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A B S T R A C T

Hyperspectral anomaly detection is aimed at distinguishing between background and anomalous regions in 
hyperspectral images, and plays a crucial role iSn various applications. However, the existing deep learning 
methods face challenges when dealing with complex background distributions and insufficient training data. In 
this article, we propose a novel multi-class background description transformer network (MBDTNet) to address 
the problems of imprecise background distribution learning and poor anomaly detection. Firstly, we propose an 
image-level end-to-end data augmentation method based on self-supervised training, which enhances the di
versity and quantity of the training samples through adaptive clustering and spatial masking strategies. Secondly, 
based on the principles of low-rank representation, a sparse self-attention mechanism based on token dictionary 
representation is designed to help the model focus on key background features and guide the model in recog
nizing anomalies. Finally, a token dictionary learning mechanism for multi-class background description is 
established by combining Gaussian discriminant analysis with a conditional distance function, and intra-class 
and inter-class losses are designed to enhance the model’s ability to separate background and anomalies. Ex
periments on five benchmark datasets demonstrate the superiority and applicability of the proposed MBDTNet 
method, showing that it outperforms the current state-of-the-art hyperspectral anomaly detection methods.

1. Introduction

Hyperspectral images (HSIs) acquire scene representations through 
hundreds of contiguous spectral bands, encoding rich material-specific 
signatures in the spectral-spatial domain [1,2]. Unsupervised hyper
spectral anomaly detection identifies spectrally distinctive pixels devi
ating from background statistics without prior target knowledge [3]. 
These anomalies typically exhibit stochastic spatial distribution pat
terns, ultra-low occurrence probabilities, and subpixel-scale manifesta
tions that challenge conventional detection paradigms [4]. For example, 
a tank in a forest background, a vehicle in a city, and artificially placed 
panels can all be referred to as anomalies.

The current hyperspectral anomaly detection models can be cate
gorized into statistics-based models, representation-based models, and 
deep learning based models. The statistics-based models formulate 
anomaly detection as a hypothesis testing problem, where background 
pixels are assumed to follow a parameterized probability distribution (e. 
g., multivariate Gaussian), with anomalies exhibiting statistically 

significant deviations from the learned distribution [5]. Notable statis
tical model algorithms include the Reed-Xiaoli (RX) detector [6] and 
support vector data description (SVDD) [7]. The RX algorithm imple
ments a Gaussian-based anomaly detector by constructing the Mahala
nobis distance metric as the detection statistic [6]. Building on the 
classical RX algorithm, several extensions have been proposed, such as 
local RX [8], weighted RX [9], and the random selection based anomaly 
detector (RSAD) [10]. Unlike RX’s parametric density estimation, SVDD 
[7] adopts nonparametric boundary learning that is particularly effec
tive for multi-modal distributions. Various integrated methods based on 
kernel transformation analysis have also been proposed to enhance the 
robustness of the background model [11]. However, the statistics-based 
methods rely on distribution assumptions that may not hold in complex 
real-world backgrounds, leading to a decline in anomaly detection 
performance.

The representation-based models leverage the inherent properties of 
hyperspectral imagery to detect anomalies, aiming to design more 
effective detection models from the perspectives of collaborative 
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representation [12], low-rank and sparse representation [13,14], and 
topological structure [15–17]. Improvements to collaborative repre
sentation based models have focused on enhancing the background 
adaptability, primarily through optimization of the background dictio
nary [18], spatial optimization [19] joint sparsity regularization [20]. 
For instance, Zhang et al [21] adopted a self-paced learning strategy to 
optimize background atoms, which improved the model’s generaliza
tion ability. The low-rank and sparse representation models take 
advantage of the low-rank property of the background and the sparse 
characteristics of the anomaly to locate anomalies [22]. These models 
are iteratively updated through strategies such as dictionary learning 
[23], tensor decomposition [24,25], and orthogonal subspace projection 
[26]. For example, Qin et al [25] proposed generalized non-convex 
low-order tensor representation, which efficiently detects targets by 
establishing a unified solver for fast and effective detection. Ren et al 
[27] proposed a unified nonconvex anomaly detection framework, 
HADGSMs, which introduces generalized shrinkage mappings to more 
precisely approximate the penalty terms in LRR-based models. Alter
natively, topological structure based models, such as the structure tensor 
and guided filter (STGF) [15], chessboard topology-based anomaly 
detection (CTAD) [16], and attribute and edge-preserving filters [17], 
enhance detection performance by leveraging spatial topology, without 
requiring complex modeling processes. However, the aforementioned 
representation-based methods rely on constructing a background dic
tionary specific to each HSI, which limits their transferability across 
different scenarios and results in high computational complexity.

Recently, deep learning has advanced rapidly in the field of hyper
spectral imagery, bringing more novel ideas to anomaly detection 
[28–30]. Deep learning networks, such as autoencoders (AE) [31], 
generative adversarial networks (GANs) [32,33], and transformer net
works [34,35] have been successfully applied to anomaly detection. The 
AE-based approach generally follows a two-step detection paradigm, 
where the network learns the background distribution and detects 
anomalies using reconstruction errors [36–38]. For example, Wang et al 
[39] proposed Auto-AD based on the U-Net architecture, which re
constructs the original image using an encoder-decoder structure and 
detects anomalies by leveraging reconstruction errors. Wang et al [40] 
proposed a dual-window-inspired reconstruction network (DirectNet) to 
predict the center pixel using the outer window information, which 
improved the accuracy of background reconstruction. Wang et al [35] 
utilized the transformer network and incorporated finite spatial wise 
attention to precisely reconstruct the image. Moreover, GANs are 
capable of learning the probabilistic distribution of multivariate data, 
thereby enhancing the stability of the model [32]. Weakly supervised 
[41,42] and semi-supervised [43,44] strategies have also been applied 
to GAN frameworks to improve networks stability. For instance, Li et al 
[45] proposed a background search strategy to extract training samples 
and trained a sparse coding GAN in a weakly supervised manner, 
detecting targets in the latent space. To fully utilize both global and local 
spatial features, Li et al [34] proposed an approach for unsupervised 
learning of spatial contextual features between background and anom
alies and on anomaly-free images with random masking. Lian et al [46] 
proposed a gated transformer anomaly detection network by intro
ducing a content matching mechanism and adaptive gating units, 
effectively distinguishing between background and anomalies using 
spatial-spectral similarity. Subsequently, the anomaly enhancement 
transformation network (AETNet) [34] and transferred direct detection 
(TDD) [47] establish a one-step detection paradigm by unsupervised 
learning of spatial contextual features between background and anom
alies on anomaly-free HSIs with random masking, addressing the limi
tations of the traditional two-step or multi-step anomaly detection 
networks. In addition, scholars have developed model-driven deep 
networks for anomaly detection by coupling physical models with deep 
learning [3,48–51]. Specifically, the model-driven deep mixture 
network (MDMN) [48] and the low-rank representation network 
(LRR-Net) [49] transform regularization parameters into trainable 

parameters of networks while emphasizing the interpretability of the 
model. Shen et al [51] proposed the deep denoising dictionary tensor, 
which integrates low-rank and deep denoising priors into the dictionary 
and coefficient tensors, enhancing the separation of background and 
anomaly.

