality of the input vectors

3. Proposed method

3.1. Multispectral and hyperspectral image fusion formulation

In this work, we utilize lowercase letters to signify scalars, bold let
ters to represent matrices, and calligraphic letters to denote tensors. 
Specifically, the HSI with a low spatial resolution is denoted as 
X ∈ Rm×n×S, and the MSI with a high spatial resolution is denoted as 
Y ∈ RM×N×s. The super-resolution (SR) factor is l = M

m = N
n, which is 3 for 

satellite-based remote sensing images. The aim is to estimate a fused 
image, represented by X̂ ∈ RW×H×S, that encompasses both a high spatial 
resolution and high spectral resolution. The primary observation of 
MHIF can be denoted as: 

argmax
w,b

‖HMformerw,b(X, Y) − X̂‖1 (13) 

where HMformerw,b(.) denotes the feature learning of the proposed 
network with parameters w and b.

3.2. Mhfu-former

The MHFu-former network architecture is depicted in Fig. 2. Firstly, 
to ensure that the spatial dimensions of the hyperspectral and multi
spectral images are consistent, an interpolation operation is performed 
on X to generate X0 ∈ RM×N×S. The MHFu-former network employs a 
dual-branch structure with two kinds of input (multispectral and 
hyperspectral images) to acquire high spatial-spectral resolution fused 
imagery through a specified feature fusion strategy. Due to the differ
ence in spectral dimensions between multispectral and hyperspectral 
images, the input image pairs, X0 and Y, are first mapped into the feature 
space using 1 × 1 convolutional layers, and then processed through the 
spectral alignment layer. The formula for this is as follows: 

Xc = Conv layerHS
(
X0),Yc = Conv layerMS(Y) (14) 

where Conv layerHS and Conv layerMS represent the convolution opera
tions applied to the hyperspectral and multispectral images, respec
tively. After the spectral alignment, the two features are stacked to 
generate F. 

F = [Xc;Yc] (15) 

After this, the feature F is fed into the Swin transformer module and 
depthwise convolutional layers. The Swin transformer module is 

Fig. 1. The self-attention model framework.

Fig. 2. The MHFu-former network framework.
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designed to capture both local and global image features effectively. In 
this module, the feature map slice size is set to 3 × 3, based on the image 
features, and a downsampling rate of 3 is applied to reduce the spatial 
resolution progressively while retaining the essential spatial and spec
tral information. The Swin transformer leverages a hierarchical design 
that operates on progressively smaller patches, enabling efficient pro
cessing of large-scale images by incorporating self-attention mecha
nisms that help capture the long-range dependencies. After two 
successive Swin transformer operations, two feature maps, Fs and Fʹ

s, are 
generated, each containing increasingly abstract representations of the 
input image, further refining the feature extraction process.

At the same time, the feature F is passed through the depthwise 
convolution block to generate feature maps Fc and Fʹ

c at two different 
scales. The finer-scale feature map Fʹ

c is then fused with the feature map 
Fʹ

s from the second stage of the Swin transformer module, and the 
resulting fused feature map undergoes upsampling to recover the spatial 
resolution. This process ensures that both the fine-grained details and 
broader contextual information are effectively integrated, allowing the 
model to leverage multi-scale features for a better performance in tasks 
such as image reconstruction or segmentation. 

Fʹ =
[
Upsample

(
Fʹ

c + Fʹ
s
)
; (Fc + Fs)

]
(16) 

where [⋅; ⋅] denotes the concatenation operation. Upsample is the 
upsampling operation.

The feature Fʹ is then fed into the spectral attention mechanism 
module for adaptive feature fusion. Finally, a convolutional layer with a 
1 × 1 kernel size is used to adjust the number of channels and yield the 
fused imagery with a high spatial-spectral resolution.

3.3. Swin transformer based backbone

In order to achieve more accurate pixel-level prediction and reduce 
the computational cost of the vision transformer framework, the Swin 
transformer is introduced as a backbone for the network model. The 
hierarchical feature mappings are constructed with a linear computa
tional complexity related to the image size. The main difference between 
the Swin transformer and the original vision transformer is that the self- 
attention mechanism in the Swin transformer employs shifted window 
partitioning for computation. The Swin transformer module is depicted 
in Fig. 3.

After passing the input through a convolutional layer with a kernel 
size with a fixed stride equal to the window size, the three-dimensional 
feature map is flattened and linearly transformed into a two-dimensional 

vector. The embedding and linear projection parts of the module are 
consistent with the vision transformer architecture. The vector sequence 
is then input into two continuous Swin transformer modules, with the 
difference being that the former computes window self-attention scores 
and the latter computes shifted window self-attention scores.

The window multi-head self-attention (W-MSA) mechanism and the 
shifted window multi-head self-attention (SW-MSA) mechanism are 
variants of the multi-head self-attention mechanism. The output feature 
vector sequence is reshaped to the original size through merging of all 
the image blocks based on the window size in the W-MSA mechanism, 
and the self-attention scores for each window are independently calcu
lated, which can significantly reduce the computational cost. However, 
the feature information between the windows cannot be conveyed, 
resulting in a smaller receptive field. The input feature F is mapped to 
queries Q, keys K, and values V through different weight matrices WQ, 
WK, and WV. In addition, a relative positional encoding B is included. 
The attention for each head i is computed as follows: 

headi = Attn(Qi,Ki,Vi) = softmax
(

QT
i Qi
̅̅̅̅̅̅
Dk

√ + B
)

Vi (17) 

In the multi-head self-attention mechanism, we do not compute a 
single attention matrix but instead calculate multiple “heads” (i.e., 
multiple independent attention mechanisms). These heads are then 
concatenated together and passed through a linear transformation, 
using the weight matrix Wo to obtain the final multi-head self-attention 
output: 