Deep learning methods have shown promising results in hyper
spectral anomaly detection, but upon review, several challenges remain 
that require further investigation and resolution: 

1) The one-step anomaly detection approach directly learn the feature 
differences between background and anomalies, quickly outputting 
detection results [34,47]. However, when the training samples 
contain contamination from anomalous pixels, the model struggles to 
accurately learn the boundaries between background and anomalies. 
Therefore, constructing an effective clean sample extraction strategy 
remains requires further exploration.

2) Most deep learning methods assume that background samples belong 
to a single class. However, as the scenes in HSIs become larger and 
the background more complex, the assumption of a single back
ground class often fails to accurately reflect the true diversity of the 
background. Although some research has explored multi-class 
background separation [37,45] and endmember extraction [26], 
addressing the differences between the background classes in com
plex hyperspectral scenes remains an open problem that requires 
further investigation.

3) Transformer models have been widely applied in hyperspectral 
anomaly detection, with a focus primarily on capturing spatial 
context features or spectral features [46,47]. However, these models 
have not fully explored the potential of low-rank and dictionary 
learning, which limits their performance in anomaly detection. 
Therefore, integrating low-rank representation with the transformer 
architecture and optimizing the learning of background low-rank 
structures remain unresolved issues.

In this article, to tackle the above challenges, we propose a multi- 
class background description transformer network (MBDTNet) for 
hyperspectral anomaly detection. Firstly, to provide stable and pure 
training samples, an image patch based anomaly data augmentation 
strategy is introduced, which increases the diversity of the training 
samples through adaptive clustering and spatial random masking pro
cesses. Simultaneously, MBDTNet is trained in a self-supervised manner, 
utilizing unsupervised data to generate background pseudo-labels, 
thereby supporting multi-class background description. In addition, 
based on the concepts of low-rank representation and dictionary 
learning, a self-attention mechanism based on token dictionary sparse 
representation is incorporated. By using the token dictionary, each 
sample is represented as a sparse combination of dictionary elements, 
helping the model accurately identify the key features of the background 
classes, thereby reducing attention to non-key features. To group the 
background classes together and effectively separate anomalies, 
Gaussian discriminant analysis (GDA) is integrated into a deep neural 
network framework. This integration allows the model to learn spherical 
decision boundaries for each background class, ensuring a compact 
representation of the background. The network can then distinguish 
anomalous regions that lie outside the decision boundaries, through 
adaptive spectral-spatial feature integration that enhances operational 
resilience across diverse hyperspectral scenarios. Finally, a composite 
guided loss function is proposed, which consists of binary cross-entropy 
(BCE) loss, intra-class loss, and inter-class loss. This loss function enables 
the model to focus more on enhancing the distinction between back
ground classes and improving the detection capability for anomalous 
samples. The main contributions of the MBDTNet method are summa
rized as follows: 

1) MBDTNet is an image-level end-to-end network that directly outputs 
an anomaly detection map, and is capable of handling large-scale 
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HSIs with complex backgrounds. A patch-based anomaly data 
augmentation strategy is established that trains the model in a self- 
supervised manner, enhancing its ability to detect anomalies accu
rately in practical applications.

2) A self-attention mechanism based on token dictionary sparse repre
sentation is proposed, where the attention weights are used to 
represent the degree of background feature reconstruction. This 
mechanism enhances the model’s focus on key background features, 
helping to highlight the differences between background and 
anomalies.

3) A multi-class background description method is proposed that con
structs spherical decision boundaries for each class and dynamically 
generates token dictionaries, effectively capturing the complex dis
tribution of hyperspectral backgrounds. In addition, intra-class and 
inter-class losses are designed to enhance the distinction between 
background and anomalies.

2. Related work

2.1. Low-rank representation and dictionary learning

The LRR [49] assumes that the background exhibits low-rank prop
erties, while anomalies are characterized by their sparsity. HSI data can 
be defined as X = [x1, x2, …, xN] ∈ ℜN×b, where xi represents the i-th 
spectral vector with b dimensions, and N denotes the total number of 
pixels. Thus, the X can be decomposed into the background component 
and the anomaly component, as follows: 

X = DA + S (1) 

where D is the background dictionary, and A refers to the representation 
coefficients. The optimization problem for the LRR model can be 

denoted as: 

min
L,S

‖ A ‖∗ + β‖ S ‖2,1, s.t.X = DA + S (2) 

where ‖ A ‖∗ represents the nuclear norm of the A, and ‖ S ‖2,1 denotes 
the l2,1-norm of the S.β is a regularization parameter. To better isolate 
the anomaly information, the desired learned dictionary should, as 
much as possible, contain only the spectra of the background [14]. 
Typically, a dictionary learning algorithm based on gradient iteration is 
employed. Firstly, an initial dictionary D is randomly generated, and is 
then iteratively updated using a gradient algorithm, as follows: 

D(n+1) = D(n) − μ
∑M

i=1
(D(n)Ai − xi)AT

i (3) 

where μ is the step size in each iteration, and M is the number of samples 
selected in each iteration.

2.2. Deep support vector data description

Anomaly detection models can also be considered as learning a 
model that accurately describes normal data, with deviations from the 
model considered to be anomalies. This approach is commonly referred 
to as one-class classification. SVDD [7] aims to find a closed spherical 
boundary, known as a hypersphere, that encloses the normal data, while 
anomalies are located outside this hypersphere. The learning objective 
of SVDD is to learn the center c, radius R, and the feature mapping Φ 
associated with its kernel, with the observation equation as follows: 

min
c,R,ξ

R2 +
1
vn
∑N

i=1
ξi s.t∀i, ‖ Φ(xi) − c ‖2 ≤ R2 + ξi, ξi ≥ 0 (4) 

where ξi is the soft boundary, and v is the penalty coefficient, which is 

Fig. 1. Flowchart of the proposed MBDTNet architecture.
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used to control the volume of the hypersphere.
Deep SVDD trains a deep neural network (DNN) to fit the network 

outputs into a hypersphere of minimal volume. However, Deep SVDD 
[52] is limited to single-class data description, as it assumes that all the 
samples in the dataset belong to the same class. Deep multi-class data 
description (MCDD) [53] introduces the concept of multi-class data 
description, employing multiple-sphere modeling instead of 
single-sphere modeling, where each sphere represents a background 
class. Deep-MCDD optimizes the DNN to map training samples into a 
latent space close to the center ck, ultimately defining a hypersphere of 
minimal volume centered at ck. Given N training samples 

(
xi, yi

)
from K 

different classes, the objective of Deep-MCDD can be described as 
follows: 

min
W ,c,r

∑K

k=1

R2
k +

1
vN
∑N

n=1
max

{
0, ζik

(
‖ f(xi;W ) − ck ‖

2 − R2
k
)}

(5) 

where W is the network parameter of the trained model, ζik represents 
the class assignment indicator, and v determines the strength of each 
hypersphere in enclosing the corresponding training samples. Subse
quently, for a given test data point xt , the anomaly score in Deep-MCDD 
can be defined based on the distance from this point to the center of the 
hypersphere, expressed as ‖ f(xt ;W ) − ck‖

2. Therefore, in complex HSI 
scenes, it is crucial to develop an unsupervised MCDD method that 
groups the various background categories into the same attribute cate
gory while helps to detect anomalies.

3. Proposed method

The proposed MBDTNet method consists of three main components: 
the anomaly sample data augmentation strategy, MBDTNet network 
training, and anomaly inference testing. An overview of the architecture 
of MBDTNet is provided in Fig. 1. Firstly, an image-level data 
augmentation method is introduced, which includes adaptive clustering 
and spatial random masking. Next, the MBDTNet architecture includes 
two key modules: token dictionary sparse representation (TDSR) and 
multi-class background description learning (MBDL), which are used to 
train the model by feeding the training samples into the network. TDSR 
module is capable to describe the background features by introducing 
token dictionary, in which each pixel is represented as a sparse linear 
combination of dictionary atoms. Simultaneously, MBDL module con
structs spherical decision boundaries for different classes separately and 
utilizes tokens to represent the feature information of each class. The 
token dictionary provided by MBDL enhances the anomaly detection 
capability of TDSR, while the sparse modeling of TDSR further promotes 

the discriminative feature extraction. Finally, during the testing phase, 
the test HSI is divided into patches, and each patch is passed through the 
test network. The patches are then merged to obtain the final detection 
map.

3.1. Training sample augmentation

Due to the coexistence of diverse background and anomalies in large- 
scale HSIs, the traditional methods are often limited by the imbalance 
between background and anomaly samples. To address this issue, an 
anomaly data augmentation strategy is proposed that combines adaptive 
clustering and random masking to dynamically identify the background 
and anomaly categories while ensuring the availability of sufficient 
training samples. Specifically, a background and anomaly search strat
egy is established, aimed at extracting high-confidence background and 
anomaly classes. Given that HSIs typically contain multiple background 
classes with relatively abundant pixels, while anomaly pixels are sparse 
density-based spatial clustering of applications with noise (DBSCAN) 
[37] is employed to adaptively determine the number of ground object 
classes based on the spectral characteristics of the HSI.

As illustrated in Fig. 2, the spectral data of the HSI are input into 
DBSCAN to generate a clustering label map. Each class label’s pixel 
count is then sorted by size, and a reasonable pixel threshold ζ is set to 
distinguish the pseudo background and anomaly classes. The back
ground and anomaly search strategy is defined as follows: 

L (ki) =

{
bi ∈ B D, sum(ki)/N > ζ
ai ∈ A D, sum(ki)/N ≤ ζ (6) 

where ki represents the pixel set of class i. sum(⋅) is used to counting the 
number of pixels. N denotes the total number of pixels. ζ is a threshold 
parameter used to determine whether the current class belongs to 
anomaly or background. B D represents the pseudo background set, and 
A D represents the pseudo anomaly set.

Next, an n × n window slides over the image, starting from the top- 
left corner and traversing the entire image with a fixed step size. For 
each patch within the sliding window, the pixel labels of the patch are 
checked. The patch will be excluded if contains potential anomaly pixels 
xi ∈ A D. Simultaneously, the Euclidean distance from the pixel to its 
cluster center is calculated to serve as a probability estimate, which 
helps in selecting pseudo-label samples based on their reliability. Pixels 
with a distance greater than 0.7 are classified as belonging to that class, 
and the remaining pixels are matched based on their location indices to 
generate the pseudo-label map for the current window.

Furthermore, a random masking strategy [34] is used to simulate 

Fig. 2. Flowchart of training sample augmentation.
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anomalous targets. As shown in Fig. 2, the random masking strategy 
simulates target shapes with irregular and random sizes by dividing the 
mask map M into k patches. The anomaly spectra, which are extracted 
from the pseudo anomaly set A D using the DBSCAN algorithm, are 
embedded into the random mask regions. It is important to emphasize 
that the pseudo anomaly labels only serve as auxiliary supervision to 
indicate potential target regions and are not intended to represent true 
semantic-level anomaly annotations. The target areas are randomly 
selected and set to 1, while the background is set to 0, with the final 
mask map used to generate the ground-truth map for the targets. In 
addition, the regions set to 1 in the mask map M are not assigned 
background pseudo-labels and are defined as belonging to the “other” 
class. Finally, the training data consist of three components: X ∈ ℜn×n×b, 
representing the HSI patch; the background pseudo-label L ∈ ℜn×n cor
responding to each training sample; and the anomaly ground-truth map 
Y ∈ ℜn×n. Therefore, the primary task of MBDTNet from the background 
pseudo-label guides the model to distinguish features among different 
background categories. In contrast, the ground truth of anomaly in
dicates the anomaly regions and serves as a reference for the model’s 
output during training.

3.2. MBDTNet architecture

Fig. 3 illustrates the proposed MBDTNet, which is based on a U-Net 
framework. The encoder of MBDTNet is built based on a vision trans
former (ViT) [54] to effectively capture multi-scale features during the 
encoding process of HSIs. The encoder consists of two feature extraction 
stages, each composed of a ViT block. The first stage ends with a 
downsampling layer for dimensionality reduction. The structure of the 
ViT module, shown in Fig. 4(a), divides the image into fixed-size patches 
and linearly maps them into vectors. The self-attention mechanism 
inherently models patch relationships and global anomaly-background 
interactions through its long-range dependency learning capability. 
The downsampling layer is a 2 × 2 strided convolutional layer that re
duces feature map’s spatial resolution. At the end of the encoding pro
cess, the feature maps F1 ∈ ℜc1×n×n and F2 ∈ ℜc2×n×n are fused to feature 
map Fr using feature fusion module. As shown in Fig. 4(b), a bilinear 
interpolation layer upsamples the feature map F2, followed by convo
lution, batch normalization, and ReLU to obtain the fine-scale feature 
map. The F1 branch employ a channel attention (CA) [55] mechanism to 
selectively enhance discriminative feature channels.

After the feature extraction by the encoder, the TDSR model is 

Fig. 3. Overview illustration of the proposed MBDTNet network.

Fig. 4. Structure diagram of the ViT layer and feature fusion module of MBDTNet.
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further utilized to generate the enhanced feature FT ∈ ℜc3×n×n, with the 
goal of emphasizing the anomalous regions in the HSI while suppressing 
the influence of background regions, as described in Section 3.3. The 
features generated by the encoder are reshaped and then passed through 
a DNN network for multi-class background description learning (MBDL), 
which generates a token dictionary while computing the anomaly con
fidence score S ∈ ℜ1×n×n, as detailed in Section 3.4. Finally, by 
concatenating the features FT and S , the decoder module generates an 
anomaly prediction map M ∈ ℜn×n with a 0–1 distribution. The decoder 
progressively reduces feature channels via convolutional layers, ulti
mately producing a single-channel output that is transformed into the 
final target probability map through sigmoid activation. Finally, in the 
testing phase, the test HSI is divided into several n × n patches, which 
are input into the MBDTNet network. Each patch generates an anomaly 
probability map, and these maps are then merged to obtain the anomaly 
detection map.