MultiHead(Q,K,V) = Concat(head1,head2,⋯,headh)Wo (18) 

To facilitate the interaction between different windows, the SW-MSA 
mechanism is designed to compute new self-attention scores with shifted 
windows. The implementation achieves the shifted calculation by 
shifting the feature map itself, as illustrated in Fig. 4. According to the 
shifting stride, the corresponding number of rows from the top of the 
feature map are shifted downwards, followed by shifting the corre
sponding number of columns from the left side to the right. This shifting 
process effectively introduces connections between the different win
dows, enabling cross-window information exchange and expanding the 
receptive field of the network. The window shifting operation can be 
represented as: 

Fʹ
wmsa = S (Fwmsa) (19) 

where S denotes the window shifting operation. Fwmsa is the feature 
obtained through the W-MSA mechanism. Finally, the calculation for the 
SW-MSA mechanism can be denoted as: 

Fig. 3. The Swin transformer module framework. (a) Swin transformer architecture. (b) Two successive Swin transformer blocks.
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Fswmsa = S
− 1( WMSA

(
Fʹ

wmsa
))

(20) 

where S − 1 denotes the inverse of the window shifting operation, and 
WMSA represents the window-based multi-head self-attention 
mechanism.

Moreover, to ensure that the W-MSA and SW-MSA mechanisms have 
the same number of computational windows during the calculation, a 
mask matrix is used to compute the self-attention scores within each 
window. Specifically, the role of the mask matrix is to ensure that the 
self-attention calculation for each window only focuses on the positions 
within the current window and does not span the window boundaries. 
Therefore, the values in the mask matrix are set to − 100, so that, during 
the softmax calculation, the attention scores for positions outside the 
current window become very small, i.e., close to zero, effectively 
“masking” these positions. This mechanism ensures that the attention 
computation is confined to the current window, avoiding interference 
from external elements, especially during the window shifting 
operation.

The feature map from the preceding module is first resized to its 
original dimensions before being flattened through image patch parti
tioning. Using a downsampling factor of 3, the feature map is divided 
into 3 × 3 patches, where pixels at the same location within each patch 
are grouped to form a new feature map, concatenated along the channel 
dimension. Finally, a fully connected layer is applied to downsample the 
feature map. The process of patch merging is illustrated in Fig. 5, where, 
for instance, a feature map of size 6 × 6 × 1 is transformed into a 2 × 2 ×
9 feature map, and then a linear layer further reduces it to a 2 × 2 × 3 
feature map, showing that the reduction factor in the spatial dimensions 
corresponds to the increase factor in the number of channels. This helps 
to effectively capture both the local and global information between 
different bands when processing large-scale hyperspectral and multi
spectral images, enhancing the model’s ability to perceive details and 
variations in the fused image. In addition, through downsampling, the 
computational cost is reduced, the processing speed is improved, and the 
sensitivity to important features is maintained.

3.4. Spatial-spectral fusion attention

Due to the significant spatial distribution differences between 
various land-cover types, especially in multispectral and hyperspectral 

images, the edges of these land-cover types are often quite blurred, and 
the traditional CNNs may not effectively capture these details, leading to 
the loss or excessive smoothing of edge information. Moreover, since 
each spectral band contains different feature information in the spatial 
dimension, there is often a lack of sufficient mechanisms to explore the 
potential correlations between the spectral information. To address 
these issues, we introduce a spatial-spectral attention mechanism that 
combines spatial and spectral attention to improve the quality of the 
feature representation.

Fig. 6 illustrates the spatial-spectral attention mechanism. The 
spectral attention mechanism operates along the channel dimension, 
applying max pooling and average pooling operations to process the 
feature map along the spatial dimension. The pooled results are then 
processed through a fully connected layer, and after summing, a sigmoid 
activation function is applied to generate the channel attention map. 
This process allows the model to focus on the most informative spectral 
features. The expression for the spectral attention mechanism is as 
follows: 

MC = σ(WC • [MaxPool(F);MinPool(F)]) (21) 

where WC is the weight matrix of the fully connected layer, and σ is the 
sigmoid activation function. MC is the spectral attention map, and 
MaxPool() and MinPool() refer to the max pooling and average pooling 
operations, respectively.

In contrast, the spatial attention mechanism operates along the 
channel dimension using max pooling and average pooling operations. 
These results produce two feature maps, which are then convolved with 
a 7 × 7 convolution kernel. The convolutional output is then passed 
through a sigmoid activation function to generate the spatial attention 
map. The expression for the spatial attention mechanism is as follows: 

MS = σ(Comv7×7 • [MaxPoolC(F);MinPoolC(F)]) (22) 

where MaxPoolC() and MinPoolC() respectively refer to the max pooling 
and average pooling operations performed along the channel dimension 
(denoted by c) of the feature map. MS is the spatial attention map.

Therefore, by fusing the spectral and spatial attention maps, the final 
weighted feature map is obtained. The fused feature map can be denoted 
as FSSA, so that: 

Fig. 4. An illustration of the shifted window approach for computing self-attention in the Swin transformer architecture.

Fig. 5. An illustration of the shifted window approach for computing self-attention in the Swin transformer architecture.
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FSSA = F⨂MC⨂MS (23) 

By fusing the spectral and spatial attention maps, the spatial-spectral 
fusion attention mechanism further enhances the efficiency of the 
feature fusion process. The final fused remote sensing imagery is of 
higher quality because the attention mechanism effectively selects the 
most relevant feature information and adjusts the contribution of the 
different channels and spatial positions to the fused image. This im
proves the accuracy of the spatial and spectral feature extraction, 
making the model more precise in image fusion tasks.

4. Experiments

4.1. Experimental datasets

The data used for the MHIF experiments in this study were the Cave 
dataset and satellite-based imagery captured by the Advanced Hyper
spectral Imager (AHSI) and Visible Near-Infrared Camera (VNIC) sensors 
on the ZY-1 02D satellite.