3.3. Token dictionary sparse representation

In LRR and dictionary learning, the representation coefficients A of 
the background dictionary represent how the original data are expressed 
as a weighted combination of dictionary elements, which helps improve 
the compactness and interpretability of the feature representation. In 
self-attention based methods, the attention weights between different 
elements are determined by calculating the normalized inner product. 
Specifically, the inner product between the query Q and the key K is 
computed to measure their similarity, and the attention weights A are 
then obtained by normalizing through Softmax: 

A = Softmax
(

QKT
/ ̅̅̅

d
√ )

(7) 

The LRR and self-attention mechanisms both focus on effectively 
capturing the key features of data by optimizing the model parameters. 
These methods share a commonality in their approach to similarity 
calculation and weight allocation, as both aim to emphasize the 
important components by evaluating the relationships between ele
ments within the data. Therefore, drawing from the concepts of LRR and 
token dictionary learning [56], we propose an attention mechanism 
based on TDSR, as shown in Fig. 5. Specifically, an additional token 
dictionary D ∈ ℜK×d is introduced and dynamically updated using 
multi-class background dictionary learning (Section 3.3), resulting in a 

compact set of background feature basis vectors. In other words, the 
token dictionary D serves as a parameterized memory collection that 
stores background features. The learned token dictionary D is then used 
to generate the key dictionary KD and the value dictionary VD , with the 
input features Z ∈ ℜN×d being employed to generate query tokens: 

Qz = ZWQ,Kz = D WK,VD = D WV (8) 

where WQ, WK, and WV are the linear transformations. Furthermore, the 
attention map A ∈ ℜN×K is calculated using the cosine similarity be
tween the query token QZ and the key dictionary token KD , as 
expressed by the following formula: 

A = Softmax(SIMcos(QZ ,KD ) / τ) (9) 

where τ is a learnable parameter used to scale the similarity value. 
SIMcos(QZ ,KD ) denotes the cosine similarity between QZ and KD , and 
is calculated as follows: 

SIMcos(QZ ,KD ) =
QZ ⋅KD

‖ QZ ‖ ‖ KD ‖
(10) 

where ‖ QZ ‖ and ‖ KD ‖ represent the Euclidean norms of QZ and KD , 
respectively. Next, the Softmax function is applied to convert the simi
larity values into an attention map A, which represents the strength of 
the association between each query token QZ and the elements in the 
dictionary D . Normal background samples can be precisely represented 
by a sparse linear combination of dictionary atoms. In contrast, anomaly 
samples which deviated from the background distribution require more 
dictionary atoms for reconstruction which leads to higher reconstruction 
errors. As shown in Fig. 4, a reconstruction error-guided attention 
(REGA) mechanism is proposed based on the reconstruction error, 
which improves the detection performance by integrating the recon
struction error into the calculation of attention weights. The mathe
matical formulation for the REGA mechanism is given as follows: 

Z
o = Softmax(‖ Z − AVD ‖)Z (11) 

where ‖ Z − AVD ‖ represents the sparse component, i.e., the anomaly 
component, which captures how well the feature Z can be recon
structed using the dictionary VD and attention weights A.

Fig. 5. Structure diagram of the reconstruction error-guided attention mechanism.
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3.4. Multi-class background description learning

Based on the concept of Deep SVDD, the main objective of MBDTNet 
is to optimize the feature extractor so that the latent representations of 
the background samples from the same class are clustered together, 
forming an independent hypersphere with minimal volume. However, 
when dealing with multiple background classes in hyperspectral data, 
Deep SVDD faces challenges in defining clear decision boundaries. 
MCDD [53] determines each class by learning multiple Gaussian dis
tributions through the network, which helps classify a test sample into 
that class. As a result, K hypersphere classifiers are integrated into the 
network using Deep-MCDD, where each hypersphere represents a 
distinct background class. The centers of these K hyperspheres collec
tively form a background dictionary, providing a stable reference for the 
TDSR module.

In the background distribution of HSI, different background classes 
typically exhibit distinct statistical characteristics. Modeling these 
background classes using a Gaussian distribution can help identify po
tential differences between them and anomalies. GDA assumes that each 
class follows a Gaussian distribution, making it particularly effective for 
handling the background distribution in HSI. Given that each class- 
conditional distribution follows a multivariate Gaussian distribution 
P(Z |y = k) = N (f(x)|μk,Σk), it is assumed that the class priors follow a 
Bernoulli distribution P(y = k) = βk/(Σkʹβkʹ). Furthermore, it is assumed 
that the covariance and standard deviation of each class are isotropic (i. 
e., Σk = σ2

kI). Under these assumptions, the posterior probability of a 
sample xt belonging to class k is described as: 

P(y = k|x) =
P(y = k)P(x|y = k)

ΣkʹP(y = kʹ)P(x|y =kʹ)

=

exp

(

−
‖ f(x;W ) − μk‖

2

2σ2
k

− logσd
k + logβk

)

Σkʹexp

(

−
‖ f(x;W ) − μkʹ‖

2

2σ2
kʹ

− logσd
kʹ + logβkʹ

)

(12) 

where f(x;W ) represents the feature representation of sample x.
However, during the learning process of deep network models, there 

is no guarantee that the class-conditional distributions will adhere to a 
Gaussian distribution, as no explicit constraint ensures the alignment 
with the Gaussian assumption or the true class means. To reinforce the 
GDA assumption, we minimize the reverse Kullback-Leibler (KL) 
divergence KL

(
P k‖ N

(
μk, σ2

kI
))

for each class, where the empirical 
class-conditional distribution P k = 1

Nk

∑
yi=kϑ(x − f(xi;W )) is con

structed through deep feature averaging. The KL divergence is then 
formulated as:  

where the constant terms are merged and defined as c, and Nk is the 
number of training samples for class k. By minimizing the KL divergence 
across all the classes, the model enhances data structural representation, 
enforcing P(Z |y= k) in the latent space to conform to Gaussian priors. 
To facilitate model optimization and accurately represent the multi-class 
background spheres, the class-conditional probabilities are used as a 
confidence measure of how likely it is that a sample belongs to a 
particular class in the feature space. Therefore, the distance function dk 
is expressed as follows: 

dk(Z ) = − logP(Z |y = k) = − logN
(
f(x;W )|μk, σ2

kI
)

≈
‖ f(xi;W ) − μk‖

2

2σ2
k

+ logσd
k

(14) 

The learning objective of MBDL is to align the priori distribution of 
the training data with the class-conditional distribution in the feature 
space, while ensuring that the classes are distinguishable from one 
another in a multi-class classification setting. To achieve this, the MBDL 
objective is shown in the following equation: 

min
W,μ,σ,b

1
N
∑N

i=1

[

dyi (xi) −
1
v

log
exp
(
− dyi (xi) + byi

)

∑K
k=1exp( − dk(xi) + bk)

]

(15) 

where v is the regularization factor. Therefore, the trainable parameters 
of MBDL module include the weights W of the MBDTNet encoder, the 
class mean μk, the standard deviation σk, and the bias bk. In the 
MBDTNet training phase, the class centers need to be initialized first, i. 
e., μk = 1

Nk

∑
yi=kf(x;W ). Finally, the class means μk can represent the 

multi-class background token dictionary D in the feature space.
Based on the established multiple background hyperspheres and the 

distance function dk, the possibility and confidence of a sample 
belonging to each class can be calculated. Notably, if the test sample lies 
outside all of the background hyperspheres, it is likely to be classified as 
an anomaly. A distance function dk is used to define the confidence score 
S (Z ): 

S (Z ) = − min
k

dk(Z ) (16) 

where a higher S (Z ) indicates that the sample is closer to a back
ground class, suggesting that it is more likely to be a normal sample. 
Conversely, a lower S (Z ) (i.e., a larger distance) suggests that the 
sample may be anomalous. Therefore, the confidence score S (Z ) helps 
distinguish between background and anomaly samples. As shown in 
Fig. 3, the confidence score is integrated with the other features and 
input into the anomaly detector.

KL
(
P k‖ N

(
μk, σ2

kI
))

= −

∫
1
Nk

∑

yi=k
ϑ(x − f(xi;W ))log

[
1

(
2πσ2

k

)d
2

exp
(

−
‖ x − μk ‖

2

2σ2
k

)]

dx

+

∫
1
Nk

∑

yi=k
ϑ(x − f(xi;W ))log

[
1
Nk

∑

yi=k
ϑ
(
x − f

(
xi;W

))
]

dx

= −
1
Nk

∑

yi=k
log

[
1

(
2πσ2

k

)d
2

exp

(

−
‖ f(xi;W ) − μk ‖

2

2σ2
k

)]

+ log
1
Nk

=
1
Nk

∑

yi=k

(
‖ f(xi;W ) − μk ‖

2

2σ2
k

+ logσd
k

)

+ c

(13) 
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3.5. MBDTNet loss function

1) Classification Loss: During the training sample construction pro
cess, the random masking strategy generates labels for both background 
and anomalies. Consequently, the probability of the anomaly is 
computed using the decoder module. To supervise the network training, 
the BCE loss LBCE is introduced. The LBCE is defined as follows: 

LBCE = −
1

hw
∑hw

i=1
[yilog(pi)+ (1 − yi)log(1 − pi)] (17) 

where yi denotes the ground-truth label, pi represents the predicted 
probability for the target, and hw is the number of samples.

2) Inter-Class Loss: The inter-class loss Linter enhances feature sepa
rability by optimizing inter-class differences, guiding the model to learn 
clearer decision boundaries for the background class and thereby 
causing the features of anomalies to significantly deviate from the 
normal background distribution. The distance function dk reflects the 
relationship between a sample and its class center, ensuring that the 
distinction between classes is preserved. Since the MBDL aims to 
maximize the posterior probability of the background class for each 
sample P(l = li|Z ), the distance function dk computes the predicted 
label through maximum a posteriori estimation. The expression for this 
is as follows: 

l̂(Z ) = argmax
k

P(l= k|Z ) = argmax
k

[ − dk(Z )+ bk] (18) 

where bk is the bias term associated with class k, providing flexibility to 
the decision process by allowing an adjustment parameter for the de
cision boundary of each class. Therefore, cross-entropy loss is utilized to 
quantify the disparity between the predicted label and the pseudo-label 
L. The Linter loss is as follows: 

Linter = −
∑K

k=1
lklog(pk) (19) 

3) Intra-Class Loss: The intra-class loss Lintra constrains the distance 
between the features of background samples and their corresponding 
class centers, forcing the features of background samples from the same 
class to be more compactly distributed in the feature space. At the same 
time, Lintra allows for reasonable diversity in the background by utilizing 
multiple subclass centers, maintaining compactness within each sub
class. To quantify the similarity between a sample and the background 
class centers, the spectral angle distance (SAD) is employed. The 
expression for Lintra is as follows: 

Lintra =
1
K
∑K

k=1

1
m
∑m

i=1
arccos

(
Z i⋅μk

‖ Z i ‖ ‖ μk ‖

)

(20) 

where m is the number of samples in each class k. Z i is the feature 
vector of the i-th sample in class k. By optimizing the Lintra loss, the model 
enhances the cohesion of samples within each class, thereby improving 
the recognition of background classes, which in turn helps to boost the 
anomaly detection performance.

4) Total Loss: The total loss of MBDTNet can be expressed as follows: 

L = LBCE + Linter + Lintra (21) 

By jointly optimizing these three losses, MBDTNet effectively in
tegrates information from the anomaly target classification, inter-class 
loss, and intra-class loss. This comprehensive loss function enables 
MBDTNet to adapt more flexibly to the complex relationships between 
background and anomalies, thereby enhancing its ability to accurately 
identify anomalous samples.

4. Experimental results and analysis

4.1. Datasets

1) San Diego Dataset: This dataset is publicly available hyperspectral 
data, acquired by the Airborne Visible/Infrared Imaging Spectrom
eter (AVIRIS) over the San Diego airport area in California, USA. The 
San Diego dataset covers a wavelength range of 370–2510 nm and 
contains 189 bands. By cropping the original image, the scene area 
used in the experiment was 200 × 250 pixels, with a spatial resolu
tion of 3.5 m. As illustrated in Fig. 6(a), three airplanes are consid
ered the targets to be detected.

2) Viareggio Dataset: This dataset was acquired by the push broom-style 
hyperspectral Sistema Iperspettrale Modulare Galileo Avionica 
sensor in the suburbs of Viareggio, Italy. The spectral range is from 
400 nm to 1000 nm and contains 511 bands. As shown in Fig. 5(b), 
the size of the dataset is 375 × 450 pixels, with a spatial resolution of 
0.6 m. The scene contains three cars, four panels, and two reference 
calibration tarps.

3) Avon Dataset: This dataset was acquired the ProSpecTIR-VS sensor 
system, with the acquisition area located in the southern part of 
Avon, Rochester, New York, USA. After geographic and mosaicking 
preprocessing, a region of size 400 × 400 pixels was selected for this 
study, with a spatial resolution of 1 m, as shown in Fig. 6(c). The 
wavelength range spans from 400 nm to 2450 nm. The scene con
taining 25 grid-patterned tarps and three red or blue felt pads are 
considered anomalies.

4) Qingpu Dataset: This dataset was acquired over the Shanghai region 
of China using the Airborne Multi-Modular Imaging Spectrometer 
(AMMIS). The wavelength range is 400–1000 nm and contains 250 
bands. The spatial resolution of the images is 0.75 m. As shown in 

Fig. 6. The five HSI datasets are displayed as follows: the first row shows the pseudo-color images of the datasets, and the second row shows the corresponding 
ground-truth maps. (a) San Diego. (b) Viareggio. (c) Avon. (d) Qingpu-I. (e) Qingpu-II.
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Fig. 6(d), after cropping the original strip data, the Qingpu-I dataset 
has a size of 600 × 400 pixels, with four vehicles considered as the 
anomalies. As shown in Fig. 6(e), the Qingpu-II dataset has a size of 
400 × 740 pixels, with the blue rooftops considered the targets to be 
detected.

4.2. Experimental setup

1) Evaluation Metrics: The baseline was made up of nine popular 
anomaly algorithms: the global RX (GRX) detector [6], CRD [12], 
LSMAD [57], RGAE [31], DFAN [37], Auto-AD [39], DeepLR [50], 
PDBSNet [36] BockNet [38], and GT-HAD [46]. The GRX, CRD and 
LSMAD are traditional algorithms. RGAE, DFAN, Auto-AD, DeepLR, 
PDBSNet, BockNet, and GT-HAD are all deep learning models that 
utilize reconstruction error to detect anomalies.

2) Parameter Settings: The hardware device used in the experiments 
was a computer with an Intel Core i7-10700 K CPU, an NVIDIA 
GeForce RTX 3070 GPU. For the software environment, all the al
gorithms were computed in Python 3.9, implemented using Torch- 
GPU 2.0.1 and CUDA 11.3. For MBDTNet, we employed the Adam 
optimizer with a learning rate of 0.001. The MBDTNet took 64 × 64 
patches as input and was optimized over 200 epochs with a batch 
size of 32. In this study, the threshold parameter ζ was set to 10‰ ×
N. After applying data augmentation strategy with rotation and 
flipping, the number of pure background training sample for the five 
datasets was expanded to 82, 84, 168, 93, and 157 samples, 
respectively. For the comparison algorithms, the optimal parameters 
were set for traditional algorithms. For RGAE, Auto-AD, DeepLR, 
DFAN, PDBSNet, and BockNet, the parameters were dynamically 

adjusted based on the specific characteristics of each dataset to 
achieve an optimal performance.