4.1.1. Cave dataset
The Cave dataset (Wang et al. 2019), created by researchers at 

Harvard University in 2011, is an indoor dataset comprising 32 images 
that include various materials, foods, paintings etc. Each image has a 
dimension of 512 × 512 pixels, with a wavelength range of 400–700  
nm. The spectral resolution is 10 nm, resulting in 31 spectral bands. The 
camera model used for this dataset was an Apogee ALTA U260 charge- 

coupled device (CCD). The original HSIs were used as reference images 
to obtain the training set. Gaussian noise was added to these original 
images, followed by downsampling to produce low-resolution HSIs, with 
the downsampling factor set to 3. Finally, a total of 1300 pairs of image 
patches were randomly generated as training data with a size of 72 × 72 
and 24 × 24. The test images were sized at 480 × 480 × 3 and 160 ×
160 × 31, as shown in Fig. 7.

4.1.2. ZY-1 02D satellite dataset
The AHSI hyperspectral camera on the ZY-1 02D satellite has 166 

spectral bands, with a wavelength range from 400 to 2500 nm. The 
resolution is 30 m, with a sensor scanning width of 60 km. The spectral 
resolution is 10 nm and 20 nm for the visible–near-infrared (VNIR) 
bands and short-wave infrared (SWIR) bands, respectively. Moreover, 
the VNIC multispectral camera on the ZY-1 02D satellite has an 8 
spectral band, with a wavelength range from 450 to 1047 nm and a 
spatial resolution of 10 m. In these experiments, we utilized two scenes 
of data for the training and testing, as shown in Fig. 8. The specific at
tributes of the ZY-1 02D images are detailed in Table 1.

As illustrated in Fig. 8, the two benchmark datasets contain repre
sentative land-cover categories, including bare soil, vegetation, water 
bodies, and urban structures, which constitute characteristic ground 
features for HSI fusion studies. The image processing workflow was 
systematically executed through the following steps. Initial radiometric 
calibration converted the digital number (DN) values of the multispec
tral and hyperspectral images into physical radiance units. Subsequent 
orthorectification eliminated the geometric distortion through rigorous 

Fig. 6. Structural diagram of the spatial-spectral attention mechanism.

Fig. 7. Examples from the Cave dataset (R-29, G-19, B-9).
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geometric correction, achieving standardized spatial resolutions of 30  
m for the hyperspectral imagery and 10 m for the multispectral imag
ery. To ensure optimal data fusion compatibility, precise geometric 
registration was implemented to rectify the spatial misalignments 

between the two image modalities. After implementing spectral quality 
control through removal of noise-corrupted bands and atmospheric 
absorption bands, the remaining 166 spectral channels were retained for 
the image fusion processing. For the spatial resolution simulation, a 
degradation protocol was applied using Gaussian noise injection (5-pixel 
radius kernel) to generate downsampled image pairs at 90-m (hyper
spectral) and 30-m (multispectral) resolutions, with the native 30-m 
HSIs serving as reference targets for the neural network training.

The dataset construction employed image blocks of 72 × 72 pixels 
(hyperspectral) and 24 × 24 pixels (multispectral), yielding 725 training 
blocks from Scene 1 and 730 from Scene 2, which were partitioned into 
training and validation sets at a strict 9:1 ratio. The final quantitative 
and qualitative evaluation were performed on full original scenes to 
assess performance.The test protocols differed between scenes. The 
Scene 1 evaluation focused on homogeneous land-cover regions (bare 

× ×

Fig. 8. Illustration of the AHSI dataset (R-29, G-19, B-9).

Table 1 
Attributes of the ZY-1 02D images.

Image name Scene 1 Scene 2

Imaging start time 2020–08-13 11:24:36 2021–11-12 10:55:38
Imaging end time 2020–08-13 11:24:47 2021–11-12 10:55:49
Image size 2000 × 2056 2000 × 2051
Solar azimuth angle 131.237731 166.339721
Solar zenith angle 22.355253 50.074939
Satellite azimuth angle 101.652603 101.4504
Satellite zenith angle 5.6847 6.4723
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soil, agricultural fields, vegetation stands, and urban structures), while 
the Scene 2 evaluation emphasized complex spatial configurations with 
enhanced edge detail preservation analysis. For the simulated-resolution 
testing, the hyperspectral data cubes were standardized to 160 × 160 ×
156, while the multispectral counterparts were maintained at 480 ×
480 × 8. In the real-resolution validation scenarios, the dimensional 
configuration was scaled proportionally to 480 × 480 × 156 (hyper
spectral) and 1440 × 1440 × 8 (multispectral), preserving the 3:1 spatial 
resolution ratio between the multispectral and hyperspectral systems 
throughout the experimental protocols. The complete dataset will be 
made publicly available.

4.2. Comparison algorithms

To validate the performance of the proposed deep learning fusion 
method using multispectral and hyperspectral imagery, five comparison 
algorithms were selected, including the non-deep learning method of 
coupled nonnegative matrix factorization (CNMF) (Yokoya et al., 2011) 
and the deep learning based methods of the spatial-spectral recon
struction network (SSR-NET) (Zhang et al., 2020), a 3-D-convolutional 
neural network (3DCNN) (Palsson et al., 2017), the two-stream fusion 
network (TFNet) (Liu, Liu, & Wang, 2020), Fusformer (Hu et al., 2022), 
MHFNet (Xie et al., 2020), and MSST-Net (Jia et al., 2023).

All the deep learning models employed in the experiments were 
implemented using the PyTorch deep learning framework. For the 
pursuit of fair model comparison, no pre-trained models or data 
augmentation techniques were utilized during the training phase. The 
Adam optimizer was employed with an initial learning rate of 0.0002. 
The maximum number of training iterations was set to 150, and the 
batch size was fixed at 8. The training and validation sets were parti
tioned in a 9:1 ratio. The mean absolute error (L1 loss) function was 
selected as the loss function. 

l1(y, ŷ) =
1
N

∑N

i=1
|yi − ŷi | (24) 

To mitigate overfitting during training and enhance the training ef
ficiency, early stopping was employed after 50 iterations. The training 
process was terminated when the output loss on the validation set 
remained unchanged for five consecutive iterations. The model param
eters corresponding to the minimum validation loss were utilized for the 
testing and final fusion. A sliding window approach with overlap was 
employed during the image fusion at both the simulated and real reso
lutions. The test images were cropped into overlapping patches of the 
same size as the training set, with an overlap of 3 pixels. During the final 
image mosaicking, the overlapping regions between patches were 
averaged.

4.3. Metrics for evaluating image fusion quality

Remote sensing image fusion performance evaluation can be cate
gorized into two aspects: simulated-resolution evaluation and real- 
resolution evaluation. In the simulated experiments, following the 
Wald protocol (Wald, 2000), the high-resolution MSIs acquired by sat
ellites were downsampled proportionally to the low-resolution HSIs, 
based on their spatial resolution ratio. The fusion algorithms were then 
applied to the downsampled image pairs, with the original HSI serving 
as the target reference for the quantitative accuracy assessment of the 
fused image. For the real-resolution fusion experiments, due to the 
absence of a true reference image, no-reference image quality assess
ment metrics were employed.

For the quantitative evaluation metrics for the simulated experi
ments, we selected the spectral angle mapper (SAM), the structural 
similarity index (SSIM) (Tian et al., 2021), the peak signal-to-noise ratio 
(PSNR) (Z. Wang et al., 2004), the relative global dimensional synthesis 
error (ERGAS) (Renza et al., 2012), and the universal image quality 

index (Q) (Z. Wang & Bovik, 2002) to assess the algorithm performance. 
SAM (Yuhas et al., 1992) quantifies the spectral dissimilarity between 
the fused and reference images by calculating the angle between the 
spectral vectors of corresponding pixels in both images, with values 
closer to 0 indicating superior algorithm performance. The SSIM (Tian 
et al., 2021) measures the similarity between two images, considering 
luminance, contrast, and structure. An ideal value for this metric is 1, 
with values closer to 1 indicating higher similarity and accuracy. The 
PSNR (Z. Wang et al., 2004) measures the fidelity between the fused and 
reference images as an objective pixel-level evaluation method, with 
larger values indicating a better image quality and better fusion per
formance. ERGAS (Renza et al., 2012) is a metric used to evaluate the 
quality of the fused HSI by quantifying the spectral distortion introduced 
during the fusion process. It measures the overall composite error, with 
lower values indicating less error and a higher accuracy. The Q metric 
(Z. Wang & Bovik, 2002) is a full-reference image quality assessment 
metric that measures the similarity between the fused image and 
reference image. This metric is used to measure the overall quality of the 
fused image, with values closer to 1 indicating a higher quality.

For the quantitative evaluation metrics for the real-resolution fusion 
experiments, we used the spectral distortion (Dλ) (Alparone et al., 2008), 
spatial distortion (Ds) (Alparone et al., 2008), and the quality with no 
reference (QNR) (Alparone et al., 2008) metrics. Dλ is used to measure 
the degree of spectral distortion, with values closer to 0 indicating a 
greater spectral similarity and lower error. Ds is employed to measure 
the spatial distortion between the fused image and the observed image. 
Values closer to 0 indicate less distortion and a higher fusion accuracy. 
The QNR metric combines the spectral and spatial distortion to evaluate 
the overall fusion quality.The ideal value for QNR is 1, with values closer 
to 1 indicating a better image fusion quality.

5. Results and discussion

5.1. Fusion experiments on simulated-resolution imagery

1) Cave dataset: Fig. 9 presents the fusion results of all the algorithms 
on the indoor Cave dataset under the simulated resolution. The images 
are true-color composites (R-29, G-19, B-8), with a magnified view of the 
red region in the lower-left corner. For the Cave dataset with a limited 
number of bands, all the methods, except Fusformer, can effectively fuse 
the input synthetic RGB image and simulated low-resolution HSI to 
generate a high-resolution HSI. The CNMF method effectively preserves 
the textural features, resulting in clear edges. However, the stripes on 
the doll’s clothing appear orange, whereas they are red in the reference 
image, indicating spectral distortion in the fusion image. In terms of the 
spatial detail, except for the proposed MHFu-former method, MSST-Net, 
SSR-NET, and CNMF, the junction between the doll and the white 
background in the fused images is blurred. The fusion image of MHFNet 
shows noticeable artifacts and bright patches at the edges. The Fus
former method fails to capture valid spatial detail features, resulting in a 
poor visual quality. The proposed MHFu-former method, however, 
stands out by maintaining superior spectral fidelity and spatial detail 
retention. It effectively suppresses artifacts, preserves sharp edges, and 
minimizes color distortion, making it the best-performing method for 
generating high-quality fused images with both spatial and spectral 
consistency.

As shown in Table 2, the HSI fusion performance was quantitatively 
evaluated on the Cave dataset using the eight different methods. 
Compared to the traditional method of CNMF, the deep learning based 
methods show significant advantages across all the evaluation metrics. 
MHFu-former achieves the lowest SAM value, indicating its ability to 
preserve spectral consistency and minimize spectral distortion. In terms 
of ERGAS, MHFu-former again achieves the lowest value of 2.8664, 
demonstrating its superior global error control. Furthermore, MHFu- 
former reaches a Q-value of 0.9994, further proving its excellent per
formance in balancing spectral and spatial information. In contrast, the 
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traditional CNMF method exhibits significant spectral distortion, while 
3DCNN performs poorly in SAM due to its spatial-spectral feature 
mapping approach. TFNet, MSST-Net and SSR-NET enhance the fusion 
quality, to some extent, achieving higher SSIM and PSNR values. 
Overall, MHFu-former achieves the best fusion image quality, fully 
demonstrating its effectiveness and robustness in HSI fusion tasks.