3) Evaluation Metrics: The performance of the target detection algo
rithms is evaluated here using 3D receiver operating characteristic 
(ROC) curves [58], the area under the curve (AUC) [58]. The 3D ROC 
curves serve as a fundamental evaluation metric, plotted based on 
the detection probability Pd, false alarm rate Pf , and threshold τ. By 
projection, this generates 2D ROC curves, namely, the ROC curve of 
(
Pd,Pf

)
, the ROC curve of (Pd,τ), and the ROC curve of 

(
Pf ,τ

)
. Using 

the aforementioned three ROC curves, the following AUCs can be 
derived: AUC(Pd ,Pf), AUC(Pd ,τ), and AUC(Pf ,τ). In addition, there are 

several derivative versions of AUC, namely, AUCTD, AUCBS, AUCODP, 
AUCTDBS, and AUCSNPR. AUCTD quantifies the performance of the 
anomaly detection, while AUCBS evaluates the background sup
pression performance. AUCODP, AUCTDBS, and AUCSNPR provide a 
comprehensive assessment of the algorithm’s target detection 
capability.

4.3. Detection results

Fig. 7 presents the anomaly maps of the various methods on the San 
Diego dataset. It can be observed that DFAN, BockNet, and MBDTNet 
successfully detect all six airplane targets, whereas the other methods 
fail to identify the targets completely. However, LSMAD, RGAE, DFAN 
and GT-HAD incorrectly identify building rooftops as anomalies due to 
the complex background features. Notably, the proposed MBDTNet 
method not only identifies aircrafts but also accurately delineates 
anomaly boundaries. Fig. 8 illustrates the detection maps for the Viar
eggio dataset. GRX, CRD, and DFAN exhibit poor background suppres
sion, making the target detection challenging. PDBSNet and BockNet 

Fig. 7. Anomaly detection maps of the different methods on the San Diego dataset.

Fig. 8. Anomaly detection maps of the different methods on the Viareggio dataset.
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misclassify a small portion of the vehicles in the center as anomalies. In 
contrast, LSMAD, GT-HAD, and MBDTNet obtain superior perfor
mances, and MBDTNet achieves the best target detection results. As 
shown in Fig. 9, GRX, Auto-AD, DeepLR, PDBSNet, BockNet, and GT- 
HAD fail to detect the anomalous targets and exhibit large false 
alarms. RGAE and DFAN display slightly weaker background suppres
sion capabilities. Although the detection performance of DFAN and 
MBDTNet appears similar, MBDTNet significantly outperforms DFAN in 
background suppression. For the Qingpu-I dataset, the detection results 
are shown in Fig. 10. RGAE, DFAN, PDBSNet, and GT-HAD produce false 
alarms targets. However, BockNet and MBDTNet accurately identify the 
targets, with high precision. As shown in Fig. 11, RGAE, DFAN, and 
BockNet exhibit poor background suppression, whereas the traditional 
methods perform comparatively better on the Qingpu-II dataset. Among 
the deep learning based methods, MBDTNet accurately detects targets of 

varying scales. Overall, the proposed MBDTNet method not only suc
cessfully detects the targets of different scales but also maintains a high 
level of background suppression, demonstrating its robustness and 
effectiveness.

Fig. 12 shows the ROC curves for the different methods across the 
five datasets. The ROC curve of 

(
Pd,Pf

)
being close to the top-left corner 

and the ROC curve of (Pd, τ) being close to the top-right corner indicates 
superior detection performances. Meanwhile, the ROC curve of 

(
Pf , τ

)

appearing near the bottom-left corner suggests stronger background 
suppression capabilities. From the ROC curves of 

(
Pd,Pf

)
on the five 

datasets, MBDTNet consistently appears near the top-left corner, 
demonstrating its strong detection capability. Similarly, in the ROC 
curves of (Pd, τ), MBDTNet is predominantly located in the top-right 
corner, significantly outperforming the other detection algorithms and 
maintaining a high detection probability even at high thresholds. For the 

Fig. 10. Anomaly detection maps of the different methods on the Qingpu-I dataset.

Fig. 11. Anomaly detection maps of the different methods on the Qingpu-II dataset.

Fig. 9. Anomaly detection maps of the different methods on the Avon dataset.
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ROC curves 
(
Pf , τ

)
of the five datasets, GT-HAD and MBDTNet are 

optimally positioned in the bottom-left corner, indicating its effective
ness in suppressing background interference. In addition, the eight deep 
learning based anomaly detection algorithms exhibit similar perfor
mances for the ROC curve 

(
Pf , τ

)
, generally outperforming the 

traditional algorithms. However, the performance of Auto-AD, DeepLR, 
PDBSNet, and BockNet fluctuates across the five datasets, exhibiting 
inconsistency and suggesting a lack of robustness in adapting to diverse 
background complexities.

Table 1 present the AUC scores of each detection method on the four 

Fig. 12. ROC curves for each detection method on the four datasets. (a) San Diego. (b) Viareggio. (c)Avon. (d) Qingpu-I. (e) Qingpu-II.
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datasets. For the San Diego dataset, MBDTNet achieves the highest re
sults across all the AUC measures, with the most representative 
AUC(Pd ,Pf) and AUCODP improving by 0.0302 and 0.1805, respectively, 

compared to the second-best scores. The other comparison algorithms, 

such as CRD, DFAN, and BockNet, demonstrate competitive perfor
mances, ranking second across the different AUC metrics. For the Viar
eggio dataset, the proposed MBDTNet algorithm achieves AUC(Pd ,Pf ) and 

AUCODP scores of 0.9716 and 1.2812, respectively, along with the best 

Table 1 
AUC scores of the different methods on the five datasets.

Dataset AUC GRX CRD LSMAD RGAE DFAN Auto-AD DeepLR PDBSNet BockNet GT-HAD MBDTNet

San Diego AUC(Pd ,Pf)↑ 0.8349 0.9563 0.9223 0.9077 0.9244 0.9458 0.9438 0.9361 0.9549 0.9623 0.9865

AUC(Pd ,τ)↑ 0.0332 0.0855 0.1625 0.1082 0.2015 0.1222 0.0997 0.0997 0.1350 0.1496 0.2792
AUC(Pf ,τ)↓ 0.0124 0.0191 0.0341 0.0193 0.0529 0.0183 0.0177 0.0094 0.0091 0.0183 0.0043

AUCTD↑ 0.8681 1.0418 1.0847 1.0159 1.1259 1.0680 1.0435 1.0358 1.0900 1.1119 1.2657
AUCBS↑ 0.8224 0.9371 0.8881 0.8884 0.8714 0.9275 0.9261 0.9267 0.9459 0.9440 0.9821
AUCODP↑ 0.8557 1.0226 1.0505 0.9966 1.0729 1.0497 1.0257 1.0264 1.0809 1.0936 1.2614
AUCTDBS↑ 0.0207 0.663 0.1282 0.0889 0.1485 0.1039 0.0819 0.0903 0.1259 0.1313 0.2748
AUCSNPR↑ 2.66 4.45 4.75 5.60 3.80 6.68 5.61 10.62 14.88 8.16 64.22

Viareggio AUC(Pd ,Pf)↑ 0.6884 0.9414 0.9345 0.6202 0.9082 0.8846 0.9199 0.8870 0.9140 0.9302 0.9716

AUC(Pd ,τ)↑ 0.0446 0.0785 0.2774 0.2904 0.1671 0.2722 0.3038 0.1524 0.0797 0.0681 0.3152
AUC(Pf ,τ)↓ 0.0558 0.0356 0.0121 0.0235 0.0583 0.0073 0.0105 0.0138 0.0082 0.0026 0.0056
AUCTD↑ 0.7329 1.0199 1.2120 0.9105 1.0753 1.1568 1.2238 1.0394 0.9938 0.9982 1.2869
AUCBS↑ 0.6325 0.9058 0.9224 0.5966 0.8498 0.8773 0.9094 0.8732 0.9058 0.9276 0.9659
AUCODP↑ 0.6771 0.9843 1.1998 0.8869 1.0170 1.1495 1.2133 1.0256 0.9856 0.9956 1.2812
AUCTDBS↑ 0.0112 0.0429 0.2652 0.2668 0.1088 0.2649 0.2933 0.1385 0.0715 0.0655 0.3096
AUCSNPR↑ 0.79 2.12 22.80 12.31 2.86 37.19 28.91 11.03 9.71 26.17 55.76

Avon AUC(Pd ,Pf)↑ 0.8359 0.9849 0.9463 0.6790 0.9560 0.8754 0.9009 0.8439 0.7807 0.9781 0.9867

AUC(Pd ,τ)↑ 0.0276 0.1482 0.0787 0.0398 0.2355 0.0712 0.0633 0.0351 0.0336 0.0221 0.3365
AUC(Pf ,τ)↓ 0.0033 0.0095 0.0045 0.0154 0.0351 0.0098 0.0036 0.0056 0.0052 0.0008 0.0023
AUCTD↑ 0.8635 1.1331 1.0251 0.7188 1.1915 0.9466 0.9643 0.8791 0.8143 1.0002 1.3232
AUCBS↑ 0.8326 0.9753 0.9418 0.6636 0.9208 0.8656 0.8973 0.8383 0.7755 0.9772 0.9843
AUCODP↑ 0.8603 1.1236 1.0206 0.7035 1.1563 0.9368 0.9607 0.8735 0.8092 0.9993 1.3210
AUCTDBS↑ 0.0243 0.1387 0.0742 0.0244 0.2003 0.0614 0.0597 0.0296 0.0284 0.0212 0.3342
AUCSNPR↑ 8.42 15.52 17.51 2.58 6.69 7.25 17.58 6.31 6.48 25.87 146.43

Qingpu-I AUC(Pd ,Pf)
↑ 0.9990 0.9956 0.9996 0.9597 0.9996 0.9998 0.9998 0.9968 0.9993 0.9949 0.9997

AUC(Pd ,τ)↑ 0.1276 0.2395 0.2058 0.4108 0.3908 0.2250 0.3322 0.3741 0.3249 0.2712 0.6120
AUC(Pf ,τ)↓ 0.0157 0.0262 0.0083 0.0562 0.0294 0.0043 0.0133 0.0085 0.0043 0.0044 0.0031

AUCTD↑ 1.1266 1.2352 1.2054 1.3705 1.3905 1.2248 1.3321 1.3710 1.3242 1.2707 1.6117
AUCBS↑ 0.9833 0.9694 0.9912 0.9034 0.9703 0.9954 0.9866 0.9883 0.9950 0.9952 0.9965
AUCODP↑ 1.1109 1.2090 1.1971 1.3143 1.3611 1.2205 1.3188 1.3624 1.3199 1.2664 1.6086
AUCTDBS↑ 0.1118 0.2133 0.1974 0.3546 0.3614 0.2207 0.3188 0.3655 0.3205 0.2669 0.6089
AUCSNPR↑ 8.09 9.13 24.64 7.30 13.28 51.63 24.90 43.76 74.55 62.83 197.11

Qingpu-II AUC(Pd ,Pf)
↑ 0.9958 0.9854 0.9918 0.7523 0.9969 0.9803 0.9973 0.9825 0.9929 0.9891 0.9974

AUC(Pd ,τ)↑ 0.3383 0.1124 0.4308 0.0531 0.2802 0.0415 0.1252 0.0502 0.4554 0.0398 0.5489
AUC(Pf ,τ)↓ 0.0402 0.0150 0.0176 0.0490 0.0394 0.0042 0.0049 0.0042 0.0175 0.0027 0.0036
AUCTD↑ 1.3341 1.0978 1.4227 0.8053 1.2771 1.0218 1.1224 1.0327 1.4483 1.0288 1.5462
AUCBS↑ 0.9556 0.9704 0.9743 0.7032 0.9575 0.9762 0.9923 0.9783 0.9753 0.9863 0.9938
AUCODP↑ 1.2939 1.0827 1.4051 0.7563 1.2377 1.0177 1.1175 1.0285 1.4308 1.0262 1.6528
AUCTDBS↑ 0.2981 0.0973 0.4132 0.0040 0.2407 0.0373 0.1202 0.0459 0.4378 0.0371 0.5453
AUCSNPR↑ 8.42 7.45 24.49 1.08 7.11 9.96 25.40 11.82 25.94 14.91 153.77

Table 2 
Inference time and network parameter count of the different methods on the five datasets.

Dataset San Diego Viareggio Avon Qingpu-I Qingpu-II

Method Time/s Params(M) Test/s Params(M) Test/s Params(M) Test/s Params(M) Test/s Params(M)

GRX 3.97 - 18.09 - 14.77 - 18.97 - 20.16 -
CRD 58.96 - 337.39 - 1827.89 - 165.78 - 1537.75 -
LSMAD 33.13 - 340.53 - 478.84 - 266.51 - 297.43 -
RGAE 0.26 0.04 1.68 0.10 2.23 0.72 1.51 0.50 2.27 0.50
DFAN 4.54 0.08 20.10 0.51 16.52 0.26 22.54 0.13 26.78 0.13
Auto-AD 0.06 0.32 1.01 0.37 0.25 0.35 0.65 0.33 0.40 0.33
DeepLR 0.10 0.10 0.30 0.15 0.36 0.13 0.38 0.11 0.86 0.11
PDBSNet 0.19 0.68 1.51 0.72 0.90 0.70 1.04 0.69 1.64 0.69
BockNet 1.18 0.13 1.62 0.22 1.48 0.18 1.02 0.15 1.32 0.15
GT-HAD 0.59 0.61 0.41 0.43 0.47 0.43 0.65 0.31 0.80 0.31
MBDTNet 1.67 1.48 1.84 1.51 2.07 1.50 2.16 1.49 2.20 1.49
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results across the other AUC metrics. On the Avon dataset, MBDTNet 
obtains the best detection performance with the lowest AUC(Pf ,τ). 

Although DFAN achieves higher AUC(Pd ,τ) and AUCTD, it AUCBS is the 
lowest, indicating weaker ability of background suppression. For the 
Qingpu-I dataset, despite its AUC(Pd ,Pf)

score not being the highest, the 

proposed method still achieves the best scores in AUCTD and AUCBS, 
reinforcing its strong overall performance. On the Qingpu-II dataset, 
MBDTNet outperforms all the comparison algorithms, achieving the 
highest AUCTD, AUCBS, and AUCODP scores across all the metrics. GT- 
HAD achieves the best performance on the AUC(Pf ,τ), but its overall 

detection performance is lower. In addition, it can be observed that, 
although Auto-AD secures the second-best average AUC(Pd ,τ) score, its 
anomaly detection performance remains suboptimal. Meanwhile, 
DeepLR and BockNet achieve near-optimal results across several data
sets but exhibit a relatively poor performance on certain datasets, 
highlighting their limited adaptability and stability. In summary, 
MBDTNet demonstrates superior anomaly detection capabilities while 
effectively suppressing background interference. Its adaptability to 
complex background variations and targets of different scales un
derscores its robustness and reliability in diverse scenarios.