2) ZY1-02D dataset: Figs. 10 and 11 illustrate the fusion results ob
tained on simulated-resolution images Scene 1 and Scene 2, respec
tively. The images are true-color composites (R-29, G-19, B-8), with a 
magnified view of the red region in the lower-left corner. In the 
simulated-resolution experiments, HSIs with a spatial resolution of 90 m 
were fused with the simulated MSIs at a 30-m resolution to generate 30- 
m resolution fused HSIs, with the original 30-m resolution HSIs serving 
as reference. As shown in Fig. 10, the land features are relatively 
continuous and homogeneous, and the visual quality differences be
tween methods are readily observable. In contrast, Scene 2 presents a 
more complex land-cover distribution with fragmented and patchy re
gions, posing significant challenges for all the algorithms. Except for 
CNMF, MSST-Net and MHFu-former, the other deep learning based ap
proaches struggle to effectively capture the spatial details of the input 
images. SSR-NET generates fused HSIs with rich spatial details and high 
similarity to the reference images. However, the 3DCNN method ex
hibits noticeable spectral distortion due to its spatial-spectral feature 
mapping learned within the projected space after singular value 
decomposition. This process introduces significant errors during the 

inverse transformation when generating the fused image. TFNet, which 
is characterized by extensive consecutive upsampling and down
sampling convolution operations, suffers from pronounced checker
board artifacts in the continuously distributed land-cover types, such as 
rivers, leading to blurred visual effects. Fusformer demonstrates a sub
optimal fusion performance, failing to enhance the visual quality of the 
HSIs. While MHFNet preserves acceptable edge details, its fusion results 
still exhibit striping artifacts and brightness inconsistencies, compro
mising the overall image quality. MSST-Net achieves a relatively 
balanced performance between spatial and spectral domains, main
taining natural color reproduction and clearer edges than Fusformer and 
MHFNet. However, slight blurring remains along object boundaries, and 
fine structural details are not as well preserved as in the MHFu-former 
results. MHFu-former outperforms the existing methods in spectral fi
delity, spatial detail preservation, artifact suppression, and adaptability 
to complex scenes, demonstrating its effectiveness and robustness in HSI 
fusion tasks.

Tables 3 and 4 present the accuracy of the fused hyperspectral im
agery generated by each method under the simulated-resolution ex
periments. The experimental results indicate that the MHFu-former 
method achieves the best performance in the simulated-resolution ex
periments, particularly in the complex Scene 2, where its SAM, SSIM, 
PSNR, ERGAS, and Q metric scores outperform the other methods, 
demonstrating strong spectral fidelity and spatial detail preservation. In 
contrast, the CNMF method exhibits the most significant spectral 
distortion, with a much higher SAM value than the other methods, 
indicating its difficulty in maintaining spectral consistency. MHFu- 
former performs the best in Scene 1, achieving the highest PSNR of 
27.3750 and the lowest ERGAS of 2.1133, highlighting its advantage in 
image quality. The deep learning based methods, including 3DCNN, 
TFNet, Fusformer, and MSST-Net generally outperform the traditional 
method; however, some of them still suffer from checkerboard artifacts 
and spatial discontinuities. For instance, 3DCNN performs poorly in 
terms of SAM. The SSIM results suggest that MHFu-former can better 
preserve the structural information of the images. With Q values 
approaching 1, these methods achieve an optimal balance between 
spectral and spatial detail preservation.

Fig. 9. Fusion images for the simulated-resolution experiment on the Cave dataset.

Table 2 
Accuracy assessment for the simulated-resolution experiment on the Cave 
dataset.

Algorithm SAM SSIM PSNR ERGAS Q

CNMF 8.8003 0.8924 19.6132 5.7585 0.9936
SSR-NET 7.2983 0.9813 31.7545 3.0415 0.9983
3DCNN 8.2065 0.9498 26.7734 6.5748 0.9916
TFNet 6.7562 0.9805 31.1767 3.5045 0.9976
Fusformer 8.6516 0.8776 22.7827 6.1559 0.9752
MHFNet 8.8401 0.9488 23.8885 5.7694 0.9938
MSST-Net 5.6576 0.9936 30.2678 3.4387 0.9985
MHFu-former 5.1269 0.9939 34.7669 2.8664 0.9994
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5.2. Fusion experiments on real-resolution imagery

To assess the efficacy of the proposed MHFu-former network in 
practical image applications, real-resolution experiments were carried 
out utilizing the ZY-1 02D imagery. The fusion results of the various 
algorithms at the real resolution for the Scene 1 and Scene 2 regions are 
visualized in Figs. 12 and 13, respectively. The accuracy evaluation 
metrics for each algorithm are tabulated in Table 5. In addition, we 
specifically analyzed the comparison of the spatial details and generated 
spectra.

1) Fusion images: For the image fusion experiments with the two 

scenes from the ZY01-02D satellite, Figs. 12 and 13 present the fusion 
results of the different algorithms at the original resolution. In Scene 1, 
where the spatial information is relatively uniform and the land cover is 
more continuous with a broader distribution, CNMF, SSRNet, and 
MHFu-former significantly enhance the spatial details, outperforming 
the other methods. However, in the more complex Scene 2, all the 
methods, except CNMF, show limited effectiveness in enhancing spatial 
details. Specifically, blurred edges of the fragmented land covers such as 
buildings, rivers, and bare soil can be observed. In addition, the deep 
learning based algorithms exhibit a noticeable checkerboard effect 
caused by the convolution operations, further degrading the spatial 

Fig. 10. Fusion images for the simulated-resolution experiment on Scene 1 of the ZY01-02D data.

Fig. 11. Fusion images for the simulated-resolution experiment on Scene 2 of the ZY01-02D data.
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quality of the fused images. Overall, Fusformer performs the worst in the 
fused images, failing to effectively enhance the spatial details and 
leading to a lack of significant improvement in the spatial structures. In 
contrast, CNMF achieves the most outstanding spatial detail enhance
ment, with sharp and clearly defined edges in the fused images. How
ever, 3DCNN suffers from significant spectral distortion. Except for 
MHFu-former, all the deep learning based methods exhibit noticeable 
blocky artifacts at the stitching edges, forming evenly distributed ver
tical and horizontal stripes that result in brightness inconsistencies and a 
loss of spatial details, ultimately lowering the overall fusion quality. 
MHFu-former demonstrates the best performance in minimizing spatial 
distortion, and its fused images achieve the highest consistency in 
spatial feature distribution.

2) Accuracy evaluation: The quantitative evaluation of the HSI fusion 
across the two scenes highlights the trade-off between spectral fidelity, 
spatial enhancement, and overall fusion quality. As shown in Table 5, 
the proposed MHFu-former method achieves the best Dλ and Ds values, 
along with the highest QNR scores, demonstrating its ability to effec
tively balance spectral preservation and spatial detail enhancement. In 
Scene 1, MHFu-former outperforms CNMF and TFNet, achieving Dλ =

0.0168 and Ds = 0.0385. CNMF enhances the spatial details but suffers 
from higher spectral distortion, while the deep learning based 3DCNN 
method, due to the weaker spectral constraints, exhibits the highest 
spectral distortion, with Dλ = 0.0736. In Scene 2, which features com
plex spatial structures, MHFu-former maintains its advantage, with Dλ =

0.0197 and Ds = 0.0216. The transformer-based methods of Fusformer 
and 3DCNN show improvements in spectral fidelity, but still exhibit 
relatively high spatial distortion. The QNR metric further confirms the 
robustness of MHFu-former, as it outperforms Fusformer and TFNet. In 
addition, an inverse relationship between the spatial enhancement and 
spectral fidelity can be observed: CNMF excels in spatial detail preser
vation but ranks last in spectral accuracy for Scene 2. In summary, 
MHFu-former effectively mitigates this trade-off through multi-scale 
fusion and attention mechanisms, demonstrating a superior fusion per
formance and robustness.

3) Spatial details: Fig. 14 illustrates the rectangular distribution of 
crops and vegetation, highlighting the spatial enhancement features of 
the different methods. The comparative analysis reveals that TFNet ex
hibits checkerboard artifacts, particularly manifesting as grid-like dis
tortions in homogeneous regions, which degrade the visual quality and 
spatial coherence. In contrast, both CNMF and MHFu-former perform 
well in preserving spatial edge details, especially in delineating the 
sharp boundaries between vegetation patches and farmland. However, 
CNMF demonstrates a notable advantage in accurately reconstructing 
the sub-pixel transitions at vegetation-farmland boundaries, thereby 
exhibiting a superior performance in maintaining spatial edge details.

4) Generated spectra: We selected four typical land-cover types—soil, 
vegetation, building, and water—and conducted a comparative analysis 
of the reflectance characteristics of three methods, namely CNMF, 
TFNet, and MHFu-former, against the reference spectral data, as shown 
in Fig. 15. The experimental results demonstrate that MHFu-former 
achieves the best performance across all the land-cover categories, 

Table 3 
Accuracy assessment for the simulated-resolution experiment on Scene 1 of the 
ZY01-02D data.

Algorithm SAM SSIM PSNR ERGAS Q

CNMF 4.1447 0.8004 19.3795 4.9393 0.9788
SSR-NET 2.0773 0.8715 23.5386 3.6105 0.9967
3DCNN 3.7729 0.8875 21.4178 3.5687 0.9904
TFNet 2.0272 0.8379 21.9241 2.2956 0.9972
Fusformer 1.7526 0.9198 24.5390 2.5847 0.9973
MHFNet 4.0446 0.6961 21.3061 2.2698 0.9800
MSST-Net 2.1464 0.9279 22.4988 2.1457 0.9969
MHFu-former 1.6705 0.9320 27.3750 2.1133 0.9975

Table 4 
Accuracy assessment for the simulated-resolution experiment on Scene 2 of the 
ZY01-02D data.

Algorithm SAM SSIM PSNR ERGAS Q

CNMF 6.1931 0.6568 19.2330 9.3805 0.9551
SSR-NET 4.4643 0.6997 22.4057 8.8643 0.9779
3DCNN 4.1776 0.7217 21.9349 6.9435 0.9760
TFNet 4.2214 0.6908 21.8219 13.9206 0.9803
Fusformer 4.1383 0.6704 21.7808 7.6016 0.9836
MHFNet 5.4205 0.6949 20.4965 7.1502 0.9620
MSST-Net 4.0598 0.6977 22.3415 6.8292 0.9851
MHFu-former 3.7239 0.7559 23.2131 6.7804 0.9886

Fig. 12. Fusion images for the real-resolution experiment on Scene 1 of the ZY01-02D data.
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with particularly strong robustness in the building and vegetation cat
egories. For the different land-cover types, MHFu-former achieves the 
highest spectral fidelity in the soil category, particularly in the near- 
infrared range of 750–1250 nm, where it exhibits the lowest retrieval 
error. However, CNMF suffers from spectral inaccuracies around 2250 
nm, which can be attributed to the mixing of building materials and the 
limitations in endmember extraction accuracy. For the water bodies and 
vegetation, all the methods exhibit relatively small errors in the VNIR 
range. However, as the wavelength increases, CNMF and TFNet show 
intensified reflectance fluctuations in the 1500–2500 nm range. In 

contrast, MHFu-former effectively suppresses noise interference through 
its hierarchical feature weighting mechanism, thereby improving the 
overall stability of the spectral retrieval. In summary, MHFu-former 
demonstrates a superior spectral retrieval performance across the 
different land-cover categories, with particularly strong robustness in 
the complex land-cover types such as buildings and water bodies, as well 
as in the SWIR region.