Moreover, Table 2 presents the inference time and number of pa
rameters of different detection algorithms on five datasets. Among these 
traditional methods, CRD and LSMAD have relative long computation 
times, but the detection results show instability in complex background 
scenarios. The RGAE, Auto-AD, and DeepLR algorithms rely on pixel- 
level inference by vanilla autoencoders or convolutional neural net
works, and thus the inference time is faster. By contract, MBDTNet 
adopts a pyramidal global spectral-spatial modeling strategy and com
bines a 64 × 64 sliding window mechanism for inference, which 
significantly increases the computational complexity. In terms of 
parameter count, MBDTNet is also higher than other networks, mainly 
due to the incorporation of the pyramid structure and the ViT module. 

Compared to the DFAN algorithm, MBDTNet maintains a faster infer
ence speed with a larger number of parameters. Overall, MBDTNet 
achieves a significant improvement in detection performance through 
controlled computational and parameter overhead, making it particu
larly suitable for anomaly detection.

4.4. Ablation study

1) Model Structure Analysis: To validate the effectiveness of the TDSR 
and MBDL modules within the MBDTNet network, we evaluated the 
model performance with four different network structures. As shown in 
Table 3, the AUC(Pd ,Pf ) and AUC(Pf ,τ) scores are used to assess the impact 
of the different models. The base model for the ablation experiments was 
based on the encoding module and detection module. When only the 
TDSR module was used, the token dictionary update method followed 
the approach in [56]. It can be seen that the introduction of the TDSR 
module improves the AUC(Pd ,Pf ) score and reduces the AUC(Pf ,τ) score. 

Specifically, when using MBDL alone, the model achieves significant 
improvements on most datasets, particularly on the Qingpu-I dataset, 
indicating that the MBDL module helps enhance the model’s ability to 
model the relationship between the background and anomalies. 
Furthermore, the token dictionary learned through the MBDL module, 
combined with the TDSR algorithm, the model’s performance is signif
icantly improved, achieving the best accuracy on the San Diego and 
Qingpu-I datasets. This demonstrates that the joint use of the TDSR and 
MBDL modules can effectively enhance the model’s performance. On the 
Viareggio and Avon datasets, the improvement in accuracy is relatively 
smaller, but still outperforms the results obtained by using TDSR or 
MBDL alone, validating the complementary nature of these two ap
proaches. In summary, the combination of the TDSR and MBDL modules 
enables MBDTNet to achieve the best performance, demonstrating its 
superiority in anomaly detection.

2) Loss Function Analysis: To validate the performance of the 

Table 3 
AUC(Pd ,Pf )

and AUC(Pf ,τ) scores for the different modules on the four datasets.

TDSR MBDL San Diego Viareggio Avon Qingpu-I Qingpu-II

× × 0.9668 0.0075 0.9577 0.0055 0.9690 0.0032 0.9990 0.0063 0.9910 0.0084
× √ 0.9740 0.0077 0.9672 0.0035 0.9822 0.0039 0.9998 0.0036 0.9924 0.0058
√ × 0.9745 0.0046 0.9709 0.0059 0.9643 0.0023 0.9996 0.0047 0.9961 0.0049
√ √ 0.9865 0.0043 0.9716 0.0056 0.9867 0.0021 0.9997 0.0031 0.9974 0.0036

Table 4 
AUC(Pd ,Pf )

and AUC(Pf ,τ) scores for the different loss functions on the four datasets.

Methods San Diego Viareggio Avon Qingpu-I Qingpu-II

LBCE 0.9799 0.0090 0.9692 0.0047 0.9842 0.0075 0.9995 0.0042 0.9962 0.0034
LBCE + Lintra 0.9868 0.0053 0.9694 0.0050 0.9865 0.0035 0.9993 0.0037 0.9970 0.0038
LBCE + Linter 0.9848 0.0046 0.9707 0.0034 0.9859 0.0049 0.9997 0.0034 0.9916 0.0031
LBCE + Linter +

Lintra

0.9865 0.0043 0.9716 0.0056 0.9867 0.0023 0.9997 0.0031 0.9974 0.0036

Fig. 13. Parameter analysis of DBSCAN. (a) AUC(Pd ,Pf )
of MinPts. (b) AUC(Pf ,τ) of MinPts. (c) AUC(Pd ,Pf )

of Eps. (d) AUC(Pf ,τ) of Eps.
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MBDTNet composite guided loss function, ablation experiments were 
conducted using BCE loss as a baseline, with variations incorporating the 
Lintra loss and the Linter loss. Table 4 lists the AUC scores on the four 
datasets under the different loss combinations. The results indicate that 
the combined effect of the Lintra and Linter losses effectively suppresses 
background interference while enhancing the AUC(Pd ,Pf) score. Specif

ically, the combination of LBCE with both Lintra and Linter achieves the 
highest accuracy on the San Diego, Qingpu-I, and Qingpu-II datasets, 
demonstrating that the dual loss functions help to better separate 
anomalies from background features. Whereas on the Viareggio and 
Avon datasets, the different loss combinations improve slightly, the 
accuracy remains largely stable across configurations. A detailed anal
ysis of the different loss functions reveals that Lintra and Linter optimize the 
MBDL model by emphasizing the inter-class separability and intra-class 
consistency.

3) DBSCAN Parameter Analysis: To validate the sensitivity of the 
DBSCAN parameters, additional two control experiments were per
formed in this study, as shown in Fig. 13. In the first experiment, the 
neighborhood radius Eps was fixed as 0.3 and the minimum number of 
neighbor points MinPts was varied from 5 to 50. In another experiment, 
MinPts was fixed as 40 and Eps was varied from 0.1 to 1. The first 
experiment showed that the AUC(Pd , Pf) generally improves as the 
number of MinPts increased, especially on the Qingpu-I and Qingpu-II 
datasets. Despite fluctuations in AUC(Pf ,τ), the performance remained 

low, indicating effective background suppression and anomaly detec
tion. In the second experiment, although each dataset exhibits fluctua
tions under different Eps values, their performance remains relatively 
stable. The San Diego, Viareggio, and Avon datasets are slightly sensitive 
to both MinPts and Eps, whereas the Qingpu-I and Qingpu-II datasets 
shows lower sensitivity. In summary, DBSCAN parameters should be 
adjusted according to the characteristics of each dataset to achieve 
optimal detection performance.

5. Conclusion

In this article, we have proposed a multi-class background descrip
tion transformer network (MBDTNet) for hyperspectral anomaly 
detection. Firstly, considering the limitations of the training data and the 
complexity of the background variations, pseudo-label generation and 
spatial random masking are employed to produce sufficient and diverse 
training samples. Next, a self-attention mechanism based on TDSR is 
introduced, improving the model’s prioritize features of the different 
background categories. By integrating GDA with a deep network, 
MBDTNet leverages MBDL learning to learn the conditional distribution 
of each class and uses a distance function to infer the background token 
dictionary and localize anomalies. In addition, a composite guided loss 
function that combines BCE loss, intra-class loss, and inter-class loss is 
introduced to improve the stability of the model training. The experi
mental results demonstrated that MBDTNet achieved a superior per
formance and faster inference on five large-scale hyperspectral datasets.
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