5.3. Ablation and hyperparameter experiments

1) Network structure: To validate the effectiveness of the spectral 
attention module in the proposed network, ablation studies were con
ducted on Resource-02D imagery to analyze the impact of hyper
parameters in the Swin transformer based architecture. As shown in 
Table 6, the convolutional layer integrated with the spatial-spectral 
attention module (CBAM) outperforms the vanilla CNN counterpart 
across most of the evaluation metrics (i.e., SSIM, PSNR, ERGAS, QNR) in 
both Scene 1 and Scene 2, despite a slight increase in SAM values. The 
CBAM, employing a sigmoid activation function for the channel atten
tion, introduces nonlinear mapping to enhance the feature discrimina
tion, which can amplify the spectral deviations in regression-based 
fusion tasks. Notably, the proposed module achieves superior spectral 
distortion control (lower Dλ and Ds) and spatial consistency (higher Q), 
demonstrating its ability to balance spectral fidelity and spatial detail 
preservation. These results underscore the critical role of adaptive 

Fig. 13. Fusion images for the real-resolution experiment on Scene 2 of the ZY01-02D data.

Table 5 
Accuracy assessment for the real-resolution experiments on the two scenes of 
ZY01-02D data.

Algorithm Scene1 Scene2

Dλ Ds QNR Dλ Ds QNR

CNMF 0.0268 0.0645 0.9541 0.0355 0.0593 0.9525
SSR-NET 0.0310 0.0399 0.9645 0.0283 0.0370 0.9673
3DCNN 0.0736 0.0600 0.9331 0.0294 0.0233 0.9736
TFNet 0.0215 0.0390 0.9697 0.0258 0.0261 0.9740
Fusformer 0.0211 0.0473 0.9657 0.0217 0.0232 0.9775
MHFNet 0.0223 0.0346 0.9715 0.0262 0.0688 0.9522
MSST-Net 0.0171 0.0410 0.9695 0.0229 0.0228 0.9659
MHFu-former 0.0168 0.0385 0.9722 0.0197 0.0216 0.9793

Fig. 14. Localized magnification of the true-resolution fusion images of the three methods.
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spatial-spectral attention in mitigating fusion-induced artifacts while 
highlighting the trade-off between nonlinear feature enhancement and 
spectral accuracy optimization in deep image fusion frameworks.

2) Window size: The hyperparameter selection in the Swin 

transformer module, particularly the window size for attention 
computation and the image block size for feature map partitioning, 
significantly influences the network’s fusion performance. The experi
mental results obtained with fixed 3 × 3 slice sizes and varying window 

Fig. 15. Comparison of the spectral curves of four ground objects with the different methods.

Table 6 
The fusion accuracy for the two scenes with the CBAM.

Data Model SAM SSIM PSNR ERGAS Q Dλ Ds QNR

Scene1 CNN 1.6580 0.9260 25.0315 2.4726 0.9965 0.0140 0.0451 0.9702
CBAM 1.6705 0.9320 27.3750 2.1133 0.9975 0.0168 0.0385 0.9722

Scene2 CNN 3.6223 0.7493 22.2462 6.9433 0.9819 0.0097 0.0430 0.9734
CBAM 3.7239 0.7559 23.2131 6.7804 0.9886 0.0197 0.0216 0.9793

Table 7 
The fusion accuracy for the two scenes with different window sizes.

Data Window size SAM SSIM PSNR ERGAS Q Dλ Ds QNR

Scene 1 3 1.6705 0.9320 27.3750 2.1133 0.9975 0.0168 0.0385 0.9722
5 1.6572 0.9299 26.6423 2.2729 0.9973 0.0181 0.0482 0.9667
7 1.7525 0.9187 26.3676 2.3874 0.9972 0.0192 0.0435 0.9685

Scene 2 3 3.7239 0.7559 23.2131 6.7804 0.9886 0.0197 0.0216 0.9793
5 3.6246 0.7621 23.3344 6.4701 0.9888 0.0184 0.0252 0.9781
7 3.6312 0.7539 23.2412 6.1136 0.9893 0.0185 0.0282 0.9704
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sizes of 3 × 3, 5 × 5, and 7 × 7 are listed in Table 7. For Scene 1, the 3 ×
3 window configuration achieves the best performance across most of 
the metrics, including a SSIM of 0.9320, PSNR of 27.3750, ERGAS of 
2.1133, and QNR of 0.9722, despite a marginally higher SAM value of 
1.6705 when compared to the 5 × 5 window. Conversely, Scene 2 
demonstrates superior results with the 5 × 5 window size, attaining 
balanced improvements in spatial-spectral fidelity, with a PSNR of 
23.3344 and ERGAS of 6.4701, along with distortion control metrics of 
Dλ = 0.0184 and Ds = 0.0252, although with slight trade-offs in QNR at 
0.9781 when compared to the smaller windows. The 7 × 7 window 
exhibits an inconsistent performance across scenes, achieving the lowest 
ERGAS of 6.1136 in Scene 2, but suboptimal spectral preservation, with 
a SAM of 3.6312. These findings emphasize the critical need for scene- 
specific window size adaptation to optimize the balance between 
global context modeling and local detail preservation in MHIF fusion 
tasks.

3) Slice size: Table 8 presents the experimental results for a 3 × 3 
window size paired with slice sizes of 3 × 3 and 4 × 4. As shown in 
Table 8, the 3 × 3 slice configuration outperforms the 4 × 4 variant 
across most of the metrics, except for SSIM. For Scene 1, the 3 × 3 slice 
achieves superior spectral preservation, with a SAM of 1.6705 and 
higher reconstruction fidelity, yielding a PSNR of 27.3750, ERGAS of 
2.1133, and QNR of 0.9722. While the 4 × 4 slice slightly improves the 
SSIM score to 0.9381, it degrades the spectral accuracy to a SAM of 
7.3481, increases the spatial distortion, with Dλ = 0.0240 and Ds =

0.0451, and reduces the overall fusion quality to a QNR of 0.9653. In 
Scene 2, the 3 × 3 slice maintains a competitive performance, with a 
SAM of 3.7239, PSNR of 23.2131, ERGAS of 5.7585, robust distortion 
metrics of Dλ = 0.0184 and Ds = 0.0252, and a QNR of 0.9781. In 
contrast, the 4 × 4 slice exhibits a higher SSIM of 0.7559 but suffers from 
spectral degradation, with a SAM of 7.7176, elevated spatial distortion 
at Ds = 0.0395, and a reduced QNR of 0.9674. These results underscore 
the trade-off between SSIM improvement and spatial-spectral fidelity 
degradation when increasing the slice size, highlighting the advantage 
of smaller 3 × 3 slices for a balanced fusion performance across diverse 
scenes.

4) Computational Complexity:
To further analyze the computational complexity, we report the 

Floating Point Operations (FLOPs), and testing time of different fusion 
methods on the CAVE, and ZY-1 02D satellite dataset. As shown in 
Table 9 and Table 10, traditional methods generally have longer infer
ence time. CNN-based methods strike a balance between computational 
cost and performance. Transformer-based methods show significantly 
higher FLOPs and inference time due to the use of self-attention mech
anisms. The proposed MHFu-former also involves relatively large 
FLOPs, primarily because of the integration of Swin Transformer blocks 
and multiscale patch embeddings.

6. Conclusion

In this paper, a multispectral and hyperspectral image fusion trans
former (MHFu-former) has been proposed to reduce spectral distortion, 
enhance spatial details, and maintain spectral integrity in MHIF. The 
model integrates a Swin transformer and convolutional module into a 
two-branch architecture to extract multiscale spatial-spectral features 
by parallel depth-separable convolution, which efficiently handles 
spectral disparities while capturing global contextual correlations and 

fine-grained spatial details. The spatial-spectral fusion attention mech
anism dynamically prioritizes the key spectral bands and integrates 
multilevel spatial information through global–local dependency 
modeling to minimize spectral distortion and maintain the continuity of 
the spectral profiles. The end-to-end framework maps raw hyper
spectral/multispectral image inputs to a high-resolution HSI through 
cascading feature extraction, fusion, and refinement, providing inter
pretable insights for spatial-spectral decoupling and cross-modal in
teractions. The experimental results obtained on the Cave dataset and 
ZY0-02D multispectral and hyperspectral images showed that the pro
posed method can obtain high spatial and spectral resolution fusion 
images with good spectral consistency and rich spatial details, with a 
better performance than a classical method and the commonly used 
deep learning based methods. The application on satellite images proved 
that the proposed MHFu-former method has a strong spectral preser
vation ability, without obvious checkerboard effects and uneven 
brightness at synthetic block edges.

Despite its strong performance, the proposed MHFu-former still has 
limitations. First, the model employs fixed window and slice sizes, which 
may not be universally optimal across diverse scene types or sensor 
characteristics. The static configuration could limit generalization per
formance in highly heterogeneous environments. Future work could 
explore adaptive or dynamic windowing strategies that adjust to local 
image complexity, potentially enhancing robustness. Second, the cur
rent pipeline relies on pre-processing steps such as spectral alignment 
and interpolation. These steps, while standard, can introduce subtle 
artifacts and often require prior knowledge of sensor specifications. A 
key future direction is the development of end-to-end fusion mecha
nisms that can learn to align and integrate data directly, thereby 
improving both autonomy and generalization.

Table 8 
The fusion accuracy for the two scenes with different slice sizes.

Data Slice size SAM SSIM PSNR ERGAS Q Dλ Ds QNR

Scene 1 3 1.6705 0.9320 27.3750 2.1133 0.9975 0.0168 0.0385 0.9722
4 7.3481 0.9381 19.9566 3.3204 0.9734 0.0240 0.0451 0.9653

Scene 2 3 3.7239 0.7406 23.2131 5.7585 0.9915 0.0184 0.0252 0.9781
4 7.7176 0.7559 18.7752 6.7804 0.9886 0.0256 0.0395 0.9674

Table 9 
Number of parameters, FLOPs, and testing time of different fusion methods on 
the CAVE dataset.

Algorithm FLOPs (G) Testing time (s)

CNMF / 12.7119
SSR-NET 2.1521 0.2269
3DCNN 5.9560 0.6632
TFNet 36.4569 0.2589
Fusformer 2506.9419 2.1547
MHFNet 74.5405 0.2187
MSST-Net 15.9957 9.7433
MHFu-former 484.9785 0.6567

Table 10 
Number of parameters, FLOPs, and testing time of different fusion methods on 
the ZY01-02D data.

Algorithm Scene1 Scene2

FLOPs/G Testing time/s FLOPs/G Testing time/s

CNMF / 1489.02 / 1363.24
SSR-NET 42.0330 6.3848 54.5002 7.1274
3DCNN 6.3144 12.7378 6.3144 16.1532
TFNet 44.1727 6.7358 45.5343 6.9382
Fusformer 2518.2488 25.4826 2520.2660 26.4147
MHFNet 1141.1839 7.3993 1462.2126 8.6224
MSST-Net 67.3353 7.8527 76.7005 20.2607
MHFu-former 485.5501 8.7913 485.6509 10.2591
